
C H A P T E R 8
SQL FUNCTIONS AND
PROCEDURES

L E A R N I N G O B J E C T I V E S

Objectives

● Understand how to use functions in queries
● Use the UPPER and LOWER functions with character data
● Use the ROUND and FLOOR functions with numeric data
● Add a specific number of months or days to a date
● Calculate the number of days between two dates
● Use concatenation in a query
● Embed SQL commands in PL/SQL and T-SQL procedures
● Retrieve single rows using embedded SQL
● Update a table using embedded INSERT, UPDATE, and DELETE

commands
● Use cursors to retrieve multiple rows in embedded SQL
● Manage errors in procedures containing embedded SQL commands
● Use SQL in a language that does not support embedded SQL

commands
● Use triggers

I N T R O D U C T I O N

You already have used functions that apply to groups (such as SUM and AVG). In this chapter, you will

learn to use functions that apply to values in individual rows. Specifically, you will see how to use functions

with characters or text, numbers, and dates.You will learn how to concatenate values in a query.You will

embed SQL commands in PL/SQL and T-SQL procedures to retrieve rows and update data. You will

42951_08 8/4/2008 9:4:39 Page 233

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

examine the different ways to manage errors in procedures. Finally, you will learn how to create and use

cursors and triggers.

U S I N G S Q L I N A P R O G R A M M I N G
E N V I R O N M E N T

SQL is a powerful nonprocedural language in which you communicate tasks to the com-
puter using simple commands. As in other nonprocedural languages, you can accomplish many
tasks using a single command. Although SQL and other nonprocedural languages are well-
equipped to store and query data, sometimes you might need to complete tasks that are beyond
the capabilities of SQL. In such cases, you need to use a procedural language.

A procedural language is one in which you must give the computer the step-by-step
process for accomplishing a task. PL/SQL, which was developed by Oracle as an exten-
sion of SQL, is an example of a procedural language. This chapter uses PL/SQL to illus-
trate how to use SQL in a programming environment by embedding SQL commands in
another language. The examples in this chapter illustrate how to use embedded SQL com-
mands to retrieve a single row, insert new rows, update and delete existing rows, and
retrieve multiple rows. In the process, you will create stored procedures that are saved and
are available for use at any time.

T-SQL, which stands for Transact-SQL, is another extension of SQL. T-SQL is the pro-
cedural language that SQL Server uses. You can perform tasks, such as retrieving a single
row, inserting new rows, and retrieving multiple rows, using T-SQL in SQL Server.
Although the language syntax is slightly different in T-SQL when compared to PL/SQL, the
functionality and the results are the same.

You cannot embed SQL commands in Access programs the way you can in PL/SQL and
T-SQL. There are ways to use the commands, however, as you’ll learn later in this chapter.

N O T E
This chapter assumes that you have some programming background and does not cover programming basics.
To understand the first part of this chapter, you should be familiar with variables, declaring variables, and cre-
ating procedural code, including IF statements and loops.To understand the Access section at the end of the
chapter, you should be familiar with Function and Sub procedures, and the process for sequentially access-
ing all records in a recordset, such as using a loop to process all the records in a table.

A C C E S S U S E R N O T E
If you are using Access, you will not be able to complete the material in this chapter that deals with PL/SQL
and T-SQL procedures. Be sure to read this information so you will understand these important concepts.
You will, however, be able to complete the steps in the “Using SQL in Microsoft Access” section.

42951_08 8/4/2008 9:4:40 Page 234

Chapter 8

234

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

U S I N G F U N C T I O N S

You already have used aggregate functions to perform calculations based on groups of
records. For example, SUM(BALANCE) calculates the sum of the balances on all records
that satisfy the condition in the WHERE clause. When you use a GROUP BY clause, the
DBMS will calculate the sum for each record in a group.

SQL also includes functions that affect single records. Some functions affect charac-
ter data and others let you manipulate numeric data. The supported SQL functions vary
between SQL implementations. This section will illustrate some common functions. For
additional information about the functions your SQL implementation supports, consult the
program’s documentation.

Character Functions
SQL includes several functions that affect character data. Example 1 illustrates the use of
the UPPER function.

E X A M P L E 1

List the rep number and last name for each sales rep. Display the last name in upper-
case letters.

The UPPER function displays a value in uppercase letters; for example, the function
UPPER(LAST_NAME) displays the last name Kaiser as KAISER. (Note that the UPPER func-
tion simply displays the last name in uppercase letters; it does not change the last name
stored in the table to uppercase letters.) The item in parentheses (LAST_NAME) is called
the argument for the function. The value produced by the function is the result of dis-
playing all lowercase letters in the value stored in the LAST_NAME column in uppercase
letters. The query and its results are shown in Figure 8-1.

You can use functions in WHERE clauses as well. For example, the condition
UPPER(LAST_NAME) = 'KAISER' would be true for names like Kaiser, KAISER, and KaIsER,

Argument

UPPER function

Last names displayed
in uppercase

FIGURE 8-1 Using the UPPER function to display character data in uppercase letters

42951_08 8/4/2008 9:4:40 Page 235

SQL Functions and Procedures

235

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

because the result of applying the UPPER function to any of these values would result in the
value KAISER.

To display a value in lowercase letters, you can use the LOWER function. SQL Server
supports both the UPPER and LOWER function.

Number Functions
SQL also includes functions that affect numeric data. The ROUND function, which rounds
values to a specified number of decimal places, is illustrated in Example 2.

E X A M P L E 2

List the part number and price for all parts. Round the price to the nearest whole dollar
amount.

A function can have more than one argument. The ROUND function, which rounds a
numeric value to a desired number of decimal places, has two arguments. The first argu-
ment is the value to be rounded; the second argument indicates the number of decimal
places to which to round the result. For example, ROUND(PRICE,0) will round the val-
ues in the PRICE column to zero decimal places (a whole number). If a price is 24.95, the
result will be 25. If the price is 24.25, on the other hand, the result will be 24. Figure 8-2
shows the query and results to round values in the PRICE column to zero decimal places.
The computed column ROUND(PRICE,0) is named ROUNDED_PRICE.

A C C E S S U S E R N O T E
In Access, the UCASE() function displays a value in uppercase letters and the LCASE() function displays a
value in lowercase letters. For example, if the value stored in the LAST_NAME column is Kaiser,
UCASE(LAST_NAME) would result in the value KAISER and LCASE(LAST_NAME) would result in the
value kaiser.

42951_08 8/6/2008 9:47:52 Page 236

Chapter 8

236

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Rather than rounding (using the ROUND function), you might need to truncate
(remove) everything to the right of the decimal point. To do so, use the FLOOR function,
which has only one argument. If a price is 24.95, for example, ROUND(PRICE,0) would
result in 25, whereas FLOOR(PRICE) would result in 24. SQL Server supports both the
ROUND and the FLOOR functions. Microsoft Access supports only the ROUND function.

Working with Dates
SQL uses functions and calculations for manipulating dates. To add a specific number of
months to a date, you can use the ADD_MONTHS function as illustrated in Example 3.

E X A M P L E 3

For each order, list the order number and the date that is two months after the order date.
Name this date FUTURE_DATE.

The ADD_MONTHS function has two arguments. The first argument is the date to which
you want to add a specific number of months, and the second argument is the number of
months. To add two months to the order date, for example, the expression is
ADD_MONTHS(ORDER_DATE,2) as illustrated in Figure 8-3.

ROUND
function

Price values rounded to zero
decimal places in a column
named ROUNDED_PRICE

FIGURE 8-2 Using the ROUND function to round numeric values

42951_08 8/4/2008 9:4:40 Page 237

SQL Functions and Procedures

237

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

E X A M P L E 4

For each order, list the order number and the date that is seven days after the order date.
Name this date FUTURE_DATE.

To add a specific number of days to a date, you do not need a function. You can add
the number of days to the order date as illustrated in Figure 8-4. (You can also subtract dates
in the same way.) This method works in Oracle, Access, and SQL Server.

ADD_MONTHS
function

Two months added to each
order date in a column named

FUTURE_DATE

FIGURE 8-3 Using the ADD_MONTHS function to add months to a date

A C C E S S U S E R N O T E
To add a number of months to a date in Access, use the DATEADD() function, which has three arguments.
The first argument includes the interval of time to be added; the letter “m” indicates that months will be
added. The second argument includes the number of intervals to be added. The third argument includes
the date to be manipulated. For example, to add two months to the dates stored in the ORDER_DATE col-
umn, the appropriate function would be DATEADD("m", 2, ORDER_DATE).

S Q L S E R V E R U S E R N O T E
To add a number of months to a date in SQL Server, use the DATEADD() function, which has three
arguments. The first argument includes the interval of time to be added; the letter “m” indicates that
months will be added. The second argument includes the number of intervals to be added. The third argu-
ment includes the date to be manipulated. For example, to add two months to the dates stored in the
ORDER_DATE column, the appropriate function would be DATEADD("m", 2, ORDER_DATE).

