
C H A P T E R 5
MULTIPLE-TABLE QUERIES

L E A R N I N G O B J E C T I V E S

Objectives

● Use joins to retrieve data from more than one table
● Use the IN and EXISTS operators to query multiple tables
● Use a subquery within a subquery
● Use an alias
● Join a table to itself
● Perform set operations (union, intersection, and difference)
● Use the ALL and ANY operators in a query
● Perform special operations (inner join, outer join, and product)

I N T R O D U C T I O N

In this chapter, you will learn how to use SQL to retrieve data from two or more tables using one SQL

command. You will join tables together and examine how to obtain similar results using the SQL IN and

EXISTS operators.Then you will use aliases to simplify queries and join a table to itself.You also will implement

the set operations of union, intersection, and difference using SQL commands.You will examine two related

SQL operators: ALL and ANY. Finally, you will perform inner joins, outer joins, and products.

Q U E R Y I N G M U L T I P L E T A B L E S

In Chapter 4, you learned how to retrieve data from a single table. Many queries require you
to retrieve data from two or more tables. To retrieve data from multiple tables, you first
must join the tables, and then formulate a query using the same commands that you use for
single-table queries.

42951_05 7/21/2008 8:13:34 Page 135

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Joining Two Tables
To retrieve data from more than one table, you must join the tables together by finding rows
in the two tables that have identical values in matching columns. You can join tables by
using a condition in the WHERE clause, as you will see in Example 1.

E X A M P L E 1

List the number and name of each customer, together with the number, last name, and
first name of the sales rep who represents the customer.

Because the customer numbers and names are in the CUSTOMER table and the sales
rep numbers and names are in the REP table, you need to include both tables in the SQL
command so you can retrieve data from both tables. To join (relate) the tables, you con-
struct the SQL command as follows:

1. In the SELECT clause, list all columns you want to display.
2. In the FROM clause, list all tables involved in the query.
3. In the WHERE clause, list the condition that restricts the data to be retrieved

to only those rows from the two tables that match; that is, restrict it to the rows
that have common values in matching columns.

As you learned in Chapter 2, it is often necessary to qualify a column name to specify
the particular column you are referencing. Qualifying column names is especially impor-
tant when joining tables because you must join tables on matching columns that fre-
quently have identical column names. To qualify a column name, precede the name of the
column with the name of the table, followed by a period. The matching columns in this
example are both named REP_NUM—there is a column in the REP table named REP_NUM
and a column in the CUSTOMER table that also is named REP_NUM. The REP_NUM col-
umn in the REP table is written as REP.REP_NUM and the REP_NUM column in the
CUSTOMER table is written as CUSTOMER.REP_NUM. The query and its results appear in
Figure 5-1.

N O T E
In the following queries, your results might contain the same rows, but they might be listed in a different
order. If order is important, you can include an ORDER BY clause in the query to ensure that the results
are listed in the desired order.

42951_05 7/21/2008 8:14:15 Page 136

Chapter 5

136

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

When there is potential ambiguity in listing column names, you must qualify the col-
umns involved in the query. It is permissible to qualify other columns as well, even when
there is no possible confusion. Some people prefer to qualify all column names; in this
text, however, you will qualify column names only when necessary.

Q & A

Question: In the first row of output in Figure 5-1, the customer number is 148, and the cus-
tomer name is Al’s Appliance and Sport. These values represent the first row of the
CUSTOMER table. Why is the sales rep number 20, the last name of the sales rep Kaiser,
and the first name Valerie?
Answer: In the CUSTOMER table, the sales rep number for customer number 148 is 20.
(This indicates that customer number 148 is related to sales rep number 20.) In the REP
table, the last name of sales rep number 20 is Kaiser and the first name is Valerie.

E X A M P L E 2

List the number and name of each customer whose credit limit is $7,500, together with
the number, last name, and first name of the sales rep who represents the customer.

Condition to
relate the tables

FIGURE 5-1 Joining two tables with a single SQL command

42951_05 7/21/2008 8:14:45 Page 137

Multiple-Table Queries

137

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

In Example 1, you used a condition in the WHERE clause only to relate a customer with
a sales rep to join the tables. Although relating a customer with a sales rep is essential in
this example as well, you also need to restrict the output to only those customers whose
credit limits are $7,500. You can restrict the rows by using a compound condition, as
shown in Figure 5-2.

E X A M P L E 3

For every part on order, list the order number, part number, part description, number of
units ordered, quoted price, and unit price.

A part is considered “on order” when there is a row in the ORDER_LINE table in which
the part appears. You can find the order number, number of units ordered, and quoted price
in the ORDER_LINE table. To find the part description and the unit price, however, you
need to look in the PART table. Then you need to find rows in the ORDER_LINE table and
rows in the PART table that match (rows containing the same part number). The query and
its results appear in Figure 5-3.

Condition to
relate the tables

Condition to
restrict the rows

FIGURE 5-2 Restricting the rows in a join

42951_05 7/21/2008 8:15:10 Page 138

Chapter 5

138

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Q & A

Question: Can you use PART.PART_NUM instead of ORDER_LINE.PART_NUM in the
SELECT clause?
Answer: Yes. The values for these two columns match because they must satisfy the con-
dition ORDER_LINE.PART_NUM = PART.PART_NUM.

C O M P A R I N G J O I N S , I N , A N D E X I S T S

You join tables in SQL by including a condition in the WHERE clause to ensure that
matching columns contain equal values (for example, ORDER_LINE.PART_NUM =
PART.PART_NUM). You can obtain similar results by using either the IN operator
(described in Chapter 4) or the EXISTS operator with a subquery. The choice is a matter
of personal preference because either approach obtains the same results. The following
examples illustrate the use of each operator.

E X A M P L E 4

Find the description of each part included in order number 21610.

Because this query also involves retrieving data from the ORDER_LINE and PART tables
(as illustrated in Example 3), you could approach it in a similar fashion. There are two
basic differences, however, between Examples 3 and 4. First, the query in Example 4 does
not require as many columns; second, it involves only order number 21610. Having fewer
columns to retrieve means that there will be fewer columns listed in the SELECT clause. You

FIGURE 5-3 Joining the ORDER_LINE and PART tables

42951_05 7/21/2008 10:50:5 Page 139

Multiple-Table Queries

139

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

can restrict the query to a single order by adding the condition ORDER_NUM = '21610' to
the WHERE clause. The query and its results appear in Figure 5-4.

