
CHAPTER 9
Advanced Array
Concepts

In this chapter, you will:

Sort array elements using the bubble sort algorithm

Sort array elements using the insertion sort algorithm

Use two-dimensional and other multidimensional arrays

Use the Arrays class

Use the ArrayList class

Create enumerations

Unless noted otherwise, all images are © 2014 Cengage Learning

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Sorting Array Elements Using the Bubble
Sort Algorithm
Sorting is the process of arranging a series of objects in some logical order. When you
place objects in order, beginning with the object that has the lowest value, you are sorting
in ascending order; conversely, when you start with the object that has the largest value,
you are sorting in descending order.

The simplest possible sort involves two values that are out of order. To place the values
in order, you must swap the two values. Suppose that you have two variables—valA and
valB—and further suppose that valA = 16 and valB = 2. To exchange the values of the
two variables, you cannot simply use the following code:

valA = valB; // 2 goes to valA
valB = valA; // 2 goes to valB

If valB is 2, after you execute valA = valB;, both variables hold the value 2. The value 16 that
was held in valA is lost. When you execute the second assignment statement, valB = valA;,
each variable still holds the value 2.

The solution that allows you to retain both values is to employ a variable to hold valA’s
value temporarily during the swap:

temp = valA; // 16 goes to temp
valA = valB; // 2 goes to valA
valB = temp; // 16 goes to valB

Using this technique, valA’s value (16) is assigned to the temp variable. The value of valB
(2) is then assigned to valA, so valA and valB are equivalent. Then, the temp value (16) is
assigned to valB, so the values of the two variables finally are swapped.

If you want to sort any two values, valA and valB, in ascending order so that valA is always
the lower value, you use the following if statement to make the decision whether to swap.
If valA is more than valB, you want to swap the values. If valA is not more than valB, you
do not want to swap the values.

if(valA > valB)
{

temp = valA;
valA = valB;
valB = temp;

}

Sorting two values is a fairly simple task; sorting more values (valC, valD, valE, and
so on) is more complicated. The task becomes manageable when you know how to use
an array.

444

C H A P T E R 9 Advanced Array Concepts

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using the Bubble Sort Algorithm
As an example, you might have a list of five numbers that you want to place in ascending
order. Multiple sorting algorithms have been developed; an algorithm is a process or set
of steps that solve a problem. In the bubble sort algorithm, you continue to compare pairs of
items, swapping them if they are out of order, so that the smallest items “bubble” to the top
of the list, eventually creating a sorted list. The bubble sort is neither the fastest nor most
efficient sorting technique, but it is one of the simplest to comprehend and provides
deeper understanding of array element manipulation.

To use a bubble sort, you place the original, unsorted values in an array, such as the
following:

int[] someNums = {88, 33, 99, 22, 54};

You compare the first two numbers; if they are not in ascending order, you swap them. You
compare the second and third numbers; if they are not in ascending order, you swap them.
You continue down the list. Generically, for any someNums[x], if the value of someNums[x]
is larger than someNums[x + 1], you want to swap the two values.

With the numbers 88, 33, 99, 22, and 54, the process proceeds as follows:

l Compare 88 and 33. They are out of order. Swap them. The list becomes 33, 88,
99, 22, 54.

l Compare the second and third numbers in the list—88 and 99. They are in order.
Do nothing.

l Compare the third and fourth numbers in the list—99 and 22. They are out of order.
Swap them. The list becomes 33, 88, 22, 99, 54.

l Compare the fourth and fifth numbers—99 and 54. They are out of order. Swap them.
The list becomes 33, 88, 22, 54, 99.

When you reach the bottom of the list, the numbers are not in ascending order, but the
largest number, 99, has moved to the bottom of the list. This feature gives the bubble sort
its name—the “heaviest” value has sunk to the bottom of the list as the “lighter” values have
bubbled to the top.