42951_08 8/4/2008 9:4:41 Page 238

Chapter 8

238

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

E X A M P L E 5

For each order, list the order number, today’s date, the order date, and the number of days
between the order date and today’s date. Name today’s date TODAYS_DATE and name the
number of days between the order date and today’s date DAYS_PAST.

You can use the SYSDATE function to obtain today’s date, as shown in Figure 8-5. The
command in the figure uses SYSDATE to display today’s date and also uses SYSDATE in a
computation to determine the number of days between the order date and today’s date.
The values for DAYS_PAST include decimal places. You could remove these decimal places
by using the ROUND or FLOOR functions, if desired.

Seven days added
to each order date

Expression that adds seven
days to the order dates

FIGURE 8-4 Adding days to dates

42951_08 8/4/2008 9:4:41 Page 239

SQL Functions and Procedures

239

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

C O N C A T E N A T I N G C O L U M N S

Sometimes you need to concatenate, or combine, two or more character columns into a
single expression when displaying them in a query; the process is called concatenation.
To concatenate columns, you type two vertical lines (||) between the column names, as illus-
trated in Example 6.

E X A M P L E 6

List the number and name of each sales rep. Concatenate the FIRST_NAME and
LAST_NAME columns into a single value, with a space separating the first and last names.

To concatenate the FIRST_NAME and LAST_NAME columns, the expression is
FIRST_NAME||LAST_NAME. When the first name doesn’t include sufficient characters
to fill the width of the column (as determined by the number of characters specified in
the CREATE TABLE command), SQL inserts extra spaces. For example, when the

Number of days
between today's date and

the order date
Expression to calculate the

number of days between today's
date and the order date

FIGURE 8-5 Calculating the number of days between two dates

A C C E S S U S E R N O T E
In Access, use the DATE() function to obtain today’s date, rather than SYSDATE. The DATE() function has
no arguments, so you would write DATE() in place of SYSDATE.

S Q L S E R V E R U S E R N O T E
In SQL Server, use the GETDATE() function to obtain today’s date, rather than SYSDATE. The
GETDATE() function has no arguments, so you would write GETDATE() in place of SYSDATE.

42951_08 8/4/2008 9:4:41 Page 240

Chapter 8

240

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

FIRST_NAME column is 12 characters wide, the first name is Mary, and the last name is
Johnson, the expression FIRST_NAME||LAST_NAME appears as Mary, followed by eight
spaces, and then Johnson. To remove the extra spaces following the first name value, you
use the RTRIM (right trim) function. When you apply this function to the value in a col-
umn, SQL displays the original value and removes any spaces inserted at the end of the
value. Figure 8-6 shows the query and output with the extra spaces removed. For sales
rep 20, for example, this command trims the first name to “Valerie,” concatenates it with
a single space, and then concatenates the last name “Kaiser.”

Q & A

Question: Why is it necessary to insert a single space character in single quotation marks
in the query?
Answer: Without the space character, there would be no space between the first and last
names. The name of sales rep 20, for example, would be displayed as “ValerieKaiser.”

RTRIM
function

Concatenation
symbol

Concatenated
names

FIGURE 8-6 Concatenating two columns and using the RTRIM function

A C C E S S U S E R N O T E
In Access, use the & symbol to concatenate columns. It is not necessary to trim the columns because
Access will trim them automatically. The corresponding query in Access is:

SELECT REP_NUM, FIRST_NAME&' '&LAST_NAME
FROM REP;

42951_08 8/4/2008 9:5:44 Page 241

SQL Functions and Procedures

241

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S T O R E D P R O C E D U R E S

In a client/server system, the database is stored on a computer called the server and
users access the database through clients. A client is a computer that is connected to a net-
work and has access through the server to the database. Every time a user executes a
query, the DBMS must determine the best way to process the query and provide the results.
For example, the DBMS must determine which indexes are available and whether it can use
those indexes to make the processing of the query more efficient.

When you anticipate running a particular query often, you can improve overall perfor-
mance by saving the query in a file called a stored procedure. The stored procedure is
placed on the server. The DBMS compiles the stored procedure (translating it into machine
code) and creates an execution plan, which is the most efficient way of obtaining the
results. From that point on, users execute the compiled, optimized code in the stored
procedure.

Another reason for saving a query as a stored procedure, even when you are not work-
ing in a client/server system, is convenience. Rather than retyping the entire query each
time you need it, you can use the stored procedure. For example, suppose you frequently
execute a query that selects a sales rep with a given number and then displays the con-
catenation of the first name and last name of the sales rep. Instead of typing the query each
time you want to display a sales rep’s name, you can store the query in a stored procedure.
You would then only need to run the stored procedure when you want to display a sales
rep’s name.

In Oracle, you create stored procedures using a language called PL/SQL. You create and
save the procedures as script files.

Retrieving a Single Row and Column
Example 7 illustrates using a stored procedure to retrieve a single row and column from a table.

S Q L S E R V E R U S E R N O T E
In SQL Server, use the + symbol to concatenate columns. The corresponding query in SQL Server is:

SELECT REP_NUM, RTRIM(FIRST_NAME)+' '+RTRIM(LAST_NAME)
FROM REP;

A C C E S S U S E R N O T E
Although Access does not support stored procedures, you can achieve some of the same convenience
by creating a parameter query that prompts the user for the arguments you would otherwise use in a
stored procedure.

42951_08 8/4/2008 9:6:5 Page 242

Chapter 8

242

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

E X A M P L E 7

Write a PL/SQL procedure that takes a rep number as input and displays the correspond-
ing rep name.

Figure 8-7 shows a procedure to find the name of the representative whose number is
stored in the I_REP_NUM argument. Because the restriction involves the primary key, the
query will produce only one row of output. (You will see how to handle queries whose results
can contain multiple rows later in this chapter.) The command shown in Figure 8-7 is
stored in a script file and is displayed in the Script Editor. To create the procedure, you
would run the script file. Assuming that the script file does not contain any errors, Oracle
would then create the procedure and it would be available for use.

The CREATE PROCEDURE command in the stored procedure causes Oracle to cre-
ate a procedure named DISP_REP_NAME. By including the optional OR REPLACE clause
in the CREATE PROCEDURE command, you can use the command to modify an exist-
ing procedure. If you omit the OR REPLACE clause, you would need to drop the proce-
dure and then re-create it in order to change the procedure later.

The first line of the command contains a single argument, I_REP_NUM. The word IN fol-
lowing the single argument name indicates that I_REP_NUM will be used for input. That

Argument

Expression to
output the rep’s name

Command to select
LAST_NAME and FIRST_NAME and

place them in local variables

Procedure
nameLocal variables

FIGURE 8-7 Procedure to find a rep’s name given the rep’s number

N O T E
PL/SQL commands, like SQL commands, are free-format and can include blank lines to separate impor-
tant sections of the procedure and spaces on the lines to make the commands more readable.

42951_08 8/4/2008 9:4:42 Page 243

SQL Functions and Procedures

243

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

is, the user must enter a value for I_REP_NUM to use the procedure. Other possibilities are
OUT, which indicates that the procedure will set a value for the argument, and INOUT,
which indicates that the user will enter a value that the procedure can later change.

Variable names in PL/SQL must start with a letter and can contain letters, dollar signs,
underscores, and number signs, but cannot exceed 30 characters. When declaring vari-
ables, you must assign the variable a data type, just as you do in the SQL CREATE TABLE
command. You can ensure that a variable has the same data type as a particular column
in a table by using the %TYPE attribute. To do so, you include the name of the table, fol-
lowed by a period and the name of the column, and then %TYPE. When you use %TYPE,
you do not enter a data type because the variable is automatically assigned the same type
as the corresponding column. In the first line of the script file shown in Figure 8-7, assign-
ing the variable I_REP_NUM the same type as the REP_NUM column in the REP table is writ-
ten as REP.REP_NUM%TYPE.

The first line of the CREATE PROCEDURE command ends with the word AS and is fol-
lowed by the commands in the procedure. The commands on lines 2 and 3 declare the local
variables the procedure requires. In Figure 8-7, lines 2 and 3 create two variables named
I_LAST_NAME and I_FIRST_NAME. Both variables are assigned data types using %TYPE.

The procedural code, which contains the commands that specify the procedure’s func-
tion, appears between the BEGIN and END commands. In Figure 8-7, the procedural code
begins with the SQL command to select the last name and first name of the sales rep
whose number is stored in I_REP_NUM. The SQL command uses the INTO clause to place
the results in the I_LAST_NAME and I_FIRST_NAME variables. The next command uses
the DBMS_OUTPUT.PUT_LINE procedure to display the concatenation of the trimmed
I_FIRST_NAME and I_LAST_NAME variables. Notice that a semicolon ends each vari-
able declaration, command, and the word END. The slash (/) at the end of the procedure
appears on its own line. In some Oracle environments, the slash is optional. A good prac-
tice is to include the slash, even when it’s not necessary, so your procedure will always work
correctly.