Notice that the ORDER_LINE table is listed in the FROM clause, even though you do
not need to display any columns from the ORDER_LINE table. The WHERE clause con-
tains columns from the ORDER_LINE table, so it is necessary to include the table in the
FROM clause.

Using the IN Operator
Another way to retrieve data from multiple tables in a query is to use the IN operator with
a subquery. In Example 4, you first could use a subquery to find all part numbers in the
ORDER_LINE table that appear in any row on which the order number is 21610. Then you
could find the part description for any part whose part number is in this list. The query and
its results appear in Figure 5-5.

FIGURE 5-4 Restricting the rows when joining the ORDER_LINE and PART tables

Subquery selects part
numbers in order

21610

Outer query selects
part descriptions in

order 21610

FIGURE 5-5 Using the IN operator instead of a join to query two tables

42951_05 7/21/2008 8:13:35 Page 140

Chapter 5

140

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

In Figure 5-5, evaluating the subquery produces a temporary table consisting of those
part numbers (DR93 and DW11) that are present in order number 21610. Executing the
remaining portion of the query produces part descriptions for each part whose number is in
this temporary table; in this case, Gas Range (DR93) and Washer (DW11).

Using the EXISTS Operator
You also can use the EXISTS operator to retrieve data from more than one table, as shown
in Example 5. The EXISTS operator checks for the existence of rows that satisfy some
criterion.

E X A M P L E 5

Find the order number and order date for each order that contains part number DR93.

This query is similar to the one in Example 4, but this time the query involves the
ORDERS table and not the PART table. In this case, you can write the query in either of the
ways previously demonstrated. For example, you could use the IN operator with a sub-
query, as shown in Figure 5-6.

Using the EXISTS operator provides another approach to solving Example 5, as shown
in Figure 5-7.

FIGURE 5-6 Using the IN operator to select order information

42951_05 7/21/2008 8:16:9 Page 141

Multiple-Table Queries

141

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The subquery in Figure 5-7 is the first one you have seen that involves a table listed
in the outer query. This type of subquery is called a correlated subquery. In this case, the
ORDERS table, which is listed in the FROM clause of the outer query, is used in the
subquery. For this reason, you need to qualify the ORDER_NUM column in the subquery
(ORDERS.ORDER_NUM). You did not need to qualify the columns in the previous que-
ries involving the IN operator.

The query shown in Figure 5-7 works as follows. For each row in the ORDERS table,
the subquery is executed using the value of ORDERS.ORDER_NUM that occurs in that row.
The inner query produces a list of all rows in the ORDER_LINE table in which
ORDER_LINE.ORDER_NUM matches this value and in which PART_NUM is equal to DR93.
You can precede a subquery with the EXISTS operator to create a condition that is true if one
or more rows are obtained when the subquery is executed; otherwise, the condition is false.

To illustrate the process, consider order numbers 21610 and 21613 in the ORDERS
table. Order number 21610 is included because a row exists in the ORDER_LINE table with
this order number and part number DR93. When the subquery is executed, there will be
at least one row in the results, which in turn makes the EXISTS condition true. Order num-
ber 21613, however, will not be included because no row exists in the ORDER_LINE table
with this order number and part number DR93. There will be no rows contained in the
results of the subquery, which in turn makes the EXISTS condition false.

Using a Subquery Within a Subquery
You can use SQL to create a nested subquery (a subquery within a subquery), as illustrated
in Example 6.

E X A M P L E 6

Find the order number and order date for each order that includes a part located in
warehouse 3.

FIGURE 5-7 Using the EXISTS operator to select order information

42951_05 7/21/2008 8:19:27 Page 142

Chapter 5

142

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

One way to approach this problem is first to determine the list of part numbers in the
PART table for each part located in warehouse 3. Then you obtain a list of order num-
bers in the ORDER_LINE table with a corresponding part number in the part number list.
Finally, you retrieve those order numbers and order dates in the ORDERS table for which
the order number is in the list of order numbers obtained during the second step. The query
and its results appear in Figure 5-8.

As you might expect, SQL evaluates the queries from the innermost query to the out-
ermost query. The query in this example is evaluated in three steps:

1. The innermost subquery is evaluated first, producing a temporary table of part
numbers for those parts located in warehouse 3.

2. The next (intermediate) subquery is evaluated, producing a second tempo-
rary table with a list of order numbers. Each order number in this collection
has a row in the ORDER_LINE table for which the part number is in the tem-
porary table produced in Step 1.

3. The outer query is evaluated last, producing the desired list of order num-
bers and order dates. Only those orders whose numbers are in the temporary
table produced in Step 2 are included in the results.

Another approach to solving Example 6 involves joining the ORDERS, ORDER_LINE,
and PART tables. The query and its results appear in Figure 5-9.

Outer query is
evaluated last

Intermediate query
is evaluated second

Innermost query
is evaluated first

FIGURE 5-8 Nested subqueries (a subquery within a subquery)

42951_05 7/21/2008 8:16:10 Page 143

Multiple-Table Queries

143

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

In this query, the following conditions join the tables:

ORDER_LINE.ORDER_NUM = ORDERS.ORDER_NUM
ORDER_LINE.PART_NUM = PART.PART_NUM

The condition WAREHOUSE = '3' restricts the output to only those parts located in
warehouse 3.

The query results are correct regardless of which command you use. You can use which-
ever approach you prefer.

You might wonder whether one approach is more efficient than the other. SQL performs
many built-in optimizations that analyze queries to determine the best way to satisfy them.
Given a good optimizer, it should not make much difference how you formulate the query—you
can see that using nested subqueries (Figure 5-8) produces the query in 0.11 seconds and join-
ing the tables (Figure 5-9) produces the results in 0.02 seconds. If you are using a DBMS
without an optimizer, however, the way you write a query can make a difference in the speed
at which the DBMS executes the query. When you are working with a very large database and
efficiency is a prime concern, consult the DBMS’s manual or try some timings yourself. Try run-
ning the same query both ways to see whether you notice a difference in the speed of
execution. In small databases, there should not be a significant time difference between the two
approaches.