Assuming b and temp both have been declared as integer variables, the code so far is
as follows:

for(b = 0; b < someNums.length - 1; ++b)
if(someNums[b] > someNums[b + 1])
{

temp = someNums[b];
someNums[b] = someNums[b + 1];
someNums[b + 1] = temp;

}

445

Sorting Array Elements Using the Bubble Sort Algorithm

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Instead of comparing b to someNums.length – 1 on every pass through the loop, it would be more
efficient to declare a variable to which you assign someNums.length – 1 and use that variable in the
comparison. That way, the arithmetic is performed just once. That step is omitted here to reduce the number
of steps in the example.

Notice that the for statement tests every value of b from 0 through 3. The array someNums
contains five integers, so the subscripts in the array range in value from 0 through 4. Within
the for loop, each someNums[b] is compared to someNums[b + 1], so the highest legal value
for b is 3. For a sort on any size array, the value of b must remain less than the array’s length
minus 1.

The list of numbers that began as 88, 33, 99, 22, 54 is currently 33, 88, 22, 54, 99. To continue
to sort the list, you must perform the entire comparison-swap procedure again.

l Compare the first two values—33 and 88. They are in order; do nothing.

l Compare the second and third values—88 and 22. They are out of order. Swap them
so the list becomes 33, 22, 88, 54, 99.

l Compare the third and fourth values—88 and 54. They are out of order. Swap them so
the list becomes 33, 22, 54, 88, 99.

l Compare the fourth and fifth values—88 and 99. They are in order; do nothing.

After this second pass through the list, the numbers are 33, 22, 54, 88, and 99—close to
ascending order, but not quite. You can see that with one more pass through the list, the
values 22 and 33 will swap, and the list is finally placed in order. To fully sort the worst-case
list, one in which the original numbers are descending (as out-of-ascending order as they
could possibly be), you need to go through the list four times, making comparisons and swaps.
At most, you always need to pass through the list as many times as its length minus one.
Figure 9-1 shows the entire procedure.

for(a = 0; a < someNums.length – 1; ++a)
for(b = 0; b < someNums.length – 1; ++b)

if(someNums[b] > someNums[b + 1])
{

temp = someNums[b];
someNums[b] = someNums[b + 1];
someNums[b + 1] = temp;

}

Figure 9-1 Ascending bubble sort of the someNums array elements

To place the list in descending order, you need to make only one change in the code in Figure 9-1: You
change the greater-than sign (>) in if(someNums[b] > someNums[b + 1]) to a less-than sign (<).

446

C H A P T E R 9 Advanced Array Concepts

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

When you use a bubble sort to sort any array into ascending order, the largest value “falls”
to the bottom of the array after you have compared each pair of values in the array one time.
The second time you go through the array making comparisons, there is no need to check
the last pair of values. The largest value is guaranteed to already be at the bottom of the
array. You can make the sort process even more efficient by using a new variable for the
inner for loop and reducing the value by one on each cycle through the array. Figure 9-2
shows how you can use a new variable named comparisonsToMake to control how many
comparisons are made in the inner loop during each pass through the list of values to be
sorted. In the shaded statement, the comparisonsToMake value is decremented by 1 on each
pass through the list.

int comparisonsToMake = someNums.length – 1;
for(a = 0; a < someNums.length – 1; ++a)
{

for(b = 0; b < comparisonsToMake; ++b)
{

if(someNums[b] > someNums[b + 1])
{

temp = someNums[b];
someNums[b] = someNums[b + 1];
someNums[b + 1] = temp;

}
}
--comparisonsToMake;

}

Figure 9-2 More efficient ascending bubble sort of the someNums array elements

Watch the video Sorting.

Sorting Arrays of Objects
You can sort arrays of objects in much the same way that you sort arrays of primitive types.
The major difference occurs when you make the comparison that determines whether
you want to swap two array elements. When you construct an array of the primitive
element type, you compare the two array elements to determine whether they are out of
order. When array elements are objects, you usually want to sort based on a particular
object field.