To call (or use) the procedure from the SQL Commands page, type the word BEGIN, fol-
lowed by the name of the procedure including the desired value for the argument in paren-
theses, followed by the word END, a semicolon, and a slash on a separate line. To use the
DISP_REP_NAME procedure to find the name of sales rep 20, for example, type the com-
mand shown in Figure 8-8.

N O T E
DBMS_OUTPUT is a package that contains multiple procedures, including PUT_LINE. The SQL Commands
page automatically displays the output produced by DBMS_OUTPUT.

42951_08 8/4/2008 9:4:42 Page 244

Chapter 8

244

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

E R R O R H A N D L I N G

Procedures must be able to handle conditions that can arise when accessing the database.
For example, the user enters a rep number and the DISP_REP_NAME procedure dis-
plays the corresponding rep’s name. What happens when the user enters an invalid rep
number? This situation results in the error message shown in Figure 8-9 because Oracle will
not find any last name to display.

You can include the EXCEPTION clause shown in Figure 8-10 to handle processing an
invalid rep number. When a user enters a rep number that does not match any rep num-
ber in the REP table, the NO_DATA_FOUND condition on line 13 will be true. When the
NO_DATA_FOUND condition is true, the procedure displays the “No rep with this
number:” message followed by the invalid rep number.

Procedure result
(name of sales rep 20)

Command to use the
DISP_REP_NAME procedure

Value for argument (sales rep number 20)

FIGURE 8-8 Using the DISP_REP_NAME procedure within an SQL command

System error message

Invalid rep number

FIGURE 8-9 System error that occurs when a user enters an invalid rep number

42951_08 8/4/2008 9:4:42 Page 245

SQL Functions and Procedures

245

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

When you use this version of the procedure and enter an invalid rep number, you will
see the error message from the procedure (Figure 8-11) instead of the system error mes-
sage (Figure 8-9).

The DISP_REP_NAME procedure must handle an error that results when a user enters
an invalid rep number. There are other types of errors that procedures must handle,
depending on the processing required. For example, a user might enter a commission rate
in a procedure to find the name of the sales rep who has that commission rate. When the
user enters the rate 0.05, the procedure will display the TOO_MANY_ROWS error because
Valerie Kaiser and Juan Perez both have this same commission rate—the procedure finds
two rows instead of one. You can manage this error by writing a WHEN clause that con-
tains a TOO_MANY_ROWS condition, following the EXCEPTION clause in the procedure.
You can write both WHEN clauses in the same procedure or in separate procedures. When
adding both WHEN clauses to the same procedure, however, the EXCEPTION clause appears
only once.

EXCEPTION clause

Action to take when
no data is found

Tests for
NO_DATA_FOUND

condition

FIGURE 8-10 PL/SQL procedure with error handling

Invalid rep number

Error message from
the procedure

FIGURE 8-11 Error message that occurs when a user enters an invalid rep number

42951_08 8/4/2008 9:4:43 Page 246

Chapter 8

246

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

U S I N G U P D A T E P R O C E D U R E S

In Chapter 6, you learned how to use SQL commands to update data. You can use the same
commands within procedures. A procedure that updates data is called an update
procedure.

Changing Data with a Procedure
You can use an update procedure to change a row in a table, as illustrated in Example 8.

E X A M P L E 8

Change the name of the customer whose number is stored in I_CUSTOMER_NUM to the
value currently stored in I_CUSTOMER_NAME.

This procedure is similar to the procedures used in previous examples with two main
differences: it uses an UPDATE command instead of a SELECT command, and there are
two arguments, I_CUSTOMER_NUM and I_CUSTOMER_NAME. The I_CUSTOMER_NUM
argument stores the customer number to be updated and the I_CUSTOMER_NAME argu-
ment stores the new value for the customer name. The procedure appears in Figure 8-12.

When you run this procedure, you will need to furnish values for two arguments.
Figure 8-13 uses this procedure to change the name of customer 725 to Deerfield’s.

Arguments

FIGURE 8-12 Using a procedure to update a row

Argument that stores
the customer number

Argument that stores
the new name

FIGURE 8-13 Using a procedure to update the name of customer 725

42951_08 8/4/2008 9:4:43 Page 247

SQL Functions and Procedures

247

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Deleting Data with a Procedure
Just as you would expect, if you can use an update procedure to change a rows in a table,
you can also use one to delete a row from a table, as illustrated in Example 9.

E X A M P L E 9

Delete the order whose number is stored in I_ORDER_NUM from the ORDERS table, and
also delete each order line for the order whose order number is currently stored in the
variable from the ORDER_LINE table.

If you attempt to delete the order in the ORDERS table first, referential integrity will pre-
vent the deletion because matching rows would still exist in the ORDER_LINE table, so it is
a good idea to delete the orders from the ORDER_LINE table first. The procedure to delete an
order and its related order lines appears in Figure 8-14. This procedure contains two DELETE
commands. The first command deletes all order lines in the ORDER_LINE table on which
the order number matches the value stored in the I_ORDER_NUM argument. The second com-
mand deletes the order in the ORDERS table whose order number matches the value stored
in the I_ORDER_NUM argument.

Figure 8-15 shows the use of this procedure to delete order number 21610. Even though
there are two DELETE commands in the procedure, the user enters the order number
only once.

Argument that stores the
order number to delete

Command to delete all rows in
the ORDER_LINE table that matches

the entered order number

Command to delete the row in
the ORDERS table that matches the

entered order number

FIGURE 8-14 Procedure to delete a row and related rows from multiple tables

42951_08 8/4/2008 9:4:44 Page 248

Chapter 8

248

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S E L E C T I N G M U L T I P L E R O W S W I T H A
P R O C E D U R E

The procedures you have seen so far include commands that retrieve individual rows. You
can use an UPDATE or a DELETE command in PL/SQL to update or delete multiple rows.
The commands are executed and the updates or deletions occur. Then the procedure can
move on to the next task.

What happens when a SELECT command in a procedure retrieves multiple rows? For
example, suppose the SELECT command retrieves the number and name of each cus-
tomer represented by the sales rep whose number is stored in I_REP_NUM. There is a
problem—PL/SQL can process only one record at a time, but this SQL command
retrieves more than one row. Whose number and name is placed in I_CUSTOMER_NUM
and I_CUSTOMER_NAME when the command retrieves more than one customer row?
Should you make I_CUSTOMER_NUM and I_CUSTOMER_NAME arrays capable of hold-
ing multiple rows and, if so, what should be the size of these arrays? Fortunately, you can
solve this problem by using a cursor.

Using a Cursor
A cursor is a pointer to a row in the collection of rows retrieved by an SQL command. (This
is not the same cursor that you see on your computer screen.) The cursor advances one
row at a time to provide sequential, one-record-at-a-time access to the retrieved rows so
PL/SQL can process the rows. By using a cursor, PL/SQL can process the set of retrieved
rows as though they were records in a sequential file.

To use a cursor, you must first declare it, as illustrated in Example 10.

E X A M P L E 1 0

Retrieve and list the number and name of each customer represented by the sales rep
whose number is stored in the variable I_REP_NUM.

FIGURE 8-15 Using the procedure to delete an order

42951_08 8/4/2008 9:4:44 Page 249

SQL Functions and Procedures

249

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The first step in using a cursor is to declare the cursor and describe the associated query
in the declaration section of the procedure. In this example, assuming the cursor is named
CUSTGROUP, the command to declare the cursor is:

CURSOR CUSTGROUP IS
SELECT CUSTOMER_NUM, CUSTOMER_NAME
FROM CUSTOMER
WHERE REP_NUM = I_REP_NUM;

This command does not cause the query to be executed at this time; it only declares
a cursor named CUSTGROUP and associates the cursor with the indicated query. Using a
cursor in a procedure involves three commands: OPEN, FETCH, and CLOSE. The OPEN
command opens the cursor and causes the query to be executed, making the results avail-
able to the procedure. Executing a FETCH command advances the cursor to the next row
in the set of rows retrieved by the query and places the contents of the row in the indi-
cated variables. Finally, the CLOSE command closes a cursor and deactivates it. Data
retrieved by the execution of the query is no longer available. The cursor could be opened
again later and processing could begin again.

The OPEN, FETCH, and CLOSE commands used in processing a cursor are analogous
to the OPEN, READ, and CLOSE commands used in processing a sequential file.

Opening a Cursor
Prior to opening the cursor, there are no rows available to be fetched. In Figure 8-16, this is
indicated by the absence of data in the CUSTGROUP portion of the figure. The right side of the
figure illustrates the variables into which the data will be placed (I_CUSTOMER_NUM and
I_CUSTOMER_NAME) and the value CUSTGROUP%NOTFOUND. Once the cursor has been
opened and all the records have been fetched, the CUSTGROUP%NOTFOUND value is set
to TRUE. Procedures using the cursor can use this value to indicate when the fetching of rows
is complete.