A Comprehensive Example
The query used in Example 7 involves several of the features already presented. The query
illustrates all the major clauses that you can use in a SELECT command. It also illus-
trates the order in which these clauses must appear.

FIGURE 5-9 Joining three tables

42951_05 7/21/2008 10:50:38 Page 144

Chapter 5

144

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

E X A M P L E 7

List the customer number, order number, order date, and order total for each order with
a total that exceeds $1,000. Assign the column name ORDER_TOTAL to the column that
displays order totals.

The query and its results appear in Figure 5-10.

In this query, the ORDERS and ORDER_LINE tables are joined by listing both tables
in the FROM clause and relating them in the WHERE clause. Selected data is sorted by order
number using the ORDER BY clause. The GROUP BY clause indicates that the data is to
be grouped by order number, customer number, and order date. For each group, the
SELECT clause displays the customer number, order number, order date, and order total
(SUM(NUM_ORDERED * QUOTED_PRICE)). In addition, the total was renamed
ORDER_TOTAL. Not all groups will be displayed, however. The HAVING clause displays
only those groups whose SUM(NUM_ORDERED * QUOTED_PRICE) is greater than $1,000.

The order number, customer number, and order date are unique for each order. Thus,
it would seem that merely grouping by order number would be sufficient. SQL requires
that both the customer number and the order date be listed in the GROUP BY clause. Recall
that a SELECT clause can include statistics calculated for only the groups or columns
whose values are identical for each row in a group. By stating that the data is to be grouped
by order number, customer number, and order date, you tell SQL that the values in these
columns must be the same for each row in a group.

Name for
computed column

FIGURE 5-10 Comprehensive example

42951_05 7/21/2008 8:16:10 Page 145

Multiple-Table Queries

145

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Using an Alias
When tables are listed in the FROM clause, you can give each table an alias, or an alter-
nate name, that you can use in the rest of the statement. You create an alias by typing the
name of the table, pressing the Spacebar, and then typing the name of the alias. No com-
mas or periods are necessary to separate the two names.

One reason for using an alias is simplicity. In Example 8, you assign the REP table the
alias R and the CUSTOMER table the alias C. By doing this, you can type R instead of REP
and C instead of CUSTOMER in the remainder of the query. The query in this example
is simple, so you might not see the full benefit of this feature. When a query is complex and
requires you to qualify the names, using aliases can simplify the process.

E X A M P L E 8

List the number, last name, and first name for each sales rep together with the number
and name for each customer the sales rep represents.

The query and its results using aliases appear in Figure 5-11.

Alias

FIGURE 5-11 Using aliases in a query

N O T E
Technically, it is unnecessary to qualify CUSTOMER_NUM because it is included only in the CUSTOMER
table. It is qualified in Figure 5-11 for illustration purposes only.

42951_05 7/21/2008 8:22:29 Page 146

Chapter 5

146

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Joining a Table to Itself
A second situation for using an alias is to join a table to itself, called a self-join, as illus-
trated in Example 9.

E X A M P L E 9

For each pair of customers located in the same city, display the customer number, cus-
tomer name, and city.

If you had two separate tables for customers and the query requested customers in the first
table having the same city as customers in the second table, you could use a normal join opera-
tion to find the answer. In this case, however, there is only one table (CUSTOMER) that
stores all the customer information. You can treat the CUSTOMER table as if it were two tables
in the query by creating an alias, as illustrated in Example 8. In this case, you use the follow-
ing FROM clause:

FROM CUSTOMER F, CUSTOMER S

SQL treats this clause as a query of two tables: one that has the alias F (first), and another
that has the alias S (second). The fact that both tables are really the same CUSTOMER table
is not a problem. The query and its results appear in Figure 5-12.

You are requesting a customer number and name from the F table, followed by a cus-
tomer number and name from the S table, and then the city. (Because the city in the first
table must match the city in the second table, you can select the city from either table.) The
WHERE clause contains two conditions: the cities must match, and the customer num-
ber from the first table must be less than the customer number from the second table. In
addition, the ORDER BY clause ensures that the data is sorted by the first customer

Condition to join
F and S tables

FIGURE 5-12 Using aliases for a self-join

42951_05 7/21/2008 8:23:31 Page 147

Multiple-Table Queries

147

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

number. For those rows with the same first customer number, the data is further sorted by
the second customer number.

Q & A

Question: Why is the condition F.CUSTOMER_NUM < S.CUSTOMER_NUM important in
the query?
Answer: If you did not include this condition, you would get the query results shown in
Figure 5-13.

FIGURE 5-13 Incorrect joining of a table to itself

The first row is included because it is true that customer number 148 (Al’s Appliance and
Sport) in the F table has the same city as customer number 148 (Al’s Appliance and Sport)
in the S table. The second row indicates that customer number 148 (Al’s Appliance and Sport)
has the same city as customer number 524 (Kline’s). The eleventh row, however, repeats the
same information because customer number 524 (Kline’s) has the same city as customer
number 148 (Al’s Appliance and Sport). Of these three rows, the only row that should be
included in the query results is the second row. The second row also is the only one of the three
rows in which the first customer number (148) is less than the second customer number
(524). This is why the query requires the condition F.CUSTOMER_NUM <
S.CUSTOMER_NUM.

Using a Self-Join on a Primary Key Column
Figure 5-14 shows some fields from an EMPLOYEE table whose primary key is
EMPLOYEE_NUM. Another field in the table is MGR_EMPLOYEE_NUM, which represents

42951_05 7/21/2008 8:16:11 Page 148

Chapter 5

148

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

the number of the employee’s manager, who also is an employee. If you look at the row for
employee 206 (Joan Dykstra), you will see that employee 198 (Mona Canzler) is Joan’s
manager. By looking at the row for employee 198 (Mona Canzler), you see that her man-
ager is employee 108 (Martin Holden). In the row for employee 108 (Martin Holden), the
manager number is null, indicating that he has no manager.