Assume that you have created a simple Employee class, as shown in Figure 9-3. The class
holds four data fields and get and set methods for the fields.

447

Sorting Array Elements Using the Bubble Sort Algorithm

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public class Employee
{

private int empNum;
private String lastName;
private String firstName;
private double salary;
public int getEmpNum()
{

return empNum;
}
public void setEmpNum(int emp)
{

empNum = emp;
}
public String getLastName()
{

return lastName;
}
public void setLastName(String name)
{

lastName = name;
}
public String getFirstName()
{

return firstName;
}
public void setFirstName(String name)
{

firstName = name;
}
public double getSalary()
{

return salary;
}
public void setSalary(double sal)
{

salary = sal;
}

}

Figure 9-3 The Employee class

You can write a program that contains an array of five Employee objects using the
following statement:

Employee[] someEmps = new Employee[5];

448

C H A P T E R 9 Advanced Array Concepts

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Assume that after you assign employee numbers and salaries to the Employee objects,
you want to sort the Employees in salary order. You can pass the array to a
bubbleSort() method that is prepared to receive Employee objects. Figure 9-4 shows
the method.

public static void bubbleSort(Employee[] array)
{

int a, b;
Employee temp;
int highSubscript = array.length – 1;
for(a = 0; a < highSubscript; ++a)
for(b = 0; b < highSubscript; ++b)

if(array[b].getSalary() > array[b + 1].getSalary())
{

temp = array[b];
array[b] = array[b + 1];
array[b + 1] = temp;

}
}

Figure 9-4 The bubbleSort() method that sorts Employee objects by their salaries

Examine Figure 9-4 carefully, and notice that the bubbleSort() method is very similar to the
bubbleSort() method you use for an array of any primitive type, but there are three major
differences:

l The bubbleSort() method header shows that it receives an array of type Employee.

l The temp variable created for swapping is type Employee. The temp variable will
hold an Employee object, not just one number or one field. It is important to note
that even though only employee salaries are compared, you do not just swap
employee salaries. You do not want to substitute one employee’s salary for another’s.
Instead, you swap each Employee object’s empNum and salary as a unit.

l The comparison for determining whether a swap should occur uses method calls to the
getSalary() method to compare the returned salary for each Employee object in the
array with the salary of the adjacent Employee object.

449

Sorting Array Elements Using the Bubble Sort Algorithm

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Sorting Array Elements Using the Bubble Sort Algorithm

1. In an ascending bubble sort, you compare pairs of items, swapping them if they
are out of order, so that the largest items “bubble” to the top of the list,
eventually creating a sorted list.

2. When you sort objects, you usually want to sort based on a particular object field.

3. When you make a swap while sorting an array of objects, you typically swap
entire objects and not just the field on which the comparison is made.

.t sil detr os a gni t aer c yll aut neve,t sil eht f o pot
eht ot ” el bbub“ s meti t sell a ms eht t aht os,r edr of ot uo er a yeht fi meht gni ppaws

, s meti f o sri ap er ap moc uoy ,tr os el bbub gni dnecsa na nI . 1# si t ne met at s esl af ehT

You Do It

Using a Bubble Sort

In this section, you create a program in which you enter values that you sort using the
bubble sort algorithm. You display the values during each iteration of the outer
sorting loop so that you can track the values as they are repositioned in the array.

1. Open a new file in your text editor, and create the shell for a BubbleSortDemo
program as follows:

import java.util.*;
class BubbleSortDemo
{

public static void main(String[] args)
{
}

}

2. Make some declarations between the curly braces of the main() method.
Declare an array of five integers and a variable to control the number of
comparisons to make during the sort. Declare a Scanner object, two integers
to use as subscripts for handling the array, and a temporary integer value
to use during the sort.