The OPEN command is written as follows:

OPEN CUSTGROUP;

Figure 8-17 shows the result of opening the CUSTGROUP cursor. In the figure, assume
that I_REP_NUM is set to 20 before the OPEN command is executed; there are now three
rows available to be fetched. No rows have yet been fetched, as indicated by the absence
of values in I_CUSTOMER_NUM and I_CUSTOMER_NAME. CUSTGROUP%NOTFOUND is
still FALSE. The cursor is positioned at the first row; that is, the next FETCH command
causes the contents of the first row to be placed in the indicated variables.

CUSTGROUP
CUSTOMER_
NUM

CUSTOMER_NAME

no row to
be fetched

I_CUSTOMER_
NUM

I_CUSTOMER_NAME

FALSE

CUSTGROUP
%NOTFOUND

FIGURE 8-16 Before OPEN

42951_08 8/4/2008 9:4:44 Page 250

Chapter 8

250

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Fetching Rows from a Cursor
To fetch (get) the next row from a cursor, use the FETCH command. The FETCH command
is written as follows:

FETCH CUSTGROUP INTO I_CUSTOMER_NUM, I_CUSTOMER_NAME;

Note that the INTO clause is associated with the FETCH command itself and not with
the query used in the cursor definition. The execution of this query could produce mul-
tiple rows. The execution of the FETCH command produces only a single row, so it is appro-
priate that the FETCH command causes data to be placed in the indicated variables.

Figure 8-18 through Figure 8-21 show the result of four FETCH commands. The first
three fetches are successful. In each case, the data from the appropriate row in the cur-
sor is placed in the indicated variables and CUSTGROUP%NOTFOUND is still FALSE. The
fourth FETCH command is different, however, because there is no more data to fetch. In this
case, the contents of the variables are left untouched and CUSTGROUP%NOTFOUND is set
to TRUE.

CUSTGROUP
CUSTOMER_
NUM

CUSTOMER_NAME

next row to
be fetched

I_CUSTOMER_
NUM

I_CUSTOMER_NAME

FALSE148 Al's Appliance
and Sport

524 Kline's

842 All Season

CUSTGROUP
%NOTFOUND

FIGURE 8-17 After OPEN, but before first FETCH

CUSTGROUP
CUSTOMER_
NUM

CUSTOMER_NAME

next row to
be fetched

I_CUSTOMER_
NUM

I_CUSTOMER_NAME

FALSE148 Al's Appliance
and Sport

524 Kline's

842 All Season

148 Al's Appliance
and Sport

CUSTGROUP
%NOTFOUND

FIGURE 8-18 After first FETCH

CUSTGROUP
CUSTOMER_
NUM

CUSTOMER_NAME I_CUSTOMER_
NUM

I_CUSTOMER_NAME

FALSE148 Al's Appliance
and Sport

524 Kline's

842 All Season

524 Kline's

next row to
be fetched

CUSTGROUP
%NOTFOUND

FIGURE 8-19 After second FETCH

42951_08 8/4/2008 9:4:45 Page 251

SQL Functions and Procedures

251

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Closing a Cursor
The CLOSE command is written as follows:

CLOSE CUSTGROUP;

Figure 8-22 shows the result of closing the CUSTGROUP cursor. The data is no longer
available.

Writing a Complete Procedure Using a Cursor
Figure 8-23 shows a complete procedure using a cursor. The declaration portion contains
the CUSTGROUP cursor definition. The procedural portion begins with the command to
open the CUSTGROUP cursor. The statements between the LOOP and END LOOP com-
mands create a loop that begins by fetching the next row from the cursor and placing the

CUSTGROUP
CUSTOMER_
NUM

CUSTOMER_NAME I_CUSTOMER_
NUM

I_CUSTOMER_NAME

FALSE148 Al's Appliance
and Sport

524 Kline's

842 All Season

842 All Season

next row to
be fetched

CUSTGROUP
%NOTFOUND

FIGURE 8-20 After third FETCH

CUSTGROUP
CUSTOMER_
NUM

CUSTOMER_NAME

no more
rows to be
fetched

I_CUSTOMER_
NUM

I_CUSTOMER_NAME

TRUE148 Al's Appliance
and Sport

524 Kline's

842 All Season

842 All Season

CUSTGROUP
%NOTFOUND

FIGURE 8-21 After attempting a fourth FETCH (CUSTGROUP%NOTFOUND is TRUE)

CUSTGROUP
CUSTOMER_
NUM

CUSTOMER_NAME

no rows to
be fetched

FIGURE 8-22 After CLOSE

42951_08 8/4/2008 9:4:45 Page 252

Chapter 8

252

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

results in I_CUSTOMER_NUM and I_CUSTOMER_NAME. The EXIT command tests the con-
dition CUSTGROUP%NOTFOUND. If the condition is true, the loop is terminated. If the
condition is not true, the DBMS_OUTPUT.PUT_LINE commands display the contents of
I_CUSTOMER_NUM and I_CUSTOMER_NAME.

Figure 8-24 shows the results of using the procedure. After the user enters 20 as the
value for the rep number, the procedure displays the number and name of each customer
of sales rep 20.

Cursor declaration

Command to fetch a
row from the cursor

Command to determine
whether a row was

successfully fetched

Command to display
the results

FIGURE 8-23 Procedure with a cursor

20 entered as the argument
for the rep number

Customers of rep 20

FIGURE 8-24 Results of using the procedure

42951_08 8/4/2008 9:4:46 Page 253

SQL Functions and Procedures

253

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Using More Complex Cursors
The query formulation that defined the cursor in Example 10 was straightforward. Any SQL
query is legitimate in a cursor definition. In fact, the more complicated the require-
ments for retrieval, the more numerous the benefits derived by the programmer who uses
embedded SQL. Consider the query in Example 11.

E X A M P L E 1 1

For each order that contains an order line for the part whose part number is stored in
I_PART_NUM, retrieve the order number, order date, customer number, name of the cus-
tomer that placed the order, and last and first names of the sales rep who represents the
customer.

Opening and closing the cursor is done exactly as shown in Example 10. The only dif-
ference in the FETCH command is that a different set of variables is used in the INTO
clause. Thus, the only real difference is the cursor definition. The procedure shown in
Figure 8-25 contains the appropriate cursor definition.

FIGURE 8-25 Procedure with a cursor that involves joining multiple tables

42951_08 8/4/2008 9:4:46 Page 254

Chapter 8

254

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The results of using this procedure to display the results for part DR93 are shown in
Figure 8-26.

Advantages of Cursors
The retrieval requirements in Example 11 are substantial. Beyond coding the preceding
cursor definition, the programmer doesn’t need to worry about the mechanics of obtain-
ing the necessary data or placing it in the right order, because this happens automati-
cally when the cursor is opened. To the programmer, it seems as if a sequential file already
exists that contains the correct data, sorted in the right order. This assumption leads to
three main advantages:

1. The coding in the procedure is greatly simplified.
2. In a normal program, the programmer must determine the most efficient way

to access the data. In a program or procedure using embedded SQL, the opti-
mizer determines the best way to access the data. The programmer isn’t con-
cerned with the best way to retrieve the data. In addition, when an underlying
structure changes (for example, an additional index is created), the opti-
mizer determines the best way to execute the query with the new structure.
The program or procedure does not have to change at all.

3. When the database structure changes in such a way that the necessary infor-
mation is still obtainable using a different query, the only change required in
the program or procedure is the cursor definition. The procedural code is not
affected.

FIGURE 8-26 Results of using the procedure to display orders containing part DR93

42951_08 8/4/2008 9:4:46 Page 255

SQL Functions and Procedures

255

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

U S I N G T - S Q L I N S Q L S E R V E R

SQL Server uses an extended version of SQL called T-SQL (Transact-SQL). You can use
T-SQL to create stored procedures and use cursors. The reasons for creating and using
stored procedures and cursors are identical to those discussed in the PL/SQL section.
Only the command syntax is different.

Retrieving a Single Row and Column
In Example 7, you learned how to write a procedure in PL/SQL that takes a rep number
as input and displays the corresponding rep name. The following code shows how you would
create the stored procedure in T-SQL:

CREATE PROCEDURE usp_DISP_REP_NAME
@repnum char(2)
AS
SELECT RTRIM(FIRST_NAME)+' '+RTRIM(LAST_NAME)
FROM REP
WHERE REP_NUM = @repnum

The CREATE PROCEDURE command in the stored procedure causes SQL Server to cre-
ate a procedure named usp_DISP_REP_NAME. The usp_ prefix identifies the procedure as a
user-stored procedure. Although using the prefix is optional, it is an easy way to differentiate
user-stored procedures from SQL Server system-stored procedures. The argument for this
procedure is @repnum. In T-SQL, you must assign a data type to parameters. All arguments
start with the at (@) sign. Arguments should have the same data type and length as the par-
ticular column in a table that they represent. In the REP table, REP_NUM was defined with a
CHAR data type and a length of 2. The CREATE PROCEDURE ends with the word AS fol-
lowed by the SELECT command that comprises the procedure.

