CHAPTER

DATABASE DESIGN
FUNDAMENTALS

LEARNING

Objectives
e Understand the
e Understand the

e Understand fun
functionally dep

e Understand the
e Design a datab:
e Convert an unn
e Convert tables f
e Convert tables f

e Create an enti
database

INTRODUCTION

In Chapter 1, you reviewed the tables and columns in the Premiere Products, Henry Books, and
Alexamara Marina Group databases that you will use to complete the rest of this text. The process of
determining the particular tables and columns that will comprise a database is known as database
design. In this chapter, you will learn a method for designing a database to satisfy a set of requirements.
In the process, you will learn how to identify the tables and columns in the database. You also will learn

how to identify the relationships between the tables.

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

This chapter begins by examining some important concepts related to databases. It also presents

24 the design method using the set of requirements that Premiere Products identified to produce the
appropriate database design. The chapter then examines the process of normalization, in which you

identify and fix potential problems in database designs. Finally, you will learn a way of visually

representing the design of a database.

DATABASE CONCEPTS

Before learning how to design a database, you need to be familiar with some important
database concepts related to relational databases, which are the types of databases you
examined in Chapter 1 and that you will use throughout the rest of this text. The terms
entity, attribute, and relationship are important to understand when designing a database;
the concepts of functional dependence and primary keys are critical when learning about
the database design process.

Relational Databases

A relational database is a collection of tables like the ones you examined for Premiere
Products in Chapter 1 and that also appear in Figure 2-1. Formally, these tables are called
relations, and this is how this type of database gets its name.

Chapter 2

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

REP

REP_ LAST_ FIRST_ STREET CITY STATE ZIP COMMISSION RATE

NUM NAME NAME
25

20 Kaiser | Valerie |[624 Randall |Grove FL 33321 $20,542.50 0.05
35 Hull Richard |532 Jackson |Sheldon |FL 33553 $39,216.00 0.07

65 Perez |Juan 1626 Taylor | Fillmore |FL 33336 $23,487.00 0.05
CUSTOMER
CUSTOMER_ CUSTOMER_ STREET CITY STATE ZIP BALANCE CREDIT_ REP_
NUM NAME LIMIT NUM
148 Al's Appliance | 2837 Fillmore |FL 33336 | $6,550.00($7,500.00 |20
and Sport Greenway
282 Brookings 3827 Devon | Grove FL 33321 $431.50| $10,000.00 | 35
Direct
356 Ferguson’s 382 Wildwood | Northfield [FL 33146 | $5,785.00($7,500.00 | 65
408 The 1828 Raven |Crystal FL 33503 | $5,285.25($5,000.00 |35
Everything
Shop
462 Bargains 3829 Central |Grove FL 33321 | $3,412.00 [$10,000.00 | 65
Galore
524 Kline’s 838 Ridgeland | Fillmore |FL 33336 $12,762.00 | $15,000.00 | 20
608 Johnson’s 372 Oxford Sheldon |FL 33553 | $2,106.00 [$10,000.00 | 65
Department
Store
687 Lee’s Sport 282 Evergreen |Altonville |FL 32543 | $2,851.00| $5,000.00 |35
and Appliance
725 Deerfield’s 282 Columbia |Sheldon |FL 33553 $248.00| $7,500.00 |35
Four Seasons
842 All Season 28 Lakeview |Grove FL 33321 | $8,221.00($7,500.00 |20
ORDERS ORDER_LINE
ORDER_ ORDER_ CUSTOMER_ ORDER_NUM PART_NUM NUM_ORDERED QUOTED_PRICE
NUM DATE NUM
21608 AT94 11 $21.95
21608 10/20/2010 | 148 51610 DRO3 1 $495.00
21610 10/20/2010 [356 51610 DW11 1 $399.99
21613 10/21/2010 [408 51613 KL62 4 $329.95
21614 10/21/2010 [282 21614 KT03 5 $3595.00
21617 10/23/2010 | 608 1617 BVO6 B $794.95
21010 SEERIZOW) |1 21617 CD52 4 $150.00
21623 10/23/2010 | 608 51619 DRO3 1 $495.00
21623 Kv29 2 $1,290.00
PART
PART_NUM DESCRIPTION ON_HAND CLASS WAREHOUSE PRICE
AT94 Iron 50| OW 3 $24.95
BV06 Home Gym 45| SG 2 $794.95
CD52 Microwave Oven 32| AP 1 $165.00
DL71 Cordless Drill 21| OwW 3 $129.95
DR93 Gas Range 8| AP 2 $495.00
DW11 Washer 12| AP 3 $399.99
FD21 Stand Mixer 22| OW 3 $159.95
KL62 Dryer 12| AP 1 $349.95
KT03 Dishwasher 8| AP 3 $595.00
Kv29 Treadmill 9SG 2 $1,390.00

FIGURE 2-1 Sample data for Premiere Products

Database Design Fundamentals

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

NOTE 3

The names of columns and tables in this text follow a common naming convention in which column names use

26 uppercase letters and replace spaces between words with underscores (_). For example, Premiere Products
uses the column named LAST_NAME to store last names and the column named CREDIT_LIMIT to store
credit limits.

Entities, Attributes, and Relationships

There are some terms and concepts that are very important for you to know when work-
ing in the database environment. The terms entity, attribute, and relationship are funda-
mental when discussing databases. An entity is like a noun; it is a person, place, thing, or
event. The entities of interest to Premiere Products, for example, are such things as cus-
tomers, orders, and sales reps. The entities that are of interest to a school include stu-
dents, faculty, and classes; a real estate agency is interested in clients, houses, and agents;
and a used car dealer is interested in vehicles, customers, and manufacturers.

An attribute is a property of an entity. The term is used here exactly as it is used in
everyday English. For the entity person, for example, the list of attributes might include
such things as eye color and height. For Premiere Products, the attributes of interest for
the entity customer are such things as name, address, city, and so on. For the entity
Jfaculty at a school, the attributes would be such things as faculty number, name, office num-
ber, phone, and so on. For the entity vehicle at a car dealership, the attributes are such
things as the vehicle identification number, model, color, year, and so on.

A relationship is the association between entities. There is an association between cus-
tomers and sales reps, for example, at Premiere Products. A sales rep is associated with all
of his or her customers, and a customer is associated with his or her sales rep. Techni-
cally, you say that a sales rep is related to all of his or her customers, and a customer is
related to his or her sales rep.

The relationship between sales reps and customers is an example of a one-to-many
relationship because one sales rep is associated with many customers, but each cus-
tomer is associated with only one sales rep. (In this type of relationship, the word many
is used in a way that is different from everyday English; it might not always mean a large
number. In this context, for example, the term many means that a sales rep might be asso-
ciated with any number of customers. That is, one sales rep can be associated with zero,
one, or more customers.)

How does a relational database handle entities, attributes of entities, and relation-
ships between entities? Entities and attributes are fairly simple. Each entity has its own
table. In the Premiere Products database, there is one table for sales reps, one table for
customers, and so on. The attributes of an entity become the columns in the table. In the
table for sales reps, for example, there is a column for the sales rep number, a column for
the sales rep’s first name, and so on.

What about relationships? At Premiere Products, there is a one-to-many relationship
between sales reps and customers (each sales rep is related to the many customers that
he or she represents, and each customer is related to the one sales rep who represents the
customer). How is this relationship implemented in a relational database?

Consider Figure 2-1 again. If you want to determine the name of the sales rep who repre-
sents Brookings Direct (customer number 282), you would locate the row for Brookings Direct

Chapter 2

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

in the CUSTOMER table and determine that the value for REP_NUM is 35. Then you would
look for the row in the REP table on which the REP_NUM is 35. The one rep with REP_NUM 35
is Richard Hull, who represents Brookings Direct. 27

On the other hand, if you want to determine the names of all the customers of the rep
named Valerie Kaiser, you would locate the row for Valerie Kaiser in the REP table and
determine that the value in the REP_NUM column is 20. Then you would look for all the
rows in the CUSTOMER table on which the REP_NUM is 20. After identifying Valerie
Kaiser’s rep number, you find that the many customers she represents are numbered 148
(Al's Appliance and Sport), 524 (Kline’s), and 842 (All Season).

You implement these relationships by having common columns in two or more tables.
The REP_NUM column in the REP table and the REP_NUM column in the CUSTOMER table
are used to implement the relationship between sales reps and customers. Given a sales
rep, you can use these columns to determine all the customers that he or she represents;
given a customer, you can use these columns to find the sales rep who represents the
customer.

In this context, a relation is essentially a two-dimensional table. If you consider the
tables shown in Figure 2-1, however, you can see that certain restrictions are placed on
relations. Each column has a unique name, and entries within each column should
“match” this column name. For example, if the column name is CREDIT_LIMIT, all entries
in that column must be credit limits. Also, each row should be unique—when two rows are
identical, the second row does not provide any new information. For maximum flexibil-
ity, the order of the columns and rows should be immaterial. Finally, the table’s design
should be as simple as possible by restricting each position to a single entry and by pre-
venting multiple entries (also called repeating groups) in an individual location in the
table. Figure 2-2 shows a table design that includes repeating groups.