(continues)

450

C H A P T E R 9 Advanced Array Concepts

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

int[] someNums = new int[5];
int comparisonsToMake = someNums.length - 1;
Scanner keyboard = new Scanner(System.in);
int a, b, temp;

3. Write a for loop that prompts the user for a value for each array element
and accepts them.

for(a = 0; a < someNums.length; ++a)
{

System.out.print("Enter number " + (a + 1) + " >> ");
someNums[a] = keyboard.nextInt();

}

4. Next, call a method that accepts the array and the number of sort iterations
performed so far, which is 0. The purpose of the method is to display the
current status of the array as it is being sorted.

display(someNums, 0);

5. Add the nested loops that perform the sort. The outer loop controls the
number of passes through the list, and the inner loop controls the
comparisons on each pass through the list. When any two adjacent elements
are out of order, they are swapped. At the end of the nested loop, the current
list is output and the number of comparisons to be made on the next pass is
reduced by one.

for(a = 0; a < someNums.length - 1; ++a)
{

for(b = 0; b < comparisonsToMake; ++b)
{

if(someNums[b] > someNums[b + 1])
{

temp = someNums[b];
someNums[b] = someNums[b + 1];
someNums[b + 1] = temp;

}
}
display(someNums, (a + 1));
--comparisonsToMake;

}

6. After the closing brace for the main() method, but before the closing brace
for the class, insert the display() method. It accepts the array and the
current outer loop index, and it displays the array contents.

(continued)

(continues)

451

Sorting Array Elements Using the Bubble Sort Algorithm

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public static void display(int[] someNums, int a)
{

System.out.print("Iteration " + a + ": ");
for(int x = 0; x < someNums.length; ++x)

System.out.print(someNums[x] + " ");
System.out.println();

}

7. Save the file as BubbleSortDemo.java, and then compile and execute it.
Figure 9-5 shows a typical execution. Notice that after the first iteration,
the largest value has sunk to the bottom of the list. After the second
iteration, the two largest values are at the bottom of the list, and so on.

8. Modify the BubbleSortDemo application to any size array you choose. Confirm
that no matter how many array elements you specify, the sorting algorithm
works correctly and ends with a completely sorted list, regardless of the
order of your entered values.

(continued)

Figure 9-5 Typical execution of the BubbleSortDemo application

452

C H A P T E R 9 Advanced Array Concepts

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Sorting Array Elements Using the Insertion
Sort Algorithm
The bubble sort works well and is relatively easy to understand and manipulate, but many
other sorting algorithms have been developed. For example, when you use an insertion sort,
you look at each list element one at a time. If an element is out of order relative to any of the
items earlier in the list, you move each earlier item down one position and then insert the
tested element. The insertion sort is similar to the technique you would most likely use to sort
a group of objects manually. For example, if a list contains the values 2, 3, 1, and 4, and you
want to place them in ascending order using an insertion sort, you test the values 2 and 3, but
you do not move them because they are in order. However, when you test the third value in
the list, 1, you move both 2 and 3 to later positions and insert 1 at the first position.

Figure 9-6 shows the logic that performs an ascending insertion sort using a five-element
integer array named someNums. The logic assumes that a, b, and temp have all been declared
as integers.

int[] someNums = {90, 85, 65, 95, 75};
a = 1;
while(a < someNums.length)
{

temp = someNums[a];
b = a - 1;
while(b >= 0 && someNums[b] > temp)
{

someNums[b + 1] = someNums[b];
--b;

}
someNums[b + 1] = temp;
++a;

}

Figure 9-6 The insertion sort

The outer loop in Figure 9-6 varies a loop control variable a from 1 through one less than
the size of the array. The logic proceeds as follows:

First a is set to 1, and then the while loop begins.

1. The value of temp is set to someNums[1], which is 85, and b is set to 0.

2. Because b is greater than or equal to 0 and someNums[b] (90) is greater than temp, the
inner loop is entered. (If you were performing a descending sort, then you would ask
whether someNums[b] was less than temp.)

3. The value of someNums[1] becomes 90 and b is decremented, making it –1, so b is no
longer greater than or equal to 0, and the inner loop ends.