To call the procedure, use the EXEC command and include any arguments in single
quotes. The procedure to find the name of sales rep 20 is:

EXEC usp_DISP_REP_NAME'20'

The result of executing this procedure is the same as that shown in Figure 8-8.

Changing Data with a Stored Procedure
In Example 8, you learned how to write a procedure in PL/SQL that changes the name of a
customer. The following commands show how to create the stored procedure in T-SQL:

CREATE PROCEDURE usp_CHG_CUST_NAME
@custnum char(3),
@custname char(35)
AS
UPDATE CUSTOMER
SET CUSTOMER_NAME = @custname
WHERE CUSTOMER_NUM = @custnum

The procedure has two arguments, @custnum and @custname, and uses an UPDATE
command instead of a SELECT command. To execute a stored procedure with two argu-
ments, separate the arguments with a comma as shown in the following command:

EXEC usp_CHG_CUST_NAME'725','Deerfield''s'

42951_08 8/4/2008 9:4:46 Page 256

Chapter 8

256

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Deleting Data with a Stored Procedure
In Example 9, you learned how to write a procedure in PL/SQL that deletes an order number
from both the ORDER_LINE table and the ORDERS table. The following commands show
how to create the stored procedure in T-SQL:

CREATE PROCEDURE usp_DEL_ORDER
@ordernum char(5)
AS
DELETE
FROM
ORDER_LINE
WHERE ORDER_NUM = @ordernum

DELETE
FROM ORDERS
WHERE ORDER_NUM = @ordernum

Using a Cursor
Cursors serve the same purpose in T-SQL as they do in PL/SQL and work exactly the same
way. You need to declare a cursor, open a cursor, fetch rows from a cursor, and close a
cursor. The only difference is in the command syntax. The following T-SQL code per-
forms exactly the same task as that shown in Example 10:

CREATE PROCEDURE usp_DISP_REP_CUST
@repnum char(2)
AS
DECLARE @custnum char(3)
DECLARE @custname char(35)
DECLARE mycursor CURSOR READ_ONLY

FOR
SELECT CUSTOMER_NUM, CUSTOMER_NAME
FROM CUSTOMER
WHERE REP_NUM = @repnum

OPEN mycursor

FETCH NEXT FROM mycursor
INTO @custnum, @custname

WHILE @@FETCH_STATUS = 0
BEGIN

PRINT @custnum+' '+@custname

FETCH NEXT FROM mycursor
INTO @custnum, @custname

END

CLOSE mycursor
DEALLOCATE mycursor

The procedure uses one argument, @repnum. It also uses two variables, and each vari-
able must be declared using a DECLARE statement. You also declare the cursor by giving it a

42951_08 8/4/2008 9:4:46 Page 257

SQL Functions and Procedures

257

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

name, describing its properties, and associating it with a SELECT statement. The cursor prop-
erty, READ_ONLY, means that the cursor is used for retrieval purposes only. The OPEN,
FETCH, and CLOSE commands perform exactly the same tasks in T-SQL as they do in PL/SQL.
The OPEN command opens the cursor and causes the query to be executed. The FETCH com-
mand advances the cursor to the next row and places the contents of the row in the indi-
cated variables. The CLOSE command closes a cursor and the DEALLOCATE command deletes
the cursor. The DEALLOCATE command is not necessary but it does enable the user to use
the same cursor name with another procedure.

The WHILE loop will repeat until the value of the system variable @@FETCH_STATUS is
not zero. The PRINT command will output the values stored in the @custnum and @custname
variables.

Using More Complex Cursors
T-SQL also can handle more complex queries. The T-SQL code for Example 11 is shown below:

CREATE PROCEDURE usp_DISP_PART_ORDERS
@partnum char(4)
AS
DECLARE @ordernum char(5)
DECLARE @orderdate datetime
DECLARE @custnum char(3)
DECLARE @repnum char(2)
DECLARE @lastname char(15)
DECLARE @firstname char(15)

DECLARE mycursor CURSOR READ_ONLY

FOR
SELECT ORDERS.ORDER_NUM, ORDER_DATE, ORDERS.CUSTOMER_NUM,

CUSTOMER.REP_NUM, LAST_NAME, FIRST_NAME
FROM ORDER_LINE, ORDERS, CUSTOMER, REP
WHERE ORDER_LINE.ORDER_NUM = ORDERS.ORDER_NUM
AND ORDERS.CUSTOMER_NUM = CUSTOMER.CUSTOMER_NUM
AND CUSTOMER.REP_NUM = REP.REP_NUM
AND PART_NUM = @partnum

OPEN mycursor

FETCH NEXT FROM mycursor
INTO @ordernum, @orderdate, @custnum, @repnum, @lastname, @firstname

WHILE @@FETCH_STATUS = 0
BEGIN

PRINT @ordernum
PRINT @orderdate
PRINT @custnum
PRINT @lastname
PRINT @firstname

FETCH NEXT FROM mycursor
INTO @ordernum, @orderdate, @custnum, @repnum, @lastname, @firstname

END

CLOSE mycursor
DEALLOCATE mycursor

42951_08 8/4/2008 9:4:46 Page 258

Chapter 8

258

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

U S I N G S Q L I N M I C R O S O F T A C C E S S

Not every programming language accepts SQL commands as readily as PL/SQL and T-SQL.
In Microsoft Access, programs are written in Visual Basic, which does not support embed-
ded SQL commands directly in the code. When the SQL command is stored in a string vari-
able, however, you can use the DoCmd.RunSQL command to run the command. The
procedure in which you place the SQL command can include arguments.

Deleting Data with Visual Basic
To delete the sales rep whose number is 20, the command is:

DELETE FROM REP WHERE REP_NUM = '20';

When you write this type of command, you usually don’t know in advance the spe-
cific sales rep number that you want to delete; it would be passed as an argument to the pro-
cedure containing this DELETE command. In the following example, the sales rep number
is stored in an argument named I_REP_NUM.

E X A M P L E 1 2

Delete from the REP table the sales rep whose number currently is stored in I_REP_NUM.

Statements in the procedure usually create the appropriate DELETE command, using
the value in any necessary arguments. For example, when the command is stored in the
variable named strSQL (which must be a string variable) and the rep number is stored in the
argument I_REP_NUM, the following command is appropriate:

strSQL = "DELETE FROM REP WHERE REP_NUM = '"
strSQL = strSQL & I_REP_NUM
strSQL = strSQL & "';"

The first command sets the strSQL string variable to DELETE FROM REP WHERE
REP_NUM = '; that is, it creates everything necessary in the command up to and includ-
ing the single quotation mark preceding the rep number. The second command uses con-
catenation (&). It changes strSQL to the result of the previous value concatenated with the
value in I_REP_NUM. When I_REP_NUM contains the value 20, for example, the com-
mand would be DELETE FROM REP WHERE REP_NUM = '20. The final command sets
strSQL to the result of the value already created, concatenated with a single quotation mark
and a semicolon. The command is now complete.

Figure 8-27 shows a completed procedure to accomplish the necessary deletion in
Access. You enter this procedure in the Microsoft Visual Basic window. In the program, the
Dim statement creates a string variable named strSQL. The next three commands set
strSQL to the appropriate SQL command. Finally, the DoCmd.RunSQL command runs the
SQL command stored in strSQL.

42951_08 8/4/2008 9:10:57 Page 259

SQL Functions and Procedures

259

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Running the Code
Normally, you run code like the function shown in Figure 8-27 by calling it from another
procedure or associating it with some event, such as clicking a button on a form. How-
ever, you can run it directly by using the Immediate window (click View on the menu bar,
and then click Immediate Window to open it). Normally, you would use this window only for
testing purposes, but you can use it to see the result of running the code. To run a Func-
tion procedure, such as the one shown in Figure 8-27, in the Immediate window, type a
question mark followed by the name of the procedure and a set of parentheses, as shown
in Figure 8-28. Place the values for any arguments in the parentheses. Assuming that you
wanted to delete a sales rep whose number is 50, you would include "50" inside the paren-
theses as shown in the figure.

Argument (I_REP_NUM)

Commands to
set strSQL

Runs command stored in strSQL

FIGURE 8-27 Visual Basic code to delete a sales rep

N O T E
If you have concerns about how you constructed the SQL command in strSQL, you can include the
Debug.Print (strSQL) command after the set of commands that construct strSQL. The Debug.Print com-
mand displays the entire command before it is executed so you can review it for accuracy. If you need to cor-
rect an error, rerun the program after making the necessary changes. If you get an error in your program,
check your SQL command carefully to make sure that you concatenated it correctly.

42951_08 8/4/2008 9:11:5 Page 260

Chapter 8

260

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

After you type the command and press the Enter key, the code will run and the appropri-
ate action will occur. In this case, the command deletes the sales rep with the number 50
(assuming there is a sales rep 50).

Updating Data with Visual Basic
A procedure that updates a table using an UPDATE command is similar to the one used to delete
a sales rep. In Example 13, two arguments are required. One of them, I_LAST_NAME, con-
tains the new name for the sales rep. The other, I_REP_NUM, contains the number of the rep
whose name is to be changed.