Suppose you need to list the employee number, employee last name, and employee first
name along with the number, last name, and first name of each employee’s manager. Just
as in the previous self-join, you would list the EMPLOYEE table twice in the FROM clause
with aliases.

The command shown in Figure 5-15 uses the letter E as an alias for the employee and
the letter M as an alias for the manager. Thus E.EMPLOYEE_NUM is the employee’s num-
ber and M.EMPLOYEE_NUM is the number of the employee’s manager. In the SQL com-
mand, M.EMPLOYEE_NUM is renamed as MGR_NUM, M.LAST_NAME is renamed as
MGR_LAST, and M.FIRST_NAME is renamed as MGR_FIRST. The condition in the
WHERE clause ensures that E.MGR_EMPLOYEE_NUM (the number of the employee’s man-
ager) matches M.EMPLOYEE_NUM (the employee number on the manager’s row in the
table). Employee 108 is not included in the results because Martin Holden has no man-
ager (see Figure 5-14).

Employee 108
has no manager

Employee 198
manages employee

206

FIGURE 5-14 Employee and manager data

42951_05 7/21/2008 8:16:11 Page 149

Multiple-Table Queries

149

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Joining Several Tables
It is possible to join several tables, as illustrated in Example 10. For each pair of tables you
join, you must include a condition indicating how the columns are related.

E X A M P L E 1 0

For each part on order, list the part number, number ordered, order number, order date,
customer number, and customer name, along with the last name of the sales rep who rep-
resents each customer.

A part is on order when it occurs on any row in the ORDER_LINE table. The part num-
ber, number ordered, and order number appear in the ORDER_LINE table. If these require-
ments represent the entire query, you would write the query as follows:

SELECT PART_NUM, NUM_ORDERED, ORDER_NUM
FROM ORDER_LINE;

This query is not sufficient, however. You also need the order date, which is in the ORDERS
table; the customer number and name, which are in the CUSTOMER table; and the rep last
name, which is in the REP table. Thus, you need to join four tables: ORDER_LINE, ORDERS,
CUSTOMER, and REP. The procedure for joining more than two tables is essentially the same

FIGURE 5-15 List of employees and their managers

42951_05 7/21/2008 8:16:12 Page 150

Chapter 5

150

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

as the one for joining two tables. The difference is that the condition in the WHERE clause will
be a compound condition. In this case, you would write the WHERE clause as follows:

WHERE ORDERS.ORDER_NUM = ORDER_LINE.ORDER_NUM
AND CUSTOMER.CUSTOMER_NUM = ORDERS.CUSTOMER_NUM
AND REP.REP_NUM = CUSTOMER.REP_NUM

The first condition relates an order to an order line with a matching order number. The
second condition relates the customer to the order with a matching customer number. The
final condition relates the rep to a customer with a matching sales rep number.

For the complete query, you list all the desired columns in the SELECT clause and
qualify any columns that appear in more than one table. In the FROM clause, you list the
tables that are involved in the query. The query and its results appear in Figure 5-16.

Q & A

Question: Why is the PART_NUM column, which appears in the PART and ORDER_LINE
tables, not qualified in the SELECT clause?

Answer: Among the tables listed in the query, only one table contains a column named
PART_NUM, so it is not necessary to qualify the table. If the PART table also appeared in
the FROM clause, you would need to qualify PART_NUM to avoid confusion between the
PART_NUM columns in the PART and ORDER_LINE tables.

The query shown in Figure 5-16 is more complex than many of the previous ones you
have examined. You might think that SQL is not such an easy language to use after all. If

Tables to include
in queryConditions to relate

the tables

FIGURE 5-16 Joining four tables in a query

42951_05 7/21/2008 8:16:12 Page 151

Multiple-Table Queries

151

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

you take it one step at a time, however, the query in Example 10 really is not that difficult.
To construct a detailed query in a step-by-step fashion, do the following:

1. List in the SELECT clause all the columns that you want to display. If the name
of a column appears in more than one table, precede the column name with
the table name (that is, qualify the column name).

2. List in the FROM clause all the tables involved in the query. Usually you include
the tables that contain the columns listed in the SELECT clause. Occasionally,
however, there might be a table that does not contain any columns used in the
SELECT clause but that does contain columns used in the WHERE clause. In
this case, you also must list the table in the FROM clause. For example, if you do
not need to list a customer number or name, but you do need to list the rep name,
you would not include any columns from the CUSTOMER table in the SELECT
clause. The CUSTOMER table still is required, however, because you must include
a column from it in the WHERE clause.

3. Take one pair of related tables at a time and indicate in the WHERE clause the
condition that relates the tables. Join these conditions with the AND operator.
If there are any other conditions, include them in the WHERE clause and con-
nect them to the other conditions with the AND operator. For example, if
you want to view parts present on orders placed by only those customers with
$10,000 credit limits, you would add one more condition to the WHERE
clause, as shown in Figure 5-17.

S E T O P E R A T I O N S

In SQL, you can use the set operations for taking the union, intersection, and difference
of two tables. The union of two tables uses the UNION operator to create a temporary table
containing every row that is in either the first table, the second table, or both tables. The
intersection of two tables uses the INTERSECT operator to create a temporary table
containing all rows that are in both tables. The difference of two tables uses the MINUS
operator to create a temporary table containing the set of all rows that are in the first table
but that are not in the second table.

FIGURE 5-17 Restricting the rows when joining four tables

42951_05 7/21/2008 8:25:3 Page 152

Chapter 5

152

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

For example, suppose that TEMP1 is a table containing the number and name of each
customer represented by sales rep 65. Further suppose that TEMP2 is a table containing
the number and name of those customers that currently have orders on file, as shown in
Figure 5-18.

The union of TEMP1 and TEMP2 (TEMP1 UNION TEMP2) consists of the number and
name of those customers that are represented by sales rep 65 or that currently have orders
on file, or both. The intersection of these two tables (TEMP1 INTERSECT TEMP2) con-
tains those customers that are represented by sales rep 65 and that have orders on file. The
difference of these two tables (TEMP1 MINUS TEMP2) contains those customers that are
represented by sales rep 65 but that do not have orders on file. The results of these set opera-
tions are shown in Figure 5-19.