ORDERS

ORDER_ CUSTOMER_ PART_ NUM_ QUOTED_

DATE NUM ORDERED PRICE

21608 10/20/2010 | 148 AT94 11 $21.95
21610 10/20/2010 | 356 DR93 1 $495.00
DW11 1 $399.99

21613 10/21/2010 | 408 KL62 4 $329.95
21614 10/21/2010 | 282 KTO03 2 $595.00
21617 10/23/2010 | 608 BV06 2 $12.95
CD52 4 $150.00

21619 10/23/2010 | 148 DR93 1 $495.00
21623 10/23/2010 | 608 KV29 2 $325.99

FIGURE 2-2 Table with repeating groups

Figure 2-3 shows a better way to represent the same information shown in Figure 2-2.
In Figure 2-3, every position in the table contains a single value.

Database Design Fundamentals

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

ORDERS

ORDER_ CUSTOMER_ PART_ NUM_ QUOTED_

28 DATE NUM NUM ORDERED PRICE
21608 | 10/20/2010 | 148 AT94 11| $21.95
21610 | 10/20/2010 |356 DRO3 1| $495.00
21610 | 10/20/2010 | 356 DW11 1| $399.99
21613 |10/21/2010 | 408 KL62 4] $329.95
21614 | 10/21/2010 |282 KT03 2| $595.00
21617 | 10/23/2010 | 608 BV06 2| $12.95
21617 | 10/23/2010 | 608 QD52 4| $150.00
21619 | 10/23/2010 | 148 DRO3 1| $495.00
21623 | 10/23/2010 | 608 KV29 2| $325.99

FIGURE 2-3 ORDERS data without repeating groups

When you remove the repeating groups from Figure 2-2, all of the rows in Figure 2-3
are single-valued. This structure is formally called a relation. A relation is a two-
dimensional table in which the entries in the table are single-valued (each location in the
table contains a single entry), each column has a distinct name, all values in the col-
umn match this name, the order of the rows and columns is immaterial, and each row con-
tains unique values. A relational database is a collection of relations.

NOTE 3

Rows in a table (relation) are also called records or tuples. Columns in a table (relation) are also called
fields or attributes. This text uses the terms tables, columns, and rows unless the more formal terms of rela-
tion, attributes, and tuples are necessary for clarity.

There is a commonly accepted shorthand representation to show the tables and col-
umns in a relational database: for each table, you write the name of the table and then
within parentheses list all of the columns in the table. In this representation, each table
appears on its own line. Using this method, you represent the Premiere Products data-
base as follows:

REP (REP_NUM, LAST NAME, FIRST_NAME, STREET,
CITY, STATE, ZIP, COMMISSION, RATE)
CUSTOMER (CUSTOMER_NUM, CUSTOMER_NAME, STREET,
CITY, STATE, ZIP, BALANCE, CREDIT_LIMIT,
REP_NUM)

ORDERS (ORDER_NUM, ORDER_DATE, CUSTOMER_NUM)

ORDER_LINE (ORDER_NUM, PART_NUM, NUM_ORDERED,
QUOTED_PRICE)

PART (PART_NUM, DESCRIPTION, ON_HAND, CLASS,
WAREHOUSE, PRICE)

Chapter 2

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Notice that some tables contain columns with duplicate names. For example, the
REP_NUM column appears in both the REP table and the CUSTOMER table. Suppose a situa-
tion existed wherein someone (or the DBMS) might confuse the two columns. For example, 29
if you write REP_NUM, it is not clear which REP_NUM column you want to use. You need a
mechanism for indicating the REP_NUM column to which you are referring. One common
approach to solving this problem is to write both the table name and the column name, sepa-
rated by a period. Thus, you would reference the REP_NUM column in the CUSTOMER table
as CUSTOMER.REP_NUM, and the REP_NUM column in the REP table as REP.REP_NUM. Tech-
nically, when you reference columns in this format, you say that you qualify the names. It
is always acceptable to qualify column names, even when there is no potential for

confusion. If confusion might arise, however, it is essential to qualify column names.

FUNCTIONAL DEPENDENCE

The concept of functional dependence is crucial to understanding the rest of the material in
this chapter. Functional dependence is a formal name for what is basically a simple idea. To
illustrate functional dependence, suppose the REP table for Premiere Products is structured
as shown in Figure 2-4. The only difference between the REP table shown in Figure 2-4 and the
one shown in Figure 2-1 is the addition of an extra column named PAY_CLASS.

REP
LAST_ FIRST_ STREET STATE ZIP COMMISSION PAY_ RATE
NAME NAME CLASS

20 Kaiser | Valerie | 624 Randall | Grove |FL 33321 $20,542.50 | 1 0.05

35 Hull Richard | 532 Jackson | Sheldon | FL 33553 $39,216.00| 2 0.07

65 Perez |Juan 1626 Taylor | Fillmore | FL 33336 $23,487.00 | 1 0.05

FIGURE 2-4 REP table with a PAY_CLASS column

Suppose one of the policies at Premiere Products is that all sales reps in any given pay class
earn their commissions at the same rate. To describe this situation, you could say that a sales
rep’s pay class determines his or her commission rate. Alternatively, you could say that a
sales rep’s commission rate depends on his or her pay class. This phrasing uses the words
determines and depends on in the same way that you describe functional dependency. If you
wanted to be formal, you would precede either expression with the word functionally. For
example, you might say, “A sales rep’s pay class_functionally determines his or her commis-
sion rate,” and “A sales rep’s commission rate functionally depends on his or her pay class.”
You can also define functional dependency by saying that when you know a sales rep’s pay class,
you can determine his or her commission rate.

In a relational database, column B is functionally dependent on another column (or
a collection of columns), A, if at any point in time a value for A determines a single value
for B. You can think of this as follows: when you are given a value for A, do you know that

Database Design Fundamentals

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

you can find a single value for B? If so, B is functionally dependent on A (often written as
A — B). If B is functionally dependent on A, you also can say that A functionally
30 determines B.
At Premiere Products, is the LAST_NAME column in the REP table functionally depen-
dent on the REP_NUM column? Yes, it is. If you are given a value for REP_NUM, such as
20, there is a single LAST_NAME, Kaiser, associated with it. This is represented as:

REP_NUM — LAST_ NAME

Question: In the CUSTOMER table, is CUSTOMER_NAME functionally dependent on
REP_NUM?

Answer: No. Given the REP_NUM 20, for example, you would not be able to find a single
customer name, because 20 appears on more than one row in the table.

Question: In the ORDER_LINE table, is NUM_ORDERED functionally dependent on
ORDER_NUM?

Answer: No. An ORDER_NUM might be associated with several items in an order, so hav-
ing just an ORDER_NUM does not provide enough information.

Question: Is NUM_ORDERED functionally dependent on PART_NUM?
Answer: No. Again, just as with ORDER_NUM, a PART_NUM might be associated with sev-
eral items in an order, so PART_NUM does not provide enough information.

Question: On which columns in the ORDER_LINE table is NUM_ORDERED functionally
dependent?

Answer: To determine a value for NUM_ORDERED, you need both an order number and
a part number. In other words, NUM_ORDERED is functionally dependent on the com-
bination (formally called the concatenation) of ORDER_NUM and PART_NUM. That is,
given an order number and a part number, you can find a single value for
NUM_ORDERED.

Chapter 2

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

At this point, a question naturally arises: how do you determine functional

dependencies? Can you determine them by looking at sample data, for example? The

answer is no. 31
Consider the REP table in Figure 2-5, in which last names are unique. It is very tempting

to say that LAST_NAME functionally determines STREET, CITY, STATE, and ZIP (or equiva-

lently that STREET, CITY, STATE, and ZIP are all functionally dependent on LAST_NAME).

After all, given the last name of a rep, you can find the single address.

REP

REP_ LAST_ FIRST_ STREET CITY STATE ZIP COMMISSION RATE

NUM NAME NAME

20 Kaiser | Valerie | 624 Randall | Grove FL 33321 $20,542.50 | 0.05

35 Hull Richard | 532 Jackson | Sheldon | FL 33553 $39,216.00 | 0.07

65 Perez |Juan 1626 Taylor | Fillmore | FL 33336 $23,487.00 | 0.05

FIGURE 2-5 REP table

What happens when rep 85, whose last name is also Kaiser, is added to the database?
You then have the situation illustrated in Figure 2-6. Because there are now two reps with
the last name of Kaiser, you can no longer find a single address using a rep’s last name—you
were misled by the original data. The only way to determine functional dependencies is to
examine the user’s policies. This process can involve discussions with users, an exami-
nation of user documentation, and so on. For example, if managers at Premiere Products
have a policy never to hire two reps with the same last name, then LAST_NAME would
indeed determine the other columns. Without such a policy, however, LAST_NAME would
not determine the other columns.

REP

REP_ LAST_ FIRST_ STREET CITY STATE ZIP COMMISSION RATE
NUM NAME NAME

20 Kaiser | Valerie | 624 Randall | Grove FL 33321 $20,542.50 | 0.05

35 Hull Richard | 532 Jackson | Sheldon | FL 33553 $39,216.00 | 0.07

65 Perez |Juan 1626 Taylor | Fillmore | FL 33336 $23,487.00| 0.05

85 Kaiser | William | 172 Bahia Norton | FL 39281 $0.00| 0.05

FIGURE 2-6 REP table with two reps named Kaiser

PRIMARY KEYS

Another important database design concept is the primary key. In the simplest terms, the
primary key is the unique identifier for a table. For example, the REP_NUM column is
the unique identifier for the REP table. Given a rep number in the table, such as 20, there

Database Design Fundamentals

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

will only be one row on which that rep number occurs. Thus, the rep number 20 uniquely
identifies a row (in this case, the first row, and the rep named Valerie Kaiser).