E X A M P L E 1 3

Change the last name of the sales rep whose number is stored in I_REP_NUM to the value
currently stored in I_LAST_NAME.

This example is similar to the previous one with two important differences. First, you
need to use the UPDATE command instead of the DELETE command. Second, there are
two arguments, so there are two portions of the construction of the SQL command that
involve variables. The complete procedure is shown in Figure 8-29.

Procedure to delete records
in Immediate window

FIGURE 8-28 Running the code in the Immediate window

42951_08 8/4/2008 9:4:47 Page 261

SQL Functions and Procedures

261

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

To run this procedure, you would enter values for both arguments as shown in Figure 8-30.

Inserting Data with Visual Basic
The process for inserting rows is similar in Access when compared to PL/SQL or T-SQL.
You create the appropriate INSERT command in the strSQL variable. There will be mul-
tiple arguments in the procedure—one for each value to be inserted.

Finding Multiple Rows with Visual Basic
Just as when embedding SQL in PL/SQL, deleting or updating multiple rows causes no
problems, because these procedures still represent a single operation, with all the work hap-
pening behind the scenes. A SELECT command that returns several rows, however, poses
serious problems for record-at-a-time languages like PL/SQL and Visual Basic. You handle
SELECT commands differently in Access than you do in PL/SQL or T-SQL. In particular,
there are no cursors in Access. Instead, you handle the results of a query just as you
might use a loop to process through the records in a table.

E X A M P L E 1 4

Retrieve and list the number and name of each customer represented by the sales rep
whose number is stored in the variable I_REP_NUM.

Public Function RepUpdate(I_LAST_NAME, I_REP_NUM)
 Dim strSQL As String

 strSQL = "UPDATE REP SET LAST_NAME = '"
 strSQL = strSQL + I_LAST_NAME
 strSQL = strSQL + "' WHERE REP_NUM = '"
 strSQL = strSQL & I_REP_NUM
 strSQL = strSQL & "';"

 DoCmd.RunSQL strSQL

End Function

Argument giving
new name

Argument giving
number of rep whose

name is to be changed

FIGURE 8-29 Code to change a rep’s last name

?RepUpdate("Webb","20")

New last name

Rep number

FIGURE 8-30 Running the code to change a rep’s last name

42951_08 8/4/2008 9:4:48 Page 262

Chapter 8

262

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Figure 8-31 shows a procedure to accomplish the indicated task. The statements involv-
ing rs and cnn are a typical way of processing through a recordset, that is, through all the
records contained in a table or in the results of a query. The only difference between this
program and one to process all the records in a table is that the Open command refers to
an SQL command and not a table. (The SQL command is stored in the variable named
strSQL and is created in the same manner as shown in the previous examples.)

The loop continues until reaching the end of file for the recordset, that is, until all
records have been processed. Within the loop, you can use the Debug.Print command to
print a value. In this case, the value to be printed is rs!CUSTOMER_NAME. This indi-
cates the contents of the CUSTOMER_NAME column for the record in the recordset (rs)
on which Access is currently positioned. The next command, rs.MoveNext, moves to the
next record in the recordset. The loop continues until all records in the recordset have
been processed.

Figure 8-32 shows the results of running this procedure and entering a value of "35"
as an argument. Access displays the four customers of sales rep 35.

Public Function FindCustomers(I_REP_NUM)
 Dim rs As New ADODB.Recordset
 Dim cnn As ADODB.Connection
 Dim strSQL As String
 Set cnn = CurrentProject.Connection

 strSQL = "SELECT CUSTOMER_NAME FROM CUSTOMER WHERE REP_NUM = '"
 strSQL = strSQL & I_REP_NUM
 strSQL = strSQL & "';"

 rs.Open strSQL, cnn, adOpenStatic, , adCmdText
 Do Until rs.EOF
 Debug.Print (rs!CUSTOMER_NAME)
 rs.MoveNext
 Loop

End Function

End of loop

Opens a recordset
named rs for the query

stored in strSQL

Loops until end of
file for recordset Prints the customer

name for the current
record in recordset

Moves to the next
record in recordset

FIGURE 8-31 Code to find customers of a specific rep

?FindCustomers("35")
Brookings Direct
The Everything Shop
Lee's Sport and Appliance
Deerfield's Four Seasons

Rep number

Customers of
the sales rep

FIGURE 8-32 Running the code to find customers of a sales rep

N O T E
When you expect an SQL query to return only one record, you use the same process but would not need
a loop.

42951_08 8/4/2008 9:4:48 Page 263

SQL Functions and Procedures

263

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

U S I N G A T R I G G E R

A trigger is a procedure that is executed automatically in response to an associated
database operation, such as an INSERT, UPDATE, or DELETE command. Unlike a stored
procedure, which is executed in response to a user request, a trigger is executed in
response to a command that causes the associated database operation to occur.

The examples in this section assume there is a new column named ON_ORDER in the
PART table. This column represents the number of units of a part currently on order. For
example, if there are two separate order lines for a part and the number ordered on one
order line is 3 and the number ordered on the other order line is 2, the ON_ORDER value
for that part will be 5. Adding, changing, or deleting order lines affects the value in the
ON_ORDER column for the part. To ensure that the value is updated appropriately, you can
use a trigger.

If you created the ADD_ORDER_LINE trigger shown in Figure 8-33, the SQL com-
mand in the trigger would be executed when a user adds an order line. The trigger must
update the ON_ORDER value for the corresponding part to reflect the order line. For
example, if the value in the ON_ORDER column for part CD52 is 4 and the user adds an
order line on which the part number is CD52 and the number of units ordered is 2, six units
of part CD52 will be on order. When a record is added to the ORDER_LINE table, the
ADD_ORDER_LINE trigger updates the PART table by adding the number of units ordered
on the order line to the previous value in the ON_ORDER column.

The first line indicates that the command is creating a trigger named
ADD_ORDER_LINE. The second line indicates that this trigger will be executed after an
order line is inserted and that the SQL command is to occur for each row that is added. Like
stored procedures, the SQL command is enclosed between the words BEGIN and END. In
this case, the SQL command is an UPDATE command. The command uses the NEW
qualifier, which refers to the row that is added to the ORDER_LINE table. If an order line
is added on which the part number is CD52 and the number ordered is 2, for example,
NEW.PART_NUM will be CD52 and NEW.NUM_ORDERED will be 2.

The following UPDATE_ORDER_LINE trigger shown in Figure 8-34 is executed when
a user attempts to update an order line. There are two differences between the
UPDATE_ORDER_LINE trigger and the ADD_ORDER_LINE trigger. First, the second line
of the UPDATE_ORDER_LINE trigger indicates that this trigger is executed after an UPDATE
of an order line rather than an INSERT. Second, the computation to update the
ON_ORDER column includes both NEW.NUM_ORDERED and OLD.NUM_ORDERED. As
with the ADD_ORDER_LINE trigger, NEW.NUM_ORDERED refers to the new value. In an

FIGURE 8-33 ADD_ORDER_LINE trigger

42951_08 8/4/2008 9:4:48 Page 264

Chapter 8

264

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

UPDATE command, however, there is also an old value, which is the value before the update
takes place. If an update changes the value for ON_ORDER from 1 to 3,
OLD.NUM_ORDERED is 1 and NEW.NUM_ORDERED is 3. Adding NEW.NUM_ORDERED
and subtracting OLD.NUM_ORDERED results in a net change of an increase of 2. (The net
change could also be negative, in which case the ON_ORDER value decreases.)

The DELETE_ORDER_LINE trigger shown in Figure 8-35 performs a function similar
to the other two. When an order line is deleted, the ON_ORDER value for the correspond-
ing part is updated by subtracting OLD.NUM_ORDERED from the current ON_ORDER
value. (In a delete operation, there is no NEW.NUM_ORDERED.)

FIGURE 8-34 UPDATE_ORDER_LINE trigger

FIGURE 8-35 DELETE_ORDER_LINE trigger

A C C E S S U S E R N O T E
Access does not support triggers. When using a form to update table data, you can achieve some of the
same functionality by creating VBA code to be executed after the insertion, update, or deletion of records.

42951_08 8/4/2008 9:4:49 Page 265

SQL Functions and Procedures

265

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S Q L S E R V E R U S E R N O T E
In SQL Server, you create triggers using T-SQL. The code to create the ADD_ORDER_LINE trigger is:

CREATE TRIGGER ADD_ORDER_LINE
ON ORDER_LINE
AFTER INSERT
AS

DECLARE @numbord decimal(3,0)
SELECT @numbord = (SELECT NUM_ORDERED FROM INSERTED)
UPDATE PART
SET ON_ORDER = ON_ORDER + @numbord

This trigger uses one variable, @numbord, and the value placed in that variable is obtained from the
SELECT statement. The INSERTED table is a temporary system table that contains a copy of the val-
ues that the last SQL command inserted. The column names are the same column names as in the
ORDER_LINE table. The INSERTED table holds the most recent value of the NUM_ORDERED col-
umn which is what you need to update the PART table.