There is a restriction on set operations. It does not make sense, for example, to talk
about the union of the CUSTOMER table and the ORDERS table because these tables do not
contain the same columns. What might rows in this union look like? The two tables in the
union must have the same structure for a union to be appropriate; the formal term is
“union compatible.” Two tables are union compatible when they have the same number
of columns and their corresponding columns have identical data types and lengths.

TEMP1

CUSTOMER_NUM CUSTOMER_NAME

356 Ferguson’s

462 Bargains Galore

608 Johnson’s Department Store

TEMP2

CUSTOMER_NUM CUSTOMER_NAME

148 Al’s Appliance and Sport

282 Brookings Direct

356 Ferguson’s

408 The Everything Shop

608 Johnson’s Department Store

FIGURE 5-18 Customers of rep 65 and customers with open orders

TEMP1 UNION TEMP2 TEMP1 INTERSECT TEMP2

CUSTOMER_NUM CUSTOMER_NAME

356 Ferguson’s

608 Johnson’s Department Store

TEMP1 MINUS TEMP2

CUSTOMER_NUM CUSTOMER_NAME

462 Bargains Galore

CUSTOMER_NUM CUSTOMER_NAME

148 Al’s Appliance and Sport

282 Brookings Direct

356 Ferguson’s

408 The Everything Shop

462 Bargains Galore

608 Johnson’s Department Store

FIGURE 5-19 Union, intersection, and difference of the TEMP1 and TEMP2 tables

42951_05 7/21/2008 8:25:45 Page 153

Multiple-Table Queries

153

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Note that the definition of union compatible does not state that the columns of the two
tables must be identical but rather that the columns must be of the same type. Thus, if one
column is CHAR(20), the matching column also must be CHAR(20).

E X A M P L E 1 1

List the number and name of each customer that either is represented by sales rep 65 or
that currently has orders on file, or both.

You can create a temporary table containing the number and name of each customer
that is represented by sales rep 65 by selecting the customer numbers and names from the
CUSTOMER table for which the sales rep number is 65. Then you can create another tem-
porary table containing the number and name of each customer that currently has orders
on file by joining the CUSTOMER and ORDERS tables. The two temporary tables cre-
ated by this process have the same structure; that is, they both contain the
CUSTOMER_NUM and CUSTOMER_NAME columns. Because the temporary tables are
union compatible, it is possible to take the union of these two tables. The query and its
results appear in Figure 5-20.

If your SQL implementation truly supports the union operation, it will remove any
duplicate rows automatically. For example, any customer that is represented by sales rep
65 and that currently has orders on file will appear only once in the results. Oracle,
Access, and SQL Server support the union operation and correctly remove duplicates.

First query

UNION
operator

Second query

FIGURE 5-20 Using the UNION operator

42951_05 7/21/2008 8:16:13 Page 154

Chapter 5

154

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

E X A M P L E 1 2

List the number and name of each customer that is represented by sales rep 65 and that
currently has orders on file.

The only difference between this query and the one in Example 11 is that the appro-
priate operator to use is INTERSECT, as shown in Figure 5-21.

Some SQL implementations do not support the INTERSECT operator, so you need to
take a different approach. The command shown in Figure 5-22 produces the same results
as the INTERSECT operator by using the IN operator and a subquery. The command selects
the number and name of each customer that is represented by sales rep 65 and whose cus-
tomer number also appears in the collection of customer numbers in the ORDERS table.

FIGURE 5-21 Using the INTERSECT operator

Rep number
must be 65

Subquery to select
numbers of customers

with orders

Customer number must
be in the results of the

subquery

FIGURE 5-22 Performing an intersection without using the INTERSECT operator

42951_05 7/21/2008 8:16:13 Page 155

Multiple-Table Queries

155

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

E X A M P L E 1 3

List the number and name of each customer that is represented by sales rep 65 but that
does not have orders currently on file.

The query uses the MINUS operator, as shown in Figure 5-23.

Just as with the INTERSECT operator, some SQL implementations do not support the
MINUS operator. In such cases, you need to take a different approach, such as the one
shown in Figure 5-24. This command produces the same results by selecting the number
and name of each customer that is represented by sales rep 65 and whose customer num-
ber does not appear in the collection of customer numbers in the ORDERS table.

N O T E
Oracle and SQL Server support the INTERSECT operator but Microsoft Access does not.

FIGURE 5-23 Using the MINUS operator

Customer number cannot
be in the subquery results

FIGURE 5-24 Performing a difference without using the MINUS operator

42951_05 7/21/2008 8:16:13 Page 156

Chapter 5

156

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

A L L A N D A N Y

You can use the ALL and ANY operators with subqueries to produce a single column of
numbers. When you precede the subquery by the ALL operator, the condition is true only
if it satisfies all values produced by the subquery. When you precede the subquery by the
ANY operator, the condition is true only if it satisfies any value (one or more) pro-
duced by the subquery. The following examples illustrate the use of these operators.

E X A M P L E 1 4

Find the customer number, name, current balance, and rep number of each customer
whose balance exceeds the maximum balance of all customers represented by sales rep 65.

You can find the maximum balance of the customers represented by sales rep 65 in a
subquery and then find all customers whose balances are greater than this number. There
is an alternative method that is simpler, however. You can use the ALL operator, as shown
in Figure 5-25.

To some users, the query shown in Figure 5-25 might seem more natural than finding
the maximum balance in the subquery. For other users, the opposite might be true. You
can use whichever approach you prefer.

N O T E
Oracle supports the MINUS operator, but SQL Server and Microsoft Access do not.

ALL operator

FIGURE 5-25 SELECT command that uses the ALL operator

42951_05 7/21/2008 8:27:1 Page 157

Multiple-Table Queries

157

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Q & A

Question: How would you get the same result for Example 14 without using the ALL
operator?
Answer: You could select each customer whose balance is greater than the maximum bal-
ance of any customer of sales rep 65, as shown in Figure 5-26.

E X A M P L E 1 5

Find the customer number, name, current balance, and rep number of each customer
whose balance is greater than the balance of at least one customer of sales rep 65.