32 In this text, the definition of primary key needs to be more precise than a unique iden-
tifier for a table. Specifically, column A (or a collection of columns) is the primary key for
a table if:
Property 1. All columns in the table are functionally dependent on A.
Property 2. No subcollection of the columns in A (assuming A is a collection of columns
and not just a single column) also has property 1.

Question: Is the CLASS column the primary key for the PART table?

Answer: No, because the other columns are not functionally dependent on CLASS. Given
the class HW, for example, you cannot determine a part number, description, or any-
thing else, because there are several rows on which the class is HW.

Question: Is the CUSTOMER_NUM column the primary key for the CUSTOMER table?
Answer: Yes, because Premiere Products assigns unique customer numbers. A specific
customer number cannot appear on more than one row. Thus, all columns in the
CUSTOMER table are functionally dependent on CUSTOMER_NUM.

Question: Is the ORDER_NUM column the primary key for the ORDER_LINE table?
Answer: No, because it does not functionally determine either NUM_ORDERED or
QUOTED_PRICE.

Question: Is the combination of the ORDER_NUM and PART_NUM columns the primary
key for the ORDER_LINE table?

Answer: Yes, because you can determine all columns by this combination of columns, and,
further, neither the ORDER_NUM nor the PART_NUM alone has this property.

Chapter 2

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Question: Is the combination of the PART_NUM and DESCRIPTION columns the pri- =
mary key for the PART table?

Answer: No. Although it is true that you can determine all columns in the PART table by

this combination, PART_NUM alone also has this property.

You can indicate a table’s primary key with a shorthand representation of a database
by underlining the column or collection of columns that comprise the primary key. The
complete shorthand representation for the Premiere Products database is:

REP (REP_NUM, LAST NAME, FIRST NAME, STREET,
CITY, STATE, ZIP, COMMISSION, RATE)
CUSTOMER (CUSTOMER_NUM, CUSTOMER_NAME, STREET,
CITY, STATE, 7zIP, BALANCE, CREDIT LIMIT,
REP_NUM)

ORDERS (ORDER_NUM, ORDER_DATE, CUSTOMER_NUM)

ORDER_LINE (ORDER_NUM, PART_NUM, NUM_ORDERED,
QUOTED_PRICE)

PART (PART_NUM, DESCRIPTION, ON_HAND, CLASS,
WAREHOUSE, PRICE)

NOTE —]

Sometimes you might identify one or more columns that you can use as a table’s primary key. For example,
if the Premiere Products database also included an EMPLOYEE table that contains employee numbers
and Social Security numbers, either the employee number or the Social Security number could serve as the
table’s primary key. In this case, both columns are referred to as candidate keys. Like a primary key, a
candidate key is a column or collection of columns on which all columns in the table are functionally
dependent—the definition for primary key really defines candidate key as well. From all the candidate
keys, you would choose one to be the primary key.

NOTE —_————

According to the definition of a candidate key, a Social Security number is a legitimate primary key. Many
databases, such as those that store data about students at a college or university or those that store data
about employees at a company, store a person’s Social Security number as a primary key. However, many
institutions and organizations are moving away from using Social Security numbers as primary keys
because of privacy issues. Instead of using Social Security numbers, many institutions and organiza-
tions use unique student numbers or employee numbers as primary keys.

Database Design Fundamentals

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

NOTE 3

Some institutions prefer to assign values to use as primary keys for items such as customer numbers, part

34 numbers, and student numbers. Others simply let the computer generate the values. In this case, the DBMS
simply assigns the next available value. For example, if the database has already assigned customer num-
bers 1000 through 1436, it assigns the next new customer added to the database the customer num-
ber 1437.

DATABASE DESIGN

This section presents a specific method you can follow to design a database when given a
set of requirements that the database must support. The determination of the require-
ments is part of the process known as systems analysis. A systems analyst interviews users,
examines existing and proposed documents, and examines organizational policies to deter-
mine exactly the type of data needs the database must support. This text does not cover
this analysis. Rather, it focuses on how to take the set of requirements that this process pro-
duces and determine the appropriate database design.

After presenting the database design method, this section presents a sample set of
requirements and illustrates the design method by designing a database to satisfy these
requirements.

Design Method

To design a database for a set of requirements, complete the following steps:

1. Read the requirements, identify the entities (objects) involved, and name the
entities. For example, when the design involves departments and employees,
you might use the entity names DEPARTMENT and EMPLOYEE. When the
design involves customers and sales reps, you might use the entity names
CUSTOMER and REP.

2. Identify the unique identifiers for the entities you identified in Step 1. For
example, when one of the entities is PART, determine what information is
required to uniquely identify each individual part. In other words, what infor-
mation does the organization use to distinguish one part from another? For
a PART entity, the unique identifier for each part might be a PART_NUM,; for
a CUSTOMER entity, the unique identifier might be a CUSTOMER_NUM.
When no unique identifier is available from the data you know about the entity,
you need to create one. For example, you might use a unique number to iden-
tify parts when no part numbers exist.

3. Identify the attributes for all the entities. These attributes become the col-
umns in the tables. It is possible for two or more entities to contain the same
attributes. At Premiere Products, for example, reps and customers both have
addresses, cities, states, and zip codes. To clarify this duplication of attributes,
follow the name of the attribute with the corresponding entity in parentheses.
Thus, ADDRESS (CUSTOMER) is a customer address and ADDRESS (REP)
is a sales rep address.

4. Identify the functional dependencies that exist among the attributes. Ask your-
self the following question: if you know a unique value for an attribute, do you also

Chapter 2

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

know the unique values for other attributes? For example, when you have the

three attributes REP_NUM, LAST_NAME, and FIRST_NAME and you know a

unique value for REP_NUM, do you also know a unique value for LAST NAME 35
and FIRST_NAME? If so, then LAST_NAME and FIRST_NAME are functionally

dependent on REP_NUM (REP_NUM — LAST_NAME, FIRST_NAME).

5. Use the functional dependencies to identify the tables by placing each attribute
with the attribute or minimum combination of attributes on which it is func-
tionally dependent. The attribute or attributes for an entity on which all other
attributes are dependent will be the primary key of the table. The remaining
attributes will be the other columns in the table. Once you have deter-
mined all the columns in the table, you can give the table an appropriate name.
Usually the name will be the same as the name you identified for the entity
in Step 1.

6. Identify any relationships between tables. In some cases, you might be able
to determine the relationships directly from the requirements. It might be
clear, for example, that one rep is related to many customers and that each cus-
tomer is related to exactly one rep. When it is not, look for matching col-
umns in the tables you created. For example, if both the REP table and the
CUSTOMER table contain a REP_NUM column and the values in these col-
umns must match, you know that reps and customers are related. The fact that
the REP_NUM column is the primary key in the REP table tells you that the
REP table is the “one” part of the relationship and the CUSTOMER table is the
“many” part of the relationship.

In the next section, you will apply this process to produce the design for the Pre-
miere Products database using the collection of requirements that this database must
support.

Database Design Requirements

The analyst has interviewed users and examined documents at Premiere Products and has
determined that the database must support the following requirements:

1. For a sales rep, store the sales rep’s number, last name, first name, street
address, city, state, zip code, total commission, and commission rate.

2. For a customer, store the customer’s number, name, street address, city, state,
zip code, balance, and credit limit. In addition, store the number, last name,
and first name of the sales rep who represents this customer. The analyst has
also determined that a sales rep can represent many customers, but a cus-
tomer must have exactly one sales rep (in other words, a sales rep must rep-
resent a customer; a customer cannot be represented by zero or more than
one sales reps).

3. For a part, store the part’s number, description, units on hand, item class, the
number of the warehouse in which the part is located, and the price. All units
of a particular part are stored in the same warehouse.

4. For an order, store the order number, order date, the number and name of the
customer that placed the order, and the number of the sales rep who repre-
sents that customer.

Database Design Fundamentals

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

5. For each line item within an order, store the part number and description, the
number ordered, and the quoted price. The analyst also obtained the follow-
36 ing information concerning orders:

a. There is only one customer per order.

b. On a given order, there is at most one line item for a given part. For
example, part DR93 cannot appear on several lines within the same order.

c. The quoted price might differ from the actual price when the sales rep dis-
counts a certain part on a specific order.

Database Design Process Example

The following steps apply the design process to the requirements for Premiere Products to
produce the appropriate database design:

Step 1: There appear to be four entities: reps, customers, parts, and orders. The names
assigned to these entities are REP, CUSTOMER, PART, and ORDERS, respectively.

Step 2: From the collection of entities, review the data and determine the unique iden-
tifier for each entity. For the REP, CUSTOMER, PART, and ORDERS entities, the unique
identifiers are the rep number, customer number, part number, and order number,
respectively. These unique identifiers are named REP_NUM, CUSTOMER_NUM,
PART_NUM, and ORDER_NUM, respectively.