The T-SQL trigger that executes after an UPDATE of an order line is:

CREATE TRIGGER UPDATE_ORDER_LINE
ON ORDER_LINE
AFTER UPDATE
AS

DECLARE @newnumbord decimal(3,0)
DECLARE @oldnumbord decimal(3,0)
SELECT @newnumbord = (SELECT NUM_ORDERED FROM INSERTED)
SELECT @oldnumbord = (SELECT NUM_ORDERED FROM DELETED)
UPDATE PART
SET ON_ORDER = ON_ORDER + @newnumbord - @oldnumbord

This trigger uses the INSERTED table and the DELETED table. The DELETED table contains the previ-
ous value of the NUM_ORDERED column while the INSERTED column contains the updated value.
The DELETE_ORDER_LINE trigger uses only the DELETED system table:

CREATE TRIGGER DELETE_ORDER_LINE
ON ORDER_LINE
AFTER DELETE
AS

DECLARE @numbord decimal(3,0)
SELECT @numbord = (SELECT NUM_ORDERED FROM DELETED)
UPDATE PART
SET ON_0RDER = ON_ORDER - @numbord

42951_08 8/6/2008 9:48:39 Page 266

Chapter 8

266

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Chapter Summary
● There are functions whose results are based on the values in single records. UPPER

and LOWER are two examples of functions that act on character data. UPPER dis-
plays each lowercase letter in the argument in uppercase. LOWER displays each upper-
case letter in the argument in lowercase.

● ROUND and FLOOR are two examples of functions that act on numeric data. ROUND
produces its result by rounding the value to the specified number of decimal places.
FLOOR produces its result by truncating (removing) everything to the right of the
decimal point.

● Use the ADD_MONTHS function in Oracle to add a specific number of months to a date.
In Access and in SQL Server, use the DATEADD() function.

● To add a specific number of days to a date, use normal addition. You can subtract one
date from another to produce the number of days between two dates.

● To obtain today’s date, use the SYSDATE function in Oracle, the GETDATE() function
in SQL Server, and the DATE() function in Access.

● To concatenate values in character columns in Oracle, separate the column names with
two vertical lines (||). Use the RTRIM function to delete any extra spaces that follow the
values. In SQL Server, use the + symbol to concatenate values. In Access, use the
ampersand (&) symbol to concatenate values.

● A stored procedure is a query saved in a file that users can execute later.
● To create a stored procedure in PL/SQL or T-SQL, use the CREATE PROCEDURE

command.
● Variables in PL/SQL procedures are declared after the word DECLARE. To assign vari-

ables the same type as a column in the database, use the %TYPE attribute.
● Use the INTO clause in the SELECT command to place the results of a SELECT com-

mand in variables in Oracle.
● You can use INSERT, UPDATE, and DELETE commands in PL/SQL and T-SQL proce-

dures, even when they affect more than one row.
● When a SELECT command is used to retrieve more than one row in PL/SQL or T-SQL,

it must define a cursor that will select one row at a time.
● Use the OPEN command to activate a cursor and execute the query in the cursor

definition.
● Use the FETCH command to select the next row in PL/SQL and T-SQL.
● Use the CLOSE command to deactivate a cursor.The rows initially retrieved will no longer

be available to PL/SQL or T-SQL.
● To use SQL commands in Access, create the command in a string variable. To run the

command stored in the string variable, use the DoCmd.RunSQL command.
● To process a collection of rows retrieved by a SELECT command in Access, use a

recordset. Create the SQL command in a string variable and use the string variable in
the command to open the recordset.

● To move to the next record in a recordset in Access, use the MoveNext command.

42951_08 8/4/2008 9:8:38 Page 267

SQL Functions and Procedures

267

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

● A trigger is an action that occurs automatically in response to an associated database
operation, such as an INSERT, UPDATE, or DELETE command. Like a stored proce-
dure, a trigger is stored and compiled on the server. Unlike a stored procedure, which is
executed in response to a user request, a trigger is executed in response to a com-
mand that causes the associated database operation to occur.

Key Terms

ADD_MONTHS

argument

call

client

client/server system

CLOSE

concatenate

concatenation

cursor

embed

FETCH

FLOOR

LOWER

nonprocedural language

OPEN

PL/SQL

procedural code

procedural language

ROUND

RTRIM

server

stored procedure

SYSDATE

Transact-SQL

trigger

T-SQL

update procedure

UPPER

Review Questions

1. How do you display letters in uppercase in Oracle, Access, and SQL Server? How do you
display letters in lowercase in Oracle, Access, and SQL Server?

2. How do you round a number to a specific number of decimal places in Oracle, Access, and
SQL Server? How do you remove everything to the right of the decimal place in Oracle and
SQL Server?

3. How do you add months to a date in Oracle, Access, and SQL Server? How do you add days
to a date? How would you find the number of days between two dates?

4. How do you obtain today’s date in Oracle, Access, and SQL Server?

5. How do you concatenate values in character columns in Oracle, Access, and SQL Server?

6. Which function deletes extra spaces at the end of a value?

7. What are stored procedures? What purpose do they serve?

8. In which portion of a PL/SQL procedure do you embed SQL commands?

9. Where do you declare variables in PL/SQL procedures?

10. In PL/SQL, how do you assign variables the same type as a column in the database?

11. How do you place the results of a SELECT command into variables in PL/SQL?

42951_08 8/4/2008 9:8:39 Page 268

Chapter 8

268

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

12. Can you use INSERT, UPDATE, or DELETE commands that affect more than one row in
PL/SQL procedures?

13. How do you use a SELECT command that retrieves more than one row in a PL/SQL
procedure?

14. Which PL/SQL command activates a cursor?

15. Which PL/SQL command selects the next row in a cursor?

16. Which PL/SQL command deactivates a cursor?

17. How do you use SQL commands in Access?

18. How do you process a collection of rows retrieved by a SELECT command in Access?

19. How do you move to the next record in a recordset in Access?

20. What are triggers? What purpose do they serve?

21. What is the purpose of the INSERTED and DELETED tables in SQL Server?

Exercises

Premiere Products

Use the Premiere Products database (see Figure 1-2 in Chapter 1) to complete the following
exercises. If directed to do so by your instructor, use the information provided with the Chapter 3
Exercises to print your output.

1. List the part number and description for all parts. The part descriptions should appear in
uppercase letters.

2. List the customer number and name for all customers located in the city of Grove.Your query
should ignore case. For example, a customer with the city Grove should be included as
should customers whose city is GROVE, grove, GrOvE, and so on.

3. List the customer number, name, and balance for all customers. The balance should be
rounded to the nearest dollar.

4. Premiere Products is running a promotion that is valid for up to 20 days after an order is
placed. List the order number, customer number, customer name, and the promotion date
for each order. The promotion date is 20 days after the order was placed.

5. Write PL/SQL or T-SQL procedures to accomplish the following tasks:

a. Obtain the name and credit limit of the customer whose number currently is stored in
I_CUSTOMER_NUM. Place these values in the variables I_CUSTOMER_NAME and
I_CREDIT_LIMIT, respectively. Output the contents of I_CUSTOMER_NAME and
I_CREDIT_LIMIT.

b. Obtain the order date, customer number, and name for the order whose number cur-
rently is stored in I_ORDER_NUM. Place these values in the variables I_ORDER_DATE,
I_CUSTOMER_NUM and I_CUSTOMER_NAME, respectively. Output the contents of
I_ORDER_DATE, I_CUSTOMER_NUM, and I_CUSTOMER_NAME.

c. Add a row to the ORDERS table.

42951_08 8/4/2008 9:11:47 Page 269

SQL Functions and Procedures

269

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

d. Change the date of the order whose number is stored in I_ORDER_NUM to the date
currently found in I_ORDER_DATE.

e. Delete the order whose number is stored in I_ORDER_NUM.

6. Write a PL/SQL or T-SQL procedure to retrieve and output the part number, part description,
warehouse number, and unit price of every part in the item class stored in I_CLASS.

7. Write Access functions to accomplish the following tasks:

a. Delete the order whose number is stored in I_ORDER_NUM.

b. Change the date of the order whose number is stored in I_ORDER_NUM to the date
currently found in I_ORDER_DATE.

c. Retrieve and output the part number, part description, warehouse number, and unit
price of every part in the item class stored in I_CLASS.

8. Write a stored procedure in PL/SQL or T-SQL that will change the price of a part with a given
part number. How would you use this stored procedure to change the price of part AT94 to
$26.95?

9. Write the code for the following triggers in PL/SQL or T-SQL following the style shown in
the text:

a. When adding a customer, add the customer’s balance times the sales rep’s commis-
sion rate to the commission for the corresponding sales rep.

b. When updating a customer, add the difference between the new balance and the old
balance multipled by the sales rep’s commission rate to the commission for the corre-
sponding sales rep.

c. When deleting a customer, subtract the balance multiplied by the sales rep’s commis-
sion rate from the commission for the corresponding sales rep.