You can find the minimum balance of the customers represented by sales rep 65 in a
subquery and then find all customers whose balance is greater than this number. To sim-
plify the process, you can use the ANY operator, as shown in Figure 5-27.

FIGURE 5-26 Alternative to using the ALL operator

42951_05 7/21/2008 8:16:14 Page 158

Chapter 5

158

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Q & A

Question: How would you get the same results without using the ANY operator?
Answer: You could select each customer whose balance is greater than the minimum bal-
ance of any customer of sales rep 65, as shown in Figure 5-28.

ANY operator

FIGURE 5-27 SELECT command with an ANY operator

42951_05 7/21/2008 8:16:14 Page 159

Multiple-Table Queries

159

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

S P E C I A L O P E R A T I O N S

You can perform special operations within SQL, such as the self-join that you already used.
Three other special operations are the inner join, the outer join, and the product.

Inner Join
A join that compares the tables in a FROM clause and lists only those rows that satisfy the
condition in the WHERE clause is called an inner join. The joins that you have per-
formed so far in this text have been inner joins. Example 16 illustrates the inner join.

E X A M P L E 1 6

Display the customer number, customer name, order number, and order date for each
order. Sort the results by customer number.

This example requires the same type of join that you have been using. The
command is:

SELECT CUSTOMER.CUSTOMER_NUM, CUSTOMER_NAME,
ORDER_NUM, ORDER_DATE

FROM CUSTOMER, ORDERS
WHERE CUSTOMER.CUSTOMER_NUM = ORDERS.CUSTOMER_NUM
ORDER BY CUSTOMER.CUSTOMER_NUM;

FIGURE 5-28 Alternative to using the ANY operator

42951_05 7/21/2008 8:27:58 Page 160

Chapter 5

160

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

The previous approach should work in any SQL implementation. An update to the SQL
standard approved in 1992, called SQL-92, provides an alternative way of performing an
inner join, as demonstrated in Figure 5-29.

In the FROM clause, list the first table, and then include an INNER JOIN clause that
includes the name of the second table. Instead of a WHERE clause, use an ON clause con-
taining the same condition that you would have included in the WHERE clause.

Outer Join
Sometimes you need to list all the rows from one of the tables in a join, regardless of whether
they match any rows in a second table. For example, you can perform the join of the
CUSTOMER and ORDERS tables in the query for Example 16, but display all
customers—even the ones without orders. This type of join is called an outer join.

There are actually three types of outer joins. In a left outer join, all rows from the table
on the left (the table listed first in the query) are included regardless of whether they match
rows from the table on the right (the table listed second in the query). Rows from the
table on the right are included only when they match. In a right outer join, all rows from
the table on the right are included regardless of whether they match rows from the table
on the left. Rows from the table on the left are included only when they match. In a full
outer join, all rows from both tables are included regardless of whether they match rows
from the other table. (The full outer join is rarely used.)

Example 17 illustrates the use of a left outer join.

ON clause

INNER JOIN clause

FIGURE 5-29 Query that uses an INNER JOIN clause

42951_05 7/21/2008 8:29:45 Page 161

Multiple-Table Queries

161

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

E X A M P L E 1 7

Display the customer number, customer name, order number, and order date for all orders.
Include all customers in the results. For customers that do not have orders, omit the order
number and order date.

To include all customers, you must perform an outer join. Assuming the CUSTOMER
table is listed first, the join should be a left outer join. In SQL, you use the LEFT JOIN
clause to perform a left outer join as shown in Figure 5-30. (You would use a RIGHT JOIN
clause to perform a right outer join.)

All customers are included in the results. For customers without orders, the order num-
ber and date are blank. Technically, these blank values are null.

Customers without
matching orders are

also included

LEFT JOIN clause

FIGURE 5-30 Query that uses a LEFT JOIN clause

42951_05 7/21/2008 8:16:15 Page 162

Chapter 5

162

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Product
The product (formally called the Cartesian product) of two tables is the combination of
all rows in the first table and all rows in the second table.

E X A M P L E 1 8

Form the product of the CUSTOMER and ORDERS tables. Display the customer number
and name from the CUSTOMER table, along with the order number and order date from
the ORDERS table.

Forming a product is actually very easy. You simply omit the WHERE clause, as shown
in Figure 5-31.

N O T E
In Oracle, there is another way to perform left and right outer joins. You write the join as you have been
doing, with one exception. You include parentheses and a plus sign in the WHERE clause after the col-
umn in the table for which only matching rows are to be included. In this example, the plus sign would fol-
low the CUSTOMER_NUM column in the ORDERS table because only orders that match customers are
to be included. Because customers that do not have orders are to be included in the results, there would
be no plus sign after the CUSTOMER_NUM column in the CUSTOMER table. The correct query is as
follows:

SELECT CUSTOMER.CUSTOMER_NUM, CUSTOMER_NAME,
ORDER_NUM, ORDER_DATE
FROM CUSTOMER, ORDERS
WHERE CUSTOMER.CUSTOMER_NUM = ORDERS.CUSTOMER_NUM(+)
ORDER BY CUSTOMER.CUSTOMER_NUM;

Running this query produces the same results shown in Figure 5-30.

N O T E
The product operation is not common. You need to be aware of it, however, because it is easy to create
a product inadvertently by omitting the WHERE clause when you are attempting to join tables.

42951_05 7/21/2008 8:31:15 Page 163

Multiple-Table Queries

163

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Q & A

Question: Figure 5-31 does not show all the rows in the result. How many rows are actu-
ally included?
Answer: The CUSTOMER table has 10 rows and the ORDERS table has seven rows.
Because each of the 10 customer rows is matched with each of the seven order rows, there
are 70 (10 x 7) rows in the result.

No condition
relates the tables in
the FROM clause

FIGURE 5-31 Query that produces a product of two tables

42951_05 7/21/2008 8:16:15 Page 164

Chapter 5

164

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Chapter Summary
● To join tables, indicate in the SELECT clause all columns to display, list in the FROM

clause all tables to join, and then include in the WHERE clause any conditions requir-
ing values in matching columns to be equal.

● When referring to matching columns in different tables, you must qualify the column
names to avoid confusion. You qualify column names using the following format: table
name.column name.