Step 3: The attributes mentioned in the first requirement all refer to sales reps. The spe-
cific attributes mentioned in the requirement are the sales rep’s number, name, street
address, city, state, zip code, total commission, and commission rate. Assigning appropri-
ate names to these attributes produces the following list:

REP_NUM
LAST_NAME
FIRST_NAME
STREET
CITY

STATE

ZIP
COMMISSION
RATE

The attributes mentioned in the second requirement refer to customers. The specific
attributes are the customer’s number, name, street address, city, state, zip code, bal-
ance, and credit limit. The requirement also mentions the number, first name, and last
name of the sales rep who represents this customer. Assigning appropriate names to
these attributes produces the following list:

CUSTOMER_NUM
CUSTOMER_NAME
STREET

CITY

STATE

ZIP

BALANCE
CREDIT_LIMIT
REP_NUM
LAST_NAME
FIRST_NAME

Chapter 2

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

There are attributes named STREET, CITY, STATE, and ZIP for sales reps as well as
attributes named STREET, CITY, STATE, and ZIP for customers. To distinguish these
attributes in the final collection, follow the name of the attribute by the name of the cor- 37
responding entity. For example, the street for a sales rep is STREET (REP) and the street
for a customer is STREET (CUSTOMER).
The attributes mentioned in the third requirement refer to parts. The specific attributes
are the part’s number, description, units on hand, item class, the number of the ware-
house in which the part is located, and the price. Assigning appropriate names to these
attributes produces the following list:

PART_NUM
DESCRIPTION
ON_HAND
CLASS
WAREHOUSE
PRICE

The attributes mentioned in the fourth requirement refer to orders. The specific
attributes include the order number, order date, number and name of the customer that
placed the order, and number of the sales rep who represents the customer. Assigning
appropriate names to these attributes produces the following list:

ORDER_NUM
ORDER_DATE
CUSTOMER_NUM
CUSTOMER_NAME
REP_NUM

The specific attributes associated with the statement in the requirements concerning
line items are the order number (to determine the order to which the line item corre-
sponds), part number, description, number ordered, and quoted price. If the quoted price
must be the same as the price, you could simply call it PRICE. According to require-
ment 5S¢, however, the quoted price might differ from the price, so you must add the quoted
price to the list. Assigning appropriate names to these attributes produces the following list:

ORDER_NUM
PART_NUM
DESCRIPTION
NUM_ORDERED
QUOTED_PRICE

The complete list grouped by entity is as follows:

REP

REP_NUM
LAST_NAME
FIRST_NAME
STREET (REP)
CITY (REP)
STATE (REP)
ZIP (REP)
COMMISSION
RATE

Database Design Fundamentals

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CUSTOMER
CUSTOMER_NUM
CUSTOMER_NAME
STREET (CUSTOMER)
CITY (CUSTOMER)
STATE (CUSTOMER)
ZIP (CUSTOMER)
BALANCE
CREDIT_LIMIT
REP_NUM
LAST_NAME
FIRST_NAME

38

PART
PART NUM
DESCRIPTION
ON_HAND
CLASS
WAREHOUSE
PRICE

ORDER
ORDER_NUM
ORDER_DATE
CUSTOMER_NUM
CUSTOMER_NAME
REP_NUM

For line items within an order
ORDER_NUM

PART_NUM

DESCRIPTION

NUM__ORDERED

QUOTED_PRICE

Step 4: The fact that the unique identifier for sales reps is the rep number gives the fol-
lowing functional dependencies:

REP_NUM — LAST_NAME, FIRST NAME, STREET (REP), CITY (REP),
STATE (REP), ZIP (REP), COMMISSION, RATE

This notation indicates that the LAST_NAME, FIRST_NAME, STREET (REP), CITY
(REP), STATE (REP), ZIP (REP), COMMISSION, and RATE are all functionally dependent
on REP_NUM.

The fact that the unique identifier for customers is the customer number gives the fol-
lowing functional dependencies:

CUSTOMER_NUM — CUSTOMER_NAME, STREET (CUSTOMER),
CITY (CUSTOMER), STATE (CUSTOMER), ZIP (CUSTOMER),
BALANCE, CREDIT_LIMIT, REP_NUM, LAST_NAME, FIRST_NAME

Chapter 2

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Question: Do you really need to include the last name and first name of a sales rep in the
list of attributes determined by the customer number?

Answer: There is no need to include them in this list, because they both can be deter-
mined from the sales rep number and are already included in the list of attributes deter-
mined by REP_NUM.

39

Thus, the functional dependencies for the CUSTOMER entity are as follows:

CUSTOMER_NUM — CUSTOMER_NAME, STREET (CUSTOMER),
CITY (CUSTOMER), STATE (CUSTOMER), ZIP (CUSTOMER),
BALANCE, CREDIT_LIMIT, REP_NUM

The fact that the unique identifier for parts is the part number gives the following func-
tional dependencies:

PART_NUM — DESCRIPTION, ON_HAND, CLASS, WAREHOUSE, PRICE

The fact that the unique identifier for orders is the order number gives the following
functional dependencies:

ORDER_NUM — ORDER_DATE, CUSTOMER_NUM, CUSTOMER_NAME,
REP_NUM

Question: Do you really need to include the name of a customer and the number of the cus-
tomer’s rep in the list of attributes determined by the order number?

Answer: There is no need to include the customer name and the rep number in this list,
because you can determine them from the customer number and they are already
included in the list of attributes determined by CUSTOMER_NUM.

The functional dependencies for the ORDERS entity are as follows:
ORDER_NUM —» ORDER_DATE, CUSTOMER_NUM

The final attributes to be examined are those associated with the line items within the
order: PART_NUM, DESCRIPTION, NUM_ORDERED, and QUOTED_PRICE.

Database Design Fundamentals

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

i° Question: Why aren’t NUM_ORDERED and QUOTED_PRICE included in the list of
attributes determined by the order number?
Answer: To uniquely identify a particular value for NUM_ORDERED or QUOTED_PRICE,
ORDER_NUM alone is not sufficient. It requires the combination of ORDER_NUM and
PART_NUM.

The following shorthand representation indicates that the combination of ORDER_NUM
and PART_NUM functionally determines NUM_ORDERED and QUOTED_PRICE:
ORDER_NUM, PART_NUM —» NUM_ORDERED, QUOTED_PRICE

Question: Does DESCRIPTION need to be included in this list?
Answer: No, because DESCRIPTION can be determined by the PART_NUMBER alone, and
it already appears in the list of attributes dependent on the PART_NUM.

The complete list of functional dependencies is as follows:

REP_NUM — LAST_NAME, FIRST_NAME, STREET (REP), CITY (REP),
STATE (REP), ZIP(REP), COMMISSION, RATE

CUSTOMER_NUM —s CUSTOMER_NAME, STREET (CUSTOMER),
CITY (CUSTOMER), STATE (CUSTOMER), ZIP (CUSTOMER),
BALANCE, CREDIT_LIMIT, REP_NUM

PART_NUM —> DESCRIPTION, ON_HAND, CLASS, WAREHOUSE, PRICE

ORDER_NUM —s ORDER_DATE, CUSTOMER_NUM

ORDER_NUM, PART NUM —» NUM_ORDERED, QUOTED_PRICE

Step 5: Using the functional dependencies, you can create tables with the attribute(s)
to the left of the arrow being the primary key and the items to the right of the arrow being
the other columns. For relations corresponding to those entities identified in Step 1, you can
use the name you already determined. Because you did not identify any entity that had a
unique identifier that was the combination of ORDER_NUM and PART_NUM, you need
to assign a name to the table whose primary key consists of these two columns. Because
this table represents the individual lines within an order, the name ORDER_LINE is a good
choice. The final collection of tables is as follows:

REP (REP_NUM, LAST_NAME, FIRST_NAME, STREET,
CITY, STATE, ZIP, COMMISSION, RATE)
CUSTOMER (CUSTOMER_NUM, CUSTOMER NAME, STREET,

CITY, STATE, ZIP, BALANCE, CREDIT_LIMIT,
REP_NUM)
PART (PART_NUM, DESCRIPTION, ON_HAND, CLASS,
WAREHOUSE, PRICE)
ORDERS (ORDER_NUM, ORDER_DATE, CUSTOMER_NUM)
ORDER_LINE (ORDER_NUM, PART_NUM, NUM_ORDERED,
QUOTED_PRICE)
Chapter 2

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Step 6: Examining the tables and identifying common columns gives the following list
of relationships between the tables:

e The CUSTOMER and REP tables are related using the REP_NUM columns. 4
Because the REP_NUM column is the primary key for the REP table, this indi-
cates a one-to-many relationship between REP and CUSTOMER (one rep to
many customers).

e The ORDERS and CUSTOMER tables are related using the CUSTOMER_NUM
columns. Because the CUSTOMER_NUM column is the primary key for the
CUSTOMER table, this indicates a one-to-many relationship between
CUSTOMER and ORDERS (one customer to many orders).

e The ORDER_LINE and ORDERS tables are related using the ORDER_NUM
columns. Because the ORDER_NUM column is the primary key for the
ORDERS table, this indicates a one-to-many relationship between ORDERS
and ORDER_LINE (one order to many order lines).

e The ORDER_LINE and PART tables are related using the PART_NUM columns.
Because the PART_NUM column is the primary key for the PART table, this
indicates a one-to-many relationship between PART and ORDER_LINE (one
part to many order lines).

NORMALIZATION

After creating the database design, you must analyze it to make sure it is free of potential
problems. To do so, you follow a process called normalization, in which you identify the
existence of potential problems, such as data duplication and redundancy, and implement
ways to correct these problems.

The goal of normalization is to convert unnormalized relations (tables that satisfy the
definition of a relation except that they might contain repeating groups) into various types
of normal forms. A table in a particular normal form possesses a certain desirable col-
lection of properties. Although there are several normal forms, the most common are first
normal form, second normal form, and third normal form. Normalization is a process in
which a table that is in first normal form is better than a table that is not in first normal form,
a table that is in second normal form is better than one that is in first normal form, and
so on. The goal of this process is to allow you to take a table or collection of tables and pro-
duce a new collection of tables that represents the same information but is free of
problems.