Henry Books

Use the Henry Books database (see Figures 1-4 through 1-7 in Chapter 1) to complete the fol-
lowing exercises. If directed to do so by your instructor, use the information provided with the
Chapter 3 Exercises to print your output.

1. List the author number, first name, and last name for all authors. The first name should
appear in lowercase letters and the last name should appear in uppercase letters.

2. List the publisher code and name for all publishers located in the city of New York.Your query
should ignore case. For example, a customer with the city New York should be included as
should customers whose city is NEW YORK, New york, NeW yOrK, and so on.

3. List the book code, title, and price for all books. The price should be rounded to the near-
est dollar.

4. Write PL/SQL or T-SQL procedures to accomplish the following tasks:

a. Obtain the first name and last name of the author whose number currently is stored
in I_AUTHOR_NUM. Place these values in the variables I_AUTHOR_FIRST and
I_AUTHOR_LAST. Output the contents of I_AUTHOR_NUM, I_AUTHOR_FIRST, and
I_AUTHOR_LAST.

42951_08 8/6/2008 9:52:3 Page 270

Chapter 8

270

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

b. Obtain the book title, publisher code, and publisher name for every book whose code
currently is stored in I_BOOK_CODE. Place these values in the variables I_TITLE,
I_PUBLISHER_CODE, and I_PUBLISHER_NAME, respectively. Output the contents of
I_TITLE, I_PUBLISHER_CODE, and I_PUBLISHER_NAME.

c. Add a row to the AUTHOR table.

d. Change the last name of the author whose number is stored in I_AUTHOR_NUM to
the value currently found in I_AUTHOR_LAST.

e. Delete the author whose number is stored in I_AUTHOR_NUM.

5. Write a PL/SQL or T-SQL procedure to retrieve and output the book code, title, book type,
and price for every book whose publisher code is stored in I_PUBLISHER_CODE.

6. Write Access functions to accomplish the following tasks:

a. Delete the author whose number is stored in I_AUTHOR_NUM.

b. Change the last name of the author whose number is stored in I_AUTHOR_NUM to
the value currently found in I_AUTHOR_LAST.

c. Retrieve and output the book code, title, book type, and price for every book whose pub-
lisher code is stored in I_PUBLISHER_CODE.

7. Write a stored procedure in PL/SQL or T-SQL that will change the price of a book with a given
book code. How would you use this stored procedure to change the price of book 0189
to $8.49?

8. Assume the BOOK table contains a column called TOTAL_ON_HAND that represents the
total units on hand in all branches for that book. Following the style shown in the text, write
the code in PL/SQL or T-SQL for the following triggers:

a. When inserting a row in the INVENTORY table, add the ON_HAND value to the
TOTAL_ON_HAND value for the appropriate book.

b. When updating a row in the INVENTORY table, add the difference between the new
ON_HAND value and the old ON_HAND value to the TOTAL_ON_HAND value for the
appropriate book.

c. When deleting a row in the INVENTORY table, subtract the ON_HAND value from the
TOTAL_ON_HAND value for the appropriate book.

Alexamara Marina Group

Use the Alexamara Marina Group database (see Figures 1-8 through 1-12 in Chapter 1) to com-
plete the following exercises. If directed to do so by your instructor, use the information pro-
vided with the Chapter 3 Exercises to print your output.

1. List the owner number, first name, and last name for all owners.The first name should appear
in uppercase letters and the last name should appear in lowercase letters.

2. List the owner number and last name for all owners located in the city of Bowton.Your query
should ignore case. For example, a customer with the city Bowton should be included as
should customers whose city is BOWTON, BowTon, BoWtOn, and so on.

42951_08 8/6/2008 9:52:18 Page 271

SQL Functions and Procedures

271

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

3. Alexamara is offering a discount for owners who sign up early for slips for next year. The dis-
count is 1.75 percent of the rental fee. For each slip, list the marina number, slip number,
owner number, owner’s last name, rental fee, and discount. The discount should be rounded
to the nearest dollar.

4. Write PL/SQL or T-SQL procedures to accomplish the following tasks:

a. Obtain the first name and last name of the owner whose number currently is stored in
I_OWNER_NUM. Place these values in the variables I_FIRST_NAME and
I_LAST_NAME. Output the contents of I_OWNER_NUM, I_FIRST_NAME, and
I_LAST_NAME.

b. Obtain the marina number, slip number, boat name, owner number, owner first name,
and owner last name for the slip whose slip ID is currently stored in I_SLIP_ID. Place
these values in the variables I_MARINA_NUM, I_SLIP_NUM, I_BOAT_NAME,
I_OWNER_NUM, I_FIRST_NAME, and I_LAST_NAME, respectively. Output the con-
tents of I_SLIP_ID, I_MARINA_NUM, I_SLIP_NUM, I_BOAT_NAME,
I_OWNER_NUM, I_FIRST_NAME, and I_LAST_NAME.

c. Add a row to the OWNER table.

d. Change the last name of the owner whose number is stored in I_OWNER_NUM to the
value currently found in I_LAST_NAME.

e. Delete the owner whose number is stored in I_OWNER_NUM.

5. Write a PL/SQL or T-SQL procedure to retrieve and output the marina number, slip number,
rental fee, boat name, and owner number for every slip whose length is equal to the length stored
in I_LENGTH.

6. Write Access functions to accomplish the following tasks:

a. Delete the owner whose number is stored in I_OWNER_NUM.

b. Change the last name of the owner whose number is stored in I_OWNER_NUM to the
value currently found in I_LAST_NAME.

c. Retrieve and output the marina number, slip number, rental fee, boat name, and owner
number for every slip whose length is equal to the length stored in I_LENGTH.

7. Write a stored procedure in PL/SQL or T-SQL that will change the rental fee of a slip with
a given slip ID and marina number. How would you use this stored procedure to change the
rental fee for the boat with the slip ID 3 in marina 1 to $3,700?

8. Assume the OWNER table contains a column called TOTAL_RENTAL that represents the
total rental fee for all slips rented by that owner.Write the code in PL/SQL or T-SQL for the fol-
lowing triggers following the style shown in the text:

a. When inserting a row in the MARINA_SLIP table, add the rental fee to the total rental
for the appropriate owner.

b. When updating a row in the MARINA_SLIP table, add the difference between the new
rental fee and the old rental fee to the total rental for the appropriate owner.

c. When deleting a row in the MARINA_SLIP table, subtract the rental fee from the total
rental for the appropriate owner.

42951_08 8/6/2008 9:53:59 Page 272

Chapter 8

272

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

C H A P T E R 8 — S Q L F U N C T I O N S A N D
P R O C E D U R E S

1. Use the UPPER function to display letters in uppercase in Oracle and SQL
Server. In Access, use the UCASE() function. Use the LOWER function to dis-
play letters in lowercase in Oracle and SQL Server. In Access, use the
LCASE() function.

3. To add months to a date, use the ADD_MONTHS function (Oracle), or the
DATEADD() function (Access and SQL Server). To add days to a date, add the
desired number of days to a date. To find the number of days between two
dates, subtract the earlier date from the later date.

5. In Oracle, separate the column names with two vertical lines (||) in the SELECT
clause. In SQL Server, separate the column names with the + symbol. In
Access, separate the column names with the & symbol.

7. A stored procedure is a file that is stored on a server and contains commands
that can be used repeatedly. Stored procedures eliminate the need for users
to retype a query each time it is needed.

9. In PL/SQL procedures, you declare variables first before any procedural code.
11. Use the INTO clause to place the results of a SELECT statement in variables.
13. When retrieving multiple rows with a SELECT statement, use a cursor.
15. FETCH
17. To use SQL commands in Access, create the command in a string variable. To

run the command stored in the string variable, use the DoCmd.RunSQL
command.

19. To move to the next record in an Access recordset, use the MoveNext command.
21. The INSERTED and DELETED tables are temporary system tables created by SQL

Server. The INSERTED table contains the most recent (updated) values in a record
and the DELETED table contains the previous (before update) value.

C6830_AppC 8/15/2008 10:16:39 Page 297

Answers to Odd-Numbered Review Questions

297

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

This page contains answers for this chapter only.

	CHAPTER 8: SQL FUNCTIONS AND PROCEDURES
	USING SQL IN A PROGRAMMING ENVIRONMENT
	USING FUNCTIONS
	CONCATENATING COLUMNS
	STORED PROCEDURES
	ERROR HANDLING
	USING UPDATE PROCEDURES
	SELECTING MULTIPLE ROWS WITH A PROCEDURE
	USING T-SQL IN SQL SERVER
	USING SQL IN MICROSOFT ACCESS
	USING A TRIGGER
	Chapter Summary
	Key Terms
	Review Questions
	Exercises
	APPENDIX C: ANSWERS TO ODD-NUMBERED REVIEW QUESTIONS