● Use the IN or EXISTS operators with an appropriate subquery as an alternate way of per-
forming a join.

● A subquery can contain another subquery. The innermost subquery is executed first.
● The name of a table in a FROM clause can be followed by an alias, which is an alter-

nate name for a table. You can use the alias in place of the table name throughout the
SQL command. By using two different aliases for the same table in a single SQL com-
mand, you can join a table to itself.

● The UNION operator creates a union of two tables (the collection of rows that are in either
or both tables). The INTERSECT operator creates the intersection of two tables (the col-
lection of rows that are in both tables).The MINUS operator creates the difference of two
tables (the collection of rows that are in the first table but not in the second table). To
perform any of these operations, the tables involved must be union compatible.Two tables
are union compatible when they have the same number of columns and their corre-
sponding columns have identical data types and lengths.

● When the ALL operator precedes a subquery, the condition is true only if it is satisfied
by all values produced by the subquery.

● When the ANY operator precedes a subquery, the condition is true only if it is satisfied
by any value (one or more) produced by the subquery.

● In an inner join, only matching rows from both tables are included. You can use the
INNER JOIN clause to perform an inner join.

● In a left outer join, all rows from the table on the left (the table listed first in the query)
are included regardless of whether they match rows from the table on the right (the table
listed second in the query). Rows from the table on the right are included only when they
match. You can use the LEFT JOIN clause to perform a left outer join. In a right outer
join, all rows from the table on the right are included regardless of whether they match
rows from the table on the left. Rows from the table on the left are included only when
they match. You can use the RIGHT JOIN clause to perform a right outer join.

● The product (Cartesian product) of two tables is the combination of all rows in the first
table and all rows in the second table.To form a product of two tables, include both tables
in the FROM clause and omit the WHERE clause.

42951_05 7/21/2008 8:31:37 Page 165

Multiple-Table Queries

165

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Key Terms

alias

ALL

ANY

Cartesian product

correlated subquery

difference

EXISTS

full outer join

inner join

INTERSECT

intersection

join

left outer join

MINUS

nested subquery

outer join

product

right outer join

self-join

union

UNION

union compatible

Review Questions

1. How do you join tables in SQL?

2. When must you qualify names in SQL commands? How do you qualify a column name?

3. List two operators that you can use with subqueries as an alternate way of performing joins.

4. What is a nested subquery? In which order does SQL evaluate nested subqueries?

5. What is an alias? How do you specify an alias in SQL? How do you use an alias?

6. How do you join a table to itself in SQL?

7. How do you take the union of two tables in SQL? How do you take the intersection of two
tables in SQL? How do you take the difference of two tables in SQL? Are there any restric-
tions on the tables when performing any of these operations?

8. What does it mean for two tables to be union compatible?

9. How do you use the ALL operator with a subquery?

10. How do you use the ANY operator with a subquery?

11. Which rows are included in an inner join? What clause can you use to perform an inner join
in SQL?

12. Which rows are included in a left outer join? What clause can you use to perform a left outer
join in SQL?

13. Which rows are included in a right outer join? What clause can you use to perform a right
outer join in SQL?

14. What is the formal name for the product of two tables? How do you form a product in SQL?

15. Use your favorite Web browser and Web search engine to find definitions for the terms
equi-join, natural join, and cross join. Write a short report that identifies how these terms
relate to the terms join, inner join, and Cartesian product. Be sure to reference your online
sources properly.

42951_05 7/21/2008 8:32:20 Page 166

Chapter 5

166

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

16. Use your favorite Web browser and Web search engine to find information on cost-based
query optimizers. Write a short report that explains how cost-based query optimization
works, and what type(s) of queries benefit the most from cost-based query optimization. Be
sure to reference your online sources properly.

Exercises

Premiere Products

Use SQL and the Premiere Products database (see Figure 1-2 in Chapter 1) to complete the fol-
lowing exercises. If directed to do so by your instructor, use the information provided with the
Chapter 3 Exercises to print your output.

1. For each order, list the order number and order date along with the number and name of
the customer that placed the order.

2. For each order placed on October 23, 2010, list the order number along with the number
and name of the customer that placed the order.

3. For each order, list the order number, order date, part number, number of units ordered, and
quoted price for each order line that makes up the order.

4. Use the IN operator to find the number and name of each customer that placed an order
on October 23, 2010.

5. Repeat Exercise 4, but this time use the EXISTS operator in your answer.

6. Find the number and name of each customer that did not place an order on
October 23, 2010.

7. For each order, list the order number, order date, part number, part description, and item
class for each part that makes up the order.

8. Repeat Exercise 7, but this time order the rows by item class and then by order number.

9. Use a subquery to find the rep number, last name, and first name of each sales rep who rep-
resents at least one customer with a credit limit of $10,000. List each sales rep only once
in the results.

10. Repeat Exercise 9, but this time do not use a subquery.

11. Find the number and name of each customer that currently has an order on file for a
Gas Range.

12. List the part number, part description, and item class for each pair of parts that are in the
same item class. (For example, one such pair would be part AT94 and part FD21, because
the item class for both parts is HW.)

13. List the order number and order date for each order placed by the customer named
Johnson’s Department Store. (Hint: To enter an apostrophe (single quotation mark) within
a string of characters, type two single quotation marks.)

14. List the order number and order date for each order that contains an order line for an Iron.

15. List the order number and order date for each order that either was placed by Johnson’s
Department Store or that contains an order line for a Gas Range.

16. List the order number and order date for each order that was placed by Johnson’s
Department Store and that contains an order line for a Gas Range.

42951_05 7/21/2008 8:31:59 Page 167

Multiple-Table Queries

167

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

17. List the order number and order date for each order that was placed by Johnson’s
Department Store but that does not contain an order line for a Gas Range.

18. List the part number, part description, unit price, and item class for each part that has a unit
price greater than the unit price of every part in item class AP. Use either the ALL or ANY
operator in your query. (Hint: Make sure you select the correct operator.)

19. If you used ALL in Exercise 18, repeat the exercise using ANY. If you used ANY, repeat the
exercise using ALL, and then run the new command. What question does this command
answer?