First Normal Form

According to the definition of a relation, a relation (table) cannot contain a repeating group
in which multiple entries exist on a single row. However, in the database design process,
you might create a table that has all the other properties of a relation, but contains a repeat-
ing group. Removing repeating groups is the starting point when converting an unnormal-
ized collection of data into a table that is in first normal form. A table (relation) is in first
normal form (1NF) when it does not contain a repeating group.

Database Design Fundamentals

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

For example, in the design process you might create the following ORDERS table, in
which there is a repeating group consisting of PART_NUM and NUM_ORDERED. The nota-
42 tion for this table is as follows:

ORDERS (ORDER_NUM, ORDER_DATE, (PART_NUM, NUM_ORDERED))

This notation describes a table named ORDERS that consists of a primary key,
ORDER_NUM, and a column named ORDER_DATE. The inner parentheses indicate a repeat-
ing group that contains two columns, PART_NUM and NUM_ORDERED. This table contains
one row per order with values in the PART_NUM and NUM_ORDERED columns for each order
with the number ORDER_NUM and placed on ORDER_DATE. Figure 2-7 shows a single order
with multiple combinations of a part number and a corresponding number of units ordered.

ORDERS

ORDER_ ORDER_ PART_ NUM_
NUM DATE NUM ORDERED
21608 10/20/2010 | AT94 11
21610 10/20/2010 | DR93 1

DW11 1
21613 10/21/2010 | KL62 4
21614 10/21/2010 | KT03 2
21617 10/23/2010 | BVO6 2

CD52 4
21619 10/23/2010 | DR93 1
21623 10/23/2010 | KV29 2

FIGURE 2-7 Unnormalized order data

To convert the table to first normal form, you remove the repeating group as follows:

ORDERS (ORDER_NUM, ORDER_DATE, PART_NUM, NUM_ORDERED)

Chapter 2

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Figure 2-8 shows the table in first normal form.

ORDERS 9
ORDER_ ORDER_ PART_ NUM_
NUM DATE NUM ORDERED
21608 10/20/2010 | AT94 11
21610 10/20/2010 | DR93 1
21610 10/20/2010 | DW11 1
21613 10/21/2010 | KL62 4
21614 10/21/2010 | KT03 2
21617 10/23/2010 | BVO6 2
21617 10/23/2010 | CD52 4
21619 10/23/2010 | DR93 1
21623 10/23/2010 | KV29 2

FIGURE 2-8 Order data converted to first normal form

In Figure 2-7, the second row indicates that part DR93 and part DW11 are both included
in order 21610. In Figure 2-8, this information is represented by two rows, the second and
third. The primary key for the unnormalized ORDERS table was the ORDER_NUM col-
umn alone. The primary key for the normalized table is now the combination of the
ORDER_NUM and PART_NUM columns.

When you convert an unnormalized table to a table in first normal form, the primary
key of the table in first normal form is usually the primary key of the unnormalized table
concatenated with the key for the repeating group, which is the column in the repeating
group that distinguishes one occurrence of the repeating group from another within a
given row in the table. In the ORDERS table, PART_NUM was the key to the repeating group
and ORDER_NUM was the primary key for the table. When converting the unnormalized
data to first normal form, the primary key becomes the concatenation of the ORDER_NUM
and PART_NUM columns.

Second Normal Form

The following ORDERS table is in first normal form, because it does not contain a repeat-
ing group:

ORDERS (ORDER_NUM, ORDER_DATE, PART_NUM, DESCRIPTION,
NUM_ORDERED, QUOTED_PRICE)

The table contains the following functional dependencies:

ORDER_NUM — ORDER_DATE
PART_NUM — DESCRIPTION
ORDER_NUM, PART_NUM — NUM_ORDERED, QUOTED_PRICE

Database Design Fundamentals

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

This notation indicates that ORDER_NUM alone determines ORDER_DATE, and
PART_NUM alone determines DESCRIPTION, but it requires both an ORDER_NUM and a
44 PART_NUM to determine either NUM_ORDERED or QUOTED_PRICE. Consider the
sample of this table shown in Figure 2-9.

ORDERS

ORDER_ DESCRIPTION NUM_ QUOTED_

DATE ORDERED PRICE
21608 10/20/2010 | AT94 | Iron 11 $21.95
21610 10/20/2010 | DR93 | Gas Range 1 $495.00
21610 10/20/2010 | DW11 | Washer 1 $399.99
21613 10/21/2010 | KL62 | Dryer 4 $329.95
21614 10/21/2010 | KT03 | Dishwasher 2 $595.00
21617 10/23/2010 | BVO6 | Home Gym 2 $12.95
21617 10/23/2010 | CD52 | Microwave Oven 4 $150.00
21619 10/23/2010 | DR93 | Gas Range 1 $495.00
21623 10/23/2010 | KV29 | Treadmill 2 $325.99

FIGURE 2-9 Sample ORDERS table

Although the ORDERS table is in first normal form (because it contains no repeating
groups), problems exist within the table that require you to restructure it.

The description of a specific part, DR93 for example, occurs twice in the table. This
duplication (formally called redundancy) causes several problems. It is certainly wasteful
of space, but that is not nearly as serious as some of the other problems. These other prob-
lems are called update anomalies and they fall into four categories:

1.

Chapter 2

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Updates: If you need to change to the description of part DR93, you must
change it twice—once in each row on which part DR93 appears. Updating the
part description more than once makes the update process much more cum-
bersome and time consuming.

Inconsistent data: There is nothing about the design that prohibits part DR93
from having two different descriptions in the database. In fact, if part DR93
occurs on 20 rows in the table, it is possible for this part to have 20 different
descriptions in the database.

Additions: When you try to add a new part and its description to the database,
you will face a real problem. Because the primary key for the ORDERS table con-
sists of both an ORDER_NUM and a PART_NUM, you need values for both of these
columns to add a new row to the table. If you add a part to the table that does
not yet have any orders, what do you use for an ORDER_NUM? The only solu-
tion is to create a dummy ORDER_NUM and then replace

it with a real ORDER_NUM once an order for this part is actually received. Cer-
tainly this is not an acceptable solution.
4. Deletions: If you delete order 21608 from the database and it is the only order 45
that contains part AT94, deleting the order also deletes all information about
part AT94. For example, you would no longer know that part AT94 is an iron.

These problems occur because you have a column, DESCRIPTION, that is dependent
on only a portion of the primary key, PART_NUM, and not on the complete primary key.
This situation leads to the definition of second normal form. Second normal form repre-
sents an improvement over first normal form because it eliminates update anomalies in
these situations. A table (relation) is in second normal form (2NF) when it is in first
normal form and no nonkey column (that is, a column that is not part of the primary key)
is dependent on only a portion of the primary key.

NOTE -———————

When the primary key of a table contains only a single column, the table is automatically in second nor-
mal form.

You can identify the fundamental problem with the ORDERS table: it is not in second
normal form. Although it is important to identify the problem, what you really need is a
method to correct it; you want to be able to convert tables to second normal form. First, take
each subset of the set of columns that make up the primary key, and begin a new table with
this subset as its primary key. For the ORDERS table, the new design is:

(ORDER_NUM,

(PART_NUM,
(ORDER_NUM, PART_NUM,

Next, place each of the other columns with the appropriate primary key; that is, place
each one with the minimal collection of columns on which it depends. For the ORDERS
table, add the new columns as follows:

(ORDER_NUM, ORDER_DATE)
(PART_NUM, DESCRIPTION)
(ORDER_NUM, PART _NUM, NUM_ORDERED, QUOTED_PRICE)

Each of these new tables is given a descriptive name based on the meaning and con-
tents of the table, such as ORDERS, PART, and ORDER_LINE. Figure 2-10 shows samples of
these tables.

Database Design Fundamentals

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

ORDERS

ORDER_ ORDER_ PART_ DESCRIPTION NUM_ QUOTED_
46 NUM DATE NUM ORDERED PRICE
21608 |10/20/2010 | AT94 |Iron 11 $21.95
21610 |10/20/2010 | DR93 | Gas Range 1| $495.00
21610 |10/20/2010 | DW11 | Washer 1| $399.99
21613 |10/21/2010 | KL62 | Dryer 4| $329.95
21614 |10/21/2010 | KT03 | Dishwasher 2| $595.00
21617 |10/23/2010 | BVO6 | Home Gym 2 $12.95
21617 |10/23/2010 | CD52 | Microwave Oven 4| $150.00
21619 |10/23/2010 | DR93 | Gas Range 1| $495.00
21623 [10/23/2010 [KV29 | Treadmill 2| $325.99
) 4 v v
ORDERS PART ORDER_LINE
ORDER_ ORDER_ ORDER_ PART_ NUM_ QUOTED_
NUM DATE NUM NUM NUM ORDERED PRICE
21608 | 10/20/2010 AT94 | Iron 21608 AT94 11 $21.95
21610 | 10/20/2010 BV06 | Home Gym 21610 DR93 1| $495.00
21613 10/21/2010 CD52 | Microwave Oven 21610 DW11 1| $399.99
21614 |10/21/2010 DL71 | Cordless Drill 21613 KL62 4| $329.95
21617 | 10/23/2010 DR93 | Gas Range 21614 KT03 2] $595.00
21619 | 10/23/2010 DW11 | Washer 21617 BV06 2 $12.95
21623 10/23/2010 FD21 | Stand Mixer 21617 CD52 4| $150.00
KL62 | Dryer 21619 DR93 1 $495.00
KT03 | Dishwasher 21623 KV29 2 $325.99
KV29 Treadmill

FIGURE 2-10 ORDERS table converted to second normal form

Chapter 2

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

In Figure 2-10, converting the original ORDERS table to a new ORDERS table, a PART
table, and an ORDER_LINE table eliminates the update anomalies. A description appears
only once for each part, so you do not have the redundancy that existed in the original 47
table design. Changing the description of part DR93 from Gas Range to Deluxe Range, for
example, is now a simple process involving a single change. Because the description for a
part occurs in a single place, it is not possible to have multiple descriptions for a single part
in the database at the same time.