4. Then someNums[0] is set to temp, which is 85.

453

Sorting Array Elements Using the Insertion Sort Algorithm

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

After these steps, 90 was moved down one position and 85 was inserted in the first position,
so the array values are in slightly better order than they were originally. The values are as
follows: 85, 90, 65, 95, 75.

Now, in the outer loop, a becomes 2. The logic in Figure 9-6 proceeds as follows:

1. The value of temp becomes 65, and b is set to 1.

2. The value of b is greater than or equal to 0, and someNums[b] (90) is greater than temp,
so the inner loop is entered.

3. The value of someNums[2] becomes 90 and b is decremented, making it 0, so the loop
executes again.

4. The value of someNums[1] becomes 85 and b is decremented, making it –1, so the
loop ends.

5. Then someNums[0] becomes 65.

After these steps, the array values are in better order than they were originally, because 65
and 85 now both come before 90. The values are: 65, 85, 90, 95, 75. Now, a becomes 3.
The logic in Figure 9-6 proceeds to work on the new list as follows:

1. The value of temp becomes 95, and b is set to 2.

2. For the loop to execute, b must be greater than or equal to 0, which it is, and
someNums[b] (90) must be greater than temp, which it is not. So, the inner loop
does not execute.

3. Therefore, someNums[2] is set to 90, which it already was. In other words, no changes
are made.

Now, a is increased to 4. The logic in Figure 9-6 proceeds as follows:

1. The value of temp becomes 75, and b is set to 3.

2. The value of b is greater than or equal to 0, and someNums[b] (95) is greater than temp,
so the inner loop is entered.

3. The value of someNums[4] becomes 95 and b is decremented, making it 2, so the loop
executes again.

4. The value of someNums[3] becomes 90 and b is decremented, making it 1, so the
loop executes again.

5. The value of someNums[2] becomes 85 and b is decremented, making it 0; someNums[b]
(65) is no longer greater than temp (75), so the inner loop ends. In other words, the
values 85, 90, and 95 are each moved down one position, but 65 is left in place.

6. Then someNums[1] becomes 75.

After these steps, all the array values have been rearranged in ascending order as
follows: 65, 75, 85, 90, 95.

Watch the video The Insertion Sort.

454

C H A P T E R 9 Advanced Array Concepts

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Many sorting algorithms exist in addition to the bubble sort and insertion sort. You might want to
investigate the logic used by the selection sort, cocktail sort, gnome sort, and quick sort.

TWO TRUTHS & A LIE

Sorting Array Elements Using the Insertion Sort Algorithm

1. When you use an insertion sort, you look at each list element one at a time
and move items down if the tested element should be inserted before them.

2. You can create an ascending list using an insertion sort, but not a descending one.

3. The insertion sort is similar to the technique you would most likely use to sort a
group of objects manually.

.tr os noi tr esni na
gni su st sil gni dnecsed dna gni dnecsa ht ob et aer c nac uoY. 2#si t ne met at s esl af ehT

You Do It

Using an Insertion Sort

In this section, you modify the BubbleSortDemo program so it performs an
insertion sort.

1. Open the BubbleSortDemo.java file. Change the class name
to InsertionSortDemo, and immediately save the file as
InsertionSortDemo.java.

2. Remove the declaration for comparisonsToMake.

3. Remove the 14 lines of code that constitute the nested loops that perform
the bubble sort. In other words, remove all the lines from the start of the
second for loop through the closing curly brace following the statement
that decrements comparisonsToMake.

4. Replace the removed lines with the statements that perform the insertion sort.
These are the same statements you saw in Figure 9-6 with the addition of a call
to the display() method so that you can track the progress of the sort:

(continues)

455

Sorting Array Elements Using the Insertion Sort Algorithm

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

a = 1;
while(a < someNums.length)
{

temp = someNums[a];
b = a - 1;
while(b >= 0 && someNums[b] > temp)
{

someNums[b + 1] = someNums[b];
--b;

}
someNums[b + 1] = temp;
display(someNums, a);
++a;

}

5. Save the file as InsertionSortDemo.java, and then compile and execute it.
Figure 9-7 shows a typical execution. During the first loop, 77 is compared
with 88 and inserted at the beginning of the array. In the second loop, 66 is
compared with both 77 and 88 and inserted at the beginning of the array.
Then the same thing happens with 55 and 44 until all the values are sorted.