20. For each part, list the part number, description, units on hand, order number, and number
of units ordered. All parts should be included in the results. For those parts that are cur-
rently not on order, the order number and number of units ordered should be left blank. Order
the results by part number.

Henry Books

Use SQL and the Henry Books database (see Figures 1-4 through 1-7 in Chapter 1) to com-
plete the following exercises. If directed to do so by your instructor, use the information provided
with the Chapter 3 Exercises to print your output.

1. For each book, list the book code, book title, publisher code, and publisher name. Order the
results by publisher name.

2. For each book published by Scribner, list the book code, book title, and price.

3. List the book title, book code, and price of each book published by Scribner that has a book
price of at least $14.

4. List the book code, book title, and units on hand for each book in branch number 3.

5. List the book title for each book that has the type PSY and that is published by Berkley
Publishing.

6. Find the book title for each book written by author number 18. Use the IN operator in
your query.

7. Repeat Exercise 6, but this time use the EXISTS operator in your query.

8. Find the book code and book title for each book located in branch number 2 and written by
author 20.

9. List the book codes for each pair of books that have the same price. (For example, one such
pair would be book 0200 and book 7559, because the price of both books is $8.00.) The
first book code listed should be the major sort key, and the second book code should be the
minor sort key.

10. Find the book title, author last name, and units on hand for each book in branch number 4.

11. Repeat Exercise 10, but this time list only paperback books.

12. Find the book code and book title for each book whose price is more than $10 or that was
published in Boston.

13. Find the book code and book title for each book whose price is more than $10 and that was
published in Boston.

14. Find the book code and book title for each book whose price is more than $10 but that was
not published in Boston.

42951_05 7/21/2008 8:33:5 Page 168

Chapter 5

168

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

15. Find the book code and book title for each book whose price is greater than the book price
of every book that has the type MYS.

16. Find the book code and book title for each book whose price is greater than the price of at
least one book that has the type MYS.

17. List the book code, book title, and units on hand for each book in branch number 2. Be sure
each book is included, regardless of whether there are any copies of the book currently on
hand in branch 2. Order the output by book code.

Alexamara Marina Group

Use SQL and the Alexamara Marina Group database (see Figures 1-8 through 1-12 in Chapter 1)
to complete the following exercises. If directed to do so by your instructor, use the information pro-
vided with the Chapter 3 Exercises to print your output.

1. For every boat, list the marina number, slip number, boat name, owner number, owner’s first
name, and owner’s last name.

2. For every completed or open service request for routine engine maintenance, list the slip
ID, description, and status.

3. For every service request for routine engine maintenance, list the slip ID, marina number,
slip number, estimated hours, spent hours, owner number, and owner’s last name.

4. List the first and last names of all owners who have a boat in a 30-foot slip. Use the IN opera-
tor in your query.

5. Repeat Exercise 4, but this time use the EXISTS operator in your query.

6. List the names of any pair of boats that have the same type. For example, one pair would be
Anderson II and Escape, because the boat type for both boats is Sprite 4000. The first name
listed should be the major sort key and the second name should be the minor sort key.

7. List the boat name, owner number, owner last name, and owner first name for each boat
in marina 1.

8. Repeat Exercise 7, but this time only list boats in 40-foot slips.

9. List the marina number, slip number, and boat name for boats whose owners live in
Glander Bay or whose type is Sprite 4000.

10. List the marina number, slip number, and boat name for boats whose owners live in
Glander Bay and whose type is Sprite 4000.

11. List the marina number, slip number, and boat name for boats whose owners live in
Glander Bay but whose type is not Sprite 4000.

12. Find the service ID and slip ID for each service request whose estimated hours is greater
than the number of estimated hours of at least one service request on which the category
number is 3.

13. Find the service ID and slip ID for each service request whose estimated hours is greater than
the number of estimated hours on every service request on which the category number is 3.

14. List the slip ID, boat name, owner number, service ID, number of estimated hours, and num-
ber of spent hours for each service request on which the category number is 2.

15. Repeat Exercise 14, but this time be sure each slip is included regardless of whether the
boat in the slip currently has any service requests for category 2.

42951_05 7/21/2008 8:34:17 Page 169

Multiple-Table Queries

169

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

42951_05 7/21/2008 8:34:7 Page 170

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

C H A P T E R 5 — M U L T I P L E - T A B L E Q U E R I E S

1. Indicate in the SELECT clause all columns to display, list in the FROM clause
all tables to join, and then include in the WHERE clause any conditions requir-
ing values in matching columns to be equal.

3. IN and EXISTS
5. An alias is an alternate name for a table. To specify an alias in SQL, follow the

name of the table with the name of the alias. You use the alias just like a table
name throughout the SQL command.

7. Use the UNION, INTERSECT, and MINUS operators to create a union, intersec-
tion, and difference of two tables. To perform any of these operations, the tables
must be union compatible.

C6830_AppC 8/15/2008 10:16:39 Page 295

Answers to Odd-Numbered Review Questions

295

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

This page contains answers for this chapter only.

9. When the ALL operator precedes a subquery, the condition is true only if it sat-
isfies all values produced by the subquery.

11. In an inner join, only matching rows from both tables are included. You can
use the INNER JOIN clause to perform an inner join.

13. In a right outer join, all rows from the table on the right will be included regard-
less of whether they match rows from the table on the left. Rows from the table
on the left will be included only if they match. You can use the RIGHT JOIN
clause to perform a right outer join.

15. Answers will vary. Answers should note that an equi-join is similar to an inner
join except that both matching columns appear in the results. A natural join
is the same as the inner join discussed in Chapter 5. A cross join is the same as
a Cartesian product.

C6830_AppC 8/15/2008 10:16:39 Page 296

Appendix C

296

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

This page contains answers for this chapter only.

	CHAPTER 5: MULTIPLE-TABLE QUERIES
	QUERYING MULTIPLE TABLES
	COMPARING JOINS, IN, AND EXISTS
	SET OPERATIONS
	ALL AND ANY
	SPECIAL OPERATIONS
	Chapter Summary
	Key Terms
	Review Questions
	Exercises
	APPENDIX C: ANSWERS TO ODD-NUMBERED REVIEW QUESTIONS