To add a new part and its description, you create a new row in the PART table, regard-
less of whether that part has pending or actual orders. Also, deleting order 21608 does not
delete part number AT94 from the database because it still exists in the PART table.
Finally, you have not lost any information by converting the ORDERS table to second nor-
mal form. You can reconstruct the data in the original table from the data in the new tables.

Third Normal Form

Problems can still exist with tables that are in second normal form. For example, suppose
that you create the following CUSTOMER table:

CUSTOMER (CUSTOMER_NUM, CUSTOMER_NAME, BALANCE, CREDIT_LIMIT,
REP_NUM, LAST_NAME, FIRST_NAME)

This table has the following functional dependencies:

CUSTOMER_NUM — CUSTOMER_NAME, BALANCE, CREDIT_LIMIT,
REP_NUM, LAST_NAME, FIRST_NAME
REP_NUM — LAST_NAME, FIRST_ NAME

CUSTOMER_NUM determines all the other columns. In addition, REP_NUM deter-
mines LAST_NAME and FIRST_NAME.

When a table’s primary key is a single column, the table is automatically in second nor-
mal form. (If the table were not in second normal form, some column would be depen-
dent on only a portion of the primary key, which is impossible when the primary key is just
one column.) Thus, the CUSTOMER table is in second normal form.

Although this table is in second normal form, Figure 2-11 shows that it still possesses
update problems similar to those identified for the ORDERS table shown in Figure 2-9. In
Figure 2-11, the sales rep name occurs many times in the table.

Database Design Fundamentals

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CUSTOMER

48 CUSTOMER_ CUSTOMER_NAME BALANCE CREDIT_ REP_ FIRST_
IN[]Y] LIMIT NUM NAME
148 Al's Appliance and Sport $6,550.00 | $7,500.00 20 | Kaiser | Valerie
282 Brookings Direct $431.50 | $10,000.00 35 | Hull Richard
356 Ferguson’s $5,785.00| $7,500.00 65 | Perez |Juan
408 The Everything Shop $5,285.25| $5,000.00 35 |Hull | Richard
462 Bargains Galore $3,412.00 | $10,000.00 65 | Perez |Juan
524 Kline'’s $12,762.00 | $15,000.00 20 | Kaiser | Valerie
608 Johnson’s Department Store| $2,106.00 | $10,000.00 65 | Perez |Juan
687 Lee’s Sport and Appliance $2,851.00 | $5,000.00 35 |Hull | Richard
725 Deerfield’s Four Seasons $248.00 | $7,500.00 35 | Hull Richard
842 All Season $8,221.00| $7,500.00 20 | Kaiser | Valerie

FIGURE 2-11 Sample CUSTOMER table

The redundancy of including a sales rep number and name in the CUSTOMER table
results in the same set of problems that existed for the ORDERS table. In addition to the
problem of wasted space, you have the following update anomalies:

1. Updates: Changing the sales rep name requires changes to multiple rows in
the table.

2. Inconsistent data: The design does not prohibit multiple iterations of sales rep
names in the database. For example, a sales rep might represent 20 custom-
ers and his name might be entered 20 different ways in the table.

3. Additions: To add sales rep 87 (Emily Daniels) to the database, she must rep-
resent at least one customer. If Emily does not yet represent any customers,
you either cannot record the fact that her name is Emily Daniels or you must
create a fictitious customer for her to represent until she represents an actual
customer. Neither of these solutions is desirable.

4. Deletions: If you delete all the customers of sales rep 35 from the database,
you will also lose all information about sales rep 35.

These update anomalies are due to the fact that REP_NUM determines LAST_NAME
and FIRST_NAME, but REP_NUM is not the primary key. As a result, the same REP_NUM
and consequently the same LAST_NAME and FIRST_NAME can appear on many
different rows.

You have seen that tables in second normal form represent an improvement over tables
in first normal form, but to eliminate problems with tables in second normal form, you
need an even better strategy for creating tables. Third normal form provides that strategy.

Chapter 2

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Before looking at third normal form, however, you need to become familiar with the spe-
cial name that is given to any column that determines another column (like REP_NUM in the
CUSTOMER table). Any column (or collection of columns) that determines another col- 49
umn is called a determinant. A table’s primary key is a determinant. In fact, by defini-
tion, any candidate key is a determinant. (Remember that a candidate key is a column or
collection of columns that could function as the primary key.) In Figure 2-11, REP_NUM is
a determinant, but it is not a candidate key, and that is the problem.

A table is in third normal form (3NF) when it is in second normal form and the only
determinants it contains are candidate keys.

NOTE]

This text’s definition of third normal form is not the original definition. This more recent definition, which
is preferable to the original, is often referred to as Boyce-Codd normal form (BCNF) when it is impor-
tant to make a distinction between this definition and the original definition. This text does not make such
a distinction but will take this to be the definition of third normal form.

Now you have identified the problem with the CUSTOMER table: it is not in third nor-
mal form. There are several steps for converting tables to third normal form.

First, for each determinant that is not a candidate key, remove from the table the col-
umns that depend on this determinant (but do not remove the determinant). Next, cre-
ate a new table containing all the columns from the original table that depend on this
determinant. Finally, make the determinant the primary key of this new table.

In the CUSTOMER table, for example, remove LAST_NAME and FIRST_NAME because
they depend on the determinant REP_NUM, which is not a candidate key. A new table is
formed, consisting of REP_NUM as the primary key, and the columns LAST_NAME and
FIRST_NAME, as follows:

CUSTOMER (CUSTOMER_NUM, CUSTOMER_NAME, BALANCE,
CREDIT_LIMIT, REP_NUM)

and

REP (REP_NUM, LAST NAME, FIRST_ NAME)

Figure 2-12 shows the original CUSTOMER table and the tables created when convert-
ing the original table to third normal form.

Database Design Fundamentals

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

CUSTOMER

CUSTOMER_ CUSTOMER_NAME BALANCE CREDIT_ REP_ FIRST_
50 NUM LIMIT NUM NAME
148 Al's Appliance and Sport $6,550.00 | $7,500.00 20 | Kaiser | Valerie
282 Brookings Direct $431.50 | $10,000.00 35 | Hull Richard
356 Ferguson’s $5,785.00 | $7,500.00 65 | Perez | Juan
408 The Everything Shop $5,285.25 | $5,000.00 35 | Hull Richard
462 Bargains Galore $3,412.00 | $10,000.00 65 | Perez | Juan
524 Kline’s $12,762.00 | $15,000.00 20 | Kaiser | Valerie
608 Johnson’s Department Store | $2,106.00 | $10,000.00 65 | Perez | Juan
687 Lee’s Sport and Appliance $2,851.00 | $5,000.00 35 | Hull Richard
725 Deerfield’s Four Seasons $248.00 | $7,500.00 35 | Hull Richard
842 All Season $8,221.00 | $7,500.00 20 | Kaiser | Valerie
v
CUSTOMER
CUSTOMER_ CUSTOMER_NAME BALANCE CREDIT_LIMIT REP_NUM
NUM
148 Al's Appliance and Sport $6,550.00 $7,500.00 | 20
282 Brookings Direct $431.50 $10,000.00 | 35
356 Ferguson’s $5,785.00 $7,500.00 | 65
408 The Everything Shop $5,285.25 $5,000.00 | 35
462 Bargains Galore $3,412.00 $10,000.00 | 65
524 Klines $12,762.00 $15,000.00 | 20
608 Johnson’s Department Store | $2,106.00 $10,000.00 | 65
687 Lee’s Sport and Appliance $2,851.00 $5,000.00 | 35
725 Deerfield’s Four Seasons $248.00 $7,500.00 | 35
842 All Season $8,221.00 $7,500.00 | 20
Y
REP
20 Kaiser Valerie
85! Hull Richard
65 Perez Juan

FIGURE 2-12 CUSTOMER table converted to third normal form

Chapter 2

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Has this new design for the CUSTOMER table corrected all of the previously identi-
fied problems? A sales rep’s name appears only once, thus avoiding redundancy and sim-
plifying the process of changing a sales rep’s name. This design prohibits a sales rep from 51
having different names in the database. To add a new sales rep to the database, you add a
row to the REP table; it is not necessary for a new rep to represent a customer. Finally,
deleting all customers of a given sales rep will not remove the sales rep’s record from the REP
table, retaining the sales rep’s name in the database. You can reconstruct all the data in the
original table from the data in the new collection of tables. All previously mentioned
problems have indeed been solved.

Question: Convert the following table to third normal form. In this table, STUDENT_NUM
determines STUDENT_NAME, NUM_CREDITS, ADVISOR_NUM, and ADVISOR_NAME.
ADVISOR_NUM determines ADVISOR_NAME. COURSE_NUM determines DESCRIPTION.
The combination of a STUDENT_NUM and a COURSE_NUM determines GRADE.
STUDENT (STUDENT NUM, STUDENT_NAME, NUM_CREDITS,

ADVISOR_NUM, ADVISOR_NAME, (COURSE_NUM, DESCRIPTION,

GRADE))
Answer: Complete the following steps:

Step 1. Remove the repeating group to convert the table to first normal form, as
follows:

STUDENT (STUDENT NUM, STUDENT NAME, NUM_CREDITS,
ADVISOR_NUM, ADVISOR_NAME, COURSE_NUM, DESCRIPTION,
GRADE)

The STUDENT table is now in first normal form because it has no repeating groups.
It is not, however, in second normal form because STUDENT_NAME is dependent only on
STUDENT_NUM, which is only a portion of the primary key.

Step 2. Convert the STUDENT table to second normal form. First, for each subset of
the primary key, start a table with that subset as its key yielding the following:

(STUDENT_NUM,
(COURSE_NUM,
(STUDENT_NUM, COURSE_NUM,

Next, place the rest of the columns with the smallest collection of columns on which
they depend, as follows:

(STUDENT_NUM, STUDENT_NAME, NUM_CREDITS, ADVISOR_NUM,
ADVISOR_NAME)

(COURSE_NUM, DESCRIPTION)

(STUDENT_NUM, COURSE_NUM, GRADE)

Finally, assign names to each of the new tables:

STUDENT (STUDENT NUM, STUDENT_ NAME, NUM_CREDITS,
ADVISOR_NUM, ADVISOR_NAME)

COURSE (COURSE_NUM, DESCRIPTION)

STUDENT_COURSE (STUDENT_NUM, COURSE_NUM, GRADE)

These tables are all now in second normal form, and the COURSE and
STUDENT_COURSE tables are also in third normal form. The STUDENT table is not in
third normal form, however, because it contains a determinant (ADVISOR_NUM) that is
not a candidate key.

continued

Database Design Fundamentals

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Step 3: Convert the STUDENT table to third normal form by removing the column
52 that depends on the determinant ADVISOR_NUM and placing it in a separate table, as
follows:

(STUDENT_NUM, STUDENT NAME, NUM_CREDITS, ADVISOR_NUM)

(ADVISOR_NUM, ADVISOR_NAME)

Step 4: Name the tables and put the entire collection together, as follows:
STUDENT (STUDENT NUM, STUDENT NAME, NUM_CREDITS,
ADVISOR_NUM)

ADVISOR (ADVISOR_NUM, ADVISOR NAME)

COURSE (COURSE_NUM, DESCRIPTION)

STUDENT COURSE (STUDENT NUM, COURSE_NUM, GRADE)

DIAGRAMS FOR DATABASE DESIGN

For many people, an illustration of a database’s structure is quite useful. A popular type of
illustration used to represent the structure of a database is the entity-relationship (E-R)
diagram. In an E-R diagram, a rectangle represents an entity (table). One-to-many relation-
ships between entities are drawn as lines between the corresponding rectangles.

Several different styles of E-R diagrams are used to diagram a database design. In the
version shown in Figure 2-13, an arrowhead indicates the “many” side of the relation-
ship between tables. In the relationship between the REP and CUSTOMER tables, for
example, the arrow points from the REP table to the CUSTOMER table, indicating that
one sales rep is related to many customers. The ORDER_LINE table has two one-to-many
relationships, as indicated by the line from the ORDERS table to the ORDER_LINE table
and the line from the PART table to the ORDER_LINE table.

Rectangle
REP represents an
tit
ey Arrow represents
a one-to-many
relationship
CUSTOMER
Arrowhead points
to the “many” part of
the relationship
ORDERS ORDER_LINE PART

FIGURE 2-13 E-R diagram for the Premiere Products database with rectangles and arrows

Chapter 2

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

NOTE 1

In this style of E-R diagram, you can put the rectangles in any position to represent the entities and
relationships. The important thing is that the arrows connect the appropriate rectangles. 53

Another style of E-R diagram is to represent the “many” side of a relationship between
tables with a crow’s foot, as shown in Figure 2-14.

REP
Crow's foot
represents the “many”
part of the relationship
CUSTOMER
ORDERS ORDER_LINE PART

FIGURE 2-14 E-R diagram for the Premiere Products database with a crow’s foot

The E-R diagram shown in Figure 2-15 represents the original style of E-R diagrams. In
this style, relationships are indicated in diamonds that describe the relationship. The relation-
ship between the REP and CUSTOMER tables, for example, is named REPRESENTS, reflect-
ing the fact that a sales rep represents a customer. The relationship between the CUSTOMER
and ORDERS table is named PLACED, reflecting the fact that customers place orders. The
relationship between the ORDERS and ORDER_LINE tables is named CONTAINS, reflecting
the fact that an order contains order lines. The relationship between the PART and
ORDER_LINE tables is named IS_ON, reflecting the fact that a given part is on many orders.
In this style of E-R diagram, the number 1 indicates the “one” side of the relationship and the
letter “n” represents the “many” side of the relationship.

Database Design Fundamentals

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

REP

54 “One” part of

a relationship

Diamond represents

REPRESENTS and describes a

relationship

“Many"” part of
a relationship

CUSTOMER

PLACED

ORDERS ORDER_LINE PART

FIGURE 2-15 E-R diagram for the Premiere Products database with named relationships

Chapter 2

Chapter Summary

An entity is a person, place, thing, or event. An attribute is a property of an entity. A rela-
tionship is an association between entities.

A relation is a two-dimensional table in which the entries in the table contain only single
values, each column has a distinct name, all values in a column match this name, the
order of the rows and columns is immaterial, and each row contains unique values. A rela-
tional database is a collection of relations.

Column B is functionally dependent on another column, A (or possibly a collection of col-
umns), when a value for A determines a single value for B at any one time.

Column A (or a collection of columns) is the primary key for a relation (table), R, if all col-
umns in R are functionally dependent on A and no subcollection of the columns in A (assum-
ing A is a collection of columns and not just a single column) also has property 1.

To design a database to satisfy a particular set of requirements, first read through the
requirements and identify the entities (objects) involved. Give names to the entities and
identify the unique identifiers for these entities. Next, identify the attributes for all the
entities and the functional dependencies that exist among the attributes, and then use the
functional dependencies to identify the tables and columns. Finally, identify any relation-
ships between tables by looking at matching columns.

A table (relation) is in first normal form (1NF) when it does not contain a repeating group.
To convert an unnormalized table to first normal form, remove the repeating group and
expand the primary key to include the original primary key along with the key to the
repeating group.

A table (relation) is in second normal form (2NF) when it is in first normal form and no non-
key column (that is, a column that is not part of the primary key) is dependent on only
a portion of the primary key. To convert a table in first normal form to a collection of tables
in second normal form, take each subset of the set of columns that make up the pri-
mary key, and begin a new table with this subset as its primary key. Next, place each of
the other columns with the appropriate primary key; that is, place each one with the mini-
mal collection of columns on which it depends. Finally, give each of these new tables

a name that is descriptive of the meaning and contents of the table.

A table is in third normal form (3NF) when it is in second normal form and the only deter-
minants (columns on which at least one other column depends) it contains are candi-
date keys (columns that could function as the primary key). To convert a table in second
normal form to a collection of tables in third normal form, first, for each determinant that
is not a candidate key, remove from the table the columns that depend on this deter-
minant (but don’t remove the determinant). Next, create a new table containing all the col-
umns from the original table that depend on this determinant. Finally, make the
determinant the primary key of this new table.

An entity-relationship (E-R) diagram is an illustration that represents the design of a
database. There are several common styles of illustrating database design that use
shapes to represent entities and connectors to illustrate the relationships between those
entities.

55

Database Design Fundamentals

56

Chapter 2

Key Terms

attribute

Boyce-Codd normal form (BCNF)
candidate key

concatenation

database design

determinant

entity

entity-relationship (E-R) diagram
field

first normal form (1NF)
functionally dependent
functionally determine

nonkey column

normal form

normalization

Review Questions

one-to-many relationship
primary key

qualify

record

redundancy

relation

relational database
relationship

repeating group

second normal form (2NF)
third normal form (3NF)
tuple

unnormalized relation
update anomaly

What is an entity?
What is an attribute?

What is a repeating group?
What is a relation?

N o o b=

What is a relational database?

What is a relationship? What is a one-to-many relationship?

Describe the shorthand representation of the structure of a relational database. lllustrate

this technique by representing the database for Henry Books as shown in Figures 1-4

through 1-7 in Chapter 1.

How do you qualify the name of a field, and when do you need to do this?

What does it mean for a column to be functionally dependent on another column?

10. What is a primary key? What is the primary key for each of the tables in the Henry Books

database shown in Chapter 1?

11. A database at a college must support the following requirements:

a. For a department, store its number and name.

b. Foran advisor, store his or her number, last name, first name, and the department num-

ber to which the advisor is assigned.

For a course, store its code and description (for example, MTH110, Algebra).

For a student, store his or her number, first name, and last name. For each course the
student takes, store the course code, the course description, and the grade earned.

Also, store the number and name of the student’s advisor. Assume that an advisor might
advise any number of students but that each student has just one advisor.

Design the database for the preceding set of requirements. Use your own experience as
a student to determine any functional dependencies. List the tables, columns, and
relationships. In addition, represent your design with an E-R diagram.

57

12. Define first normal form.

13. Define second normal form. What types of problems might you encounter using tables that
are not in second normal form?

14. Define third normal form. What types of problems might you encounter using tables that are
not in third normal form?

15. Using the functional dependencies you determined in Question 11, convert the following
table to an equivalent collection of tables that are in third normal form.

STUDENT (STUDENT_NUM, STUDENT_LAST_NAME, STUDENT_FIRST NAME,
ADVISOR_NUM, ADVISOR_LAST_NAME, ADVISOR_FIRST_NAME,
(COURSE_CODE, DESCRIPTION, GRADE))

Exercises

Premiere Products

Answer each of the following questions using the Premiere Products data shown in Figure 2-1.
No computer work is required.

1. Indicate the changes (using the shorthand representation) that you would need to make to
the original Premiere Products database design (see Figure 2-1) to support the following
requirements. A customer is not necessarily represented by a single sales rep, but can be
represented by several sales reps. When a customer places an order, the sales rep who
gets the commission on the order must be in the collection of sales reps who represent the
customer.

2. Indicate the changes (using the shorthand representation) that you would need to make to
the original Premiere Products database design to support the following requirements. There
is no relationship between customers and sales reps. When a customer places an order,
any sales rep can process the order. On the order, you need to identify both the customer
placing the order and the sales rep responsible for the order. Draw an E-R diagram for the
new design.

3. Indicate the changes (using the shorthand representation) that you would need to make to
the original Premiere Products database design in the event that the original Requirement
3 is changed as follows. For a part, store the part’s number, description, item class, and
price. In addition, for each warehouse in which the part is located, store the number of the
warehouse, the description of the warehouse, and the number of units of the part stored in
the warehouse. Draw an E-R diagram for the new design.

Database Design Fundamentals

58

Using your knowledge of Premiere Products, determine the functional dependencies that
exist in the following table. After determining the functional dependencies, convert this table
to an equivalent collection of tables that are in third normal form.

PART (PART_NUM, DESCRIPTION, ON_HAND, CLASS, WAREHOUSE,
PRICE, (ORDER_NUM, ORDER_DATE, CUSTOMER_NUM,
CUSTOMER_NAME, NUM_ORDERED, QUOTED_PRICE))

Henry Books

Answer each of the following questions using the Henry Books data shown in Figures 1-4 through
1-7 in Chapter 1. No computer work is required.

1.

Ray Henry is considering expanding the activities at his book stores to include movies. He
has some ideas for how he wants to do this and he needs you to help with database design
activities to address these ideas. In particular, he would like you to design a database for
him. He is interested in movies and wants to store information about movies, stars, and direc-
tors in a database. He needs to be able to satisfy the following requirements:

a. For each director, list his or her number, name, the year he or she was born, and the
year of death if he or she is deceased.

b. For each movie, list its number, title, the year the movie was made, and its type.

c. For each movie, list its number, title, the number and name of its director, the critics’ rat-
ing, the MPAA rating, the number of awards for which the movie was nominated, and
the number of awards the movie won.

d. For each movie star, list his or her number, name, birthplace, the year he or she was
born, and the year of death if he or she is deceased.

e. Foreach movie, list its number and title, along with the number and name of all the stars
who appear in it.

f. For each movie star, list his or her number and name, along with the number and name
of all the movies in which he or she stars.

List the tables, columns, and relationships. In addition, represent your design with an E-R
diagram.

Determine the functional dependencies that exist in the following table, and then convert
this table to an equivalent collection of tables that are in third normal form.
BOOK (BOOK_CODE, TITLE, TYPE, PRICE (AUTHOR_NUM,
AUTHOR_LAST, AUTHOR_FIRST))
Determine the functional dependencies that exist in the following table, and then convert
this table to an equivalent collection of tables that are in third normal form.

BOOK (BOOK_CODE, TITLE, TYPE, PRICE, PUB_CODE,
PUBLISHER_NAME, CITY)

Alexamara Marina Group

Answer each of the following questions using the Alexamara Marina Group data shown in
Figures 1-8 through 1-12 in Chapter 1. No computer work is required.

1.

Chapter 2

Design a database that can satisfy the following requirements:
a. For each marina, list the number, name, address, city, state, and zip code.

b. For each boat owner, list the number, last name, first name, address, city, state, and

Zip code.

c. For each marina, list all the slips in the marina. For each slip, list the length of the slip, 59

annual rental fee, name and type of the boat occupying the slip, and boat owner’s num-
ber, last name, and first name.

d. For each possible service category, list the category number and description. In addi-
tion, for each service request in a category, list the marina number and slip number for
the boat receiving the service, estimated hours for the service, hours already spent on
the service, and next date that is scheduled for the particular service.

e. For each service request, list the marina number, slip number, category description,
description of the particular service, and a description of the current status of the
service.

List the tables, columns, and relationships. In addition, represent your design with an E-R
diagram.

Determine the functional dependencies that exist in the following table, and then convert
this table to an equivalent collection of tables that are in third normal form.

MARINA (MARINA_NUM, NAME, (SLIP_NUM, LENGTH, RENTAL_FEE,
BOAT_NAME))

Determine the functional dependencies that exist in the following table, and then convert
this table to an equivalent collection of tables that are in third normal form.

MARINA_SLIP (SLIP_ID, MARINA_NUM, SLIP_NUM, LENGTH, RENTAL_FEE,
BOAT_NAME, BOAT_TYPE, OWNER_NUM, LAST_NAME,
FIRST_NAME)

Database Design Fundamentals

APPENDIX

ANSWERS TO
ODD-NUMBERED
REVIEW QUESTIONS

This page contains answers for this chapter only.

CHAPTER 2—DATABASE DESIGN
FUNDAMENTALS

1. An entity is a person, place, thing, or event.

3. A relationship is an association between tables (entities). A one-to-many rela-
tionship between two tables is a relationship in which each row in the first table
can be associated with many rows in the second table, but each row in the sec-
ond table is associated with only one row in the first table.

5. A relation is a two-dimensional table in which the entries in the table are single-
valued (each location in the table contains a single entry), each column has a dis-
tinct name (or attribute name), all values in a column match this name, the order
of the rows and columns is immaterial, and each row contains unique values.

7. For each table, you write the name of the table and then within parentheses list
all of the columns in the table. Underline the primary keys.

BRANCH (BRANCH_NUM, BRANCH NAME, BRANCH_LOCATION,
NUM_EMPLOYEES)

PUBLISHER (PUBLISHER_CODE, PUBLISHER_NAME, CITY)

AUTHOR (AUTHOR_NUM, AUTHOR_LAST, AUTHOR_FIRST)

BOOK (BOOK_CODE, TITLE, PUBLISHER_CODE, TYPE, PRICE,
PAPERBACK)

WROTE (BOOK_CODE, AUTHOR_NUM, SEQUENCE)
INVENTORY (BOOK_CODE, BRANCH_NUM, ON_HAND)

9. A column (attribute), B, is functionally dependent on another column (or a col-
lection of columns), A, if at any point in time a value for A determines a single
value for B.

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

294

Appendix C

11.

Functional dependencies:

DEPARTMENT_NUM —» DEPARTMENT_NAME

ADVISOR_NUM —-» ADVISOR_LAST NAME, ADVISOR_FIRST_NAME,
DEPARTMENT_NUM

COURSE_CODE - DESCRIPTION

STUDENT_NUM - STUDENT_LAST_NAME, STUDENT_FIRST_NAME,
ADVISOR_NUM

STUDENT_NUM, COURSE_CODE —» GRADE

Relations:

DEPARTMENT (DEPARTMENT NUM, DEPARTMENT NAME)

ADVISOR (ADVISOR NUM, ADVISOR_LAST NAME, ADVISOR_FIRST NAME,
DEPARTMENT_NUM)

COURSE (COURSE_CODE, DESCRIPTION)

STUDENT (STUDENT_NUM, STUDENT LAST NAME, STUDENT_FIRST_NAME,
ADVISOR_NUM)

STUDENT_COURSE (STUDENT NUM, COURSE_CODE, GRADE)

Entity-relationship diagram: (Note: Your rectangles can be in different positions
as long as they are connected by the same arrows.)

DEPARTMENT

ADVISOR

STUDENT STUDENT_COURSE COURSE

FIGURE C-1

13.

15.

A table (relation) is in second normal form when it is in first normal form and
no nonkey column is dependent on only a portion of the primary key. When
a table is not in second normal form, the table contains redundancy, which
leads to a variety of update anomalies. A change in a value can require not just
one change, but several. There is the possibility of inconsistent data. Adding
additional data to the database might not be possible without creating artifi-
cial values for part of the key. Finally, deletions of certain items can result in
inadvertently deleting crucial information from the database.

STUDENT (STUDENT NUM, STUDENT LAST NAME, STUDENT FIRST NAME,
ADVISOR_NUM)

ADVISOR (ADVISOR_NUM, ADVISOR LAST NAME, ADVISOR FIRST NAME)

COURSE (COURSE_CODE, DESCRIPTION)

STUDENT COURSE (STUDENT NUM, COURSE_CODE, GRADE)

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

	CHAPTER 2: DATABASE DESIGN FUNDAMENTALS
	DATABASE CONCEPTS
	FUNCTIONAL DEPENDENCE
	PRIMARY KEYS
	DATABASE DESIGN
	NORMALIZATION
	DIAGRAMS FOR DATABASE DESIGN
	Chapter Summary
	Key Terms
	Review Questions
	Exercises
	APPENDIX C: ANSWERS TO ODD-NUMBERED REVIEW QUESTIONS