6. Try the program with other input values, and examine the output so that you
understand how the insertion sort algorithm works.

(continued)

Figure 9-7 Typical execution of the InsertionSortDemo program

456

C H A P T E R 9 Advanced Array Concepts

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using Two-Dimensional and Other
Multidimensional Arrays
When you declare an array such as int[] someNumbers = new int[3];, you can envision
the three declared integers as a column of numbers in memory, as shown in Figure 9-8.
In other words, you can picture the three declared numbers stacked one on top of the next.
An array that you can picture as a column of values, and whose
elements you can access using a single subscript, is a
one-dimensional or single-dimensional array. You can think
of the size of the array as its height.

Java also supports two-dimensional arrays. Two-dimensional arrays
have two or more columns of values, as shown in Figure 9-9.
The two dimensions represent the height and width of the array.
Another way to picture a two-dimensional array is as an array of
arrays. It is easiest to picture two-dimensional arrays as having
both rows and columns. You must use two subscripts when
you access an element in a two-dimensional array. When
mathematicians use a two-dimensional array, they often call it a
matrix or a table; you might have used a two-dimensional array
called a spreadsheet.

When you declare a one-dimensional array, you type a set of square brackets after the array’s
data type. To declare a two-dimensional array in Java, you type two sets of brackets after the
array type. For example, the array in Figure 9-9 can be declared as follows, creating an array
named someNumbers that holds three rows and four columns:

int[][] someNumbers = new int[3][4];

Just as with a one-dimensional array, if you do not provide values for the elements in a
two-dimensional numeric array, the values default to zero. You can assign other values to
the array elements later. For example, someNumbers[0][0] = 14; assigns the value 14 to the
element of the someNumbers array that is in the first column of the first row.

Alternatively, you can initialize a two-dimensional array with values when it is created.
For example, the following code assigns values to someNumbers when it is created:

int[][] someNumbers = {{8, 9, 10, 11},
{1, 3, 12, 15},
{5, 9, 44, 99} };

someNumbers[0]

someNumbers[1]

someNumbers[2]

Figure 9-8 View of
a single-dimensional
array in memory

someNumbers[0][0] someNumbers[0][1] someNumbers[0][2] someNumbers[0][3]
someNumbers[1][0] someNumbers[1][1] someNumbers[1][2] someNumbers[1][3]
someNumbers[2][0] someNumbers[2][1] someNumbers[2][2] someNumbers[2][3]

Figure 9-9 View of a two-dimensional array in memory

457

Using Two-Dimensional and Other Multidimensional Arrays

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The someNumbers array contains three rows and four columns. You do not need to place
each row of values for a two-dimensional array on its own line. However, doing so makes
the positions of values easier to understand. You contain the entire set of values within
an outer pair of curly braces. The first row of the array holds the four integers 8, 9, 10,
and 11. Notice that these four integers are placed within their own inner set of curly
braces to indicate that they constitute one row, or the first row, which is row 0. Similarly, 1,
3, 12, and 15 make up the second row (row 1), which you reference with the subscript 1.
Next, 5, 9, 44, and 99 are the values in the third row (row 2), which you reference with the
subscript 2. The value of someNumbers[0][0] is 8. The value of someNumbers[0][1] is 9.
The value of someNumbers[2][3] is 99. The value within the first set of brackets
following the array name always refers to the row; the value within the second brackets
refers to the column.

As an example of how useful two-dimensional arrays can be, assume that you own an
apartment building with four floors—a basement, which you refer to as floor zero, and
three other floors numbered one, two, and three. In addition, each of the floors has studio
(with no bedroom) and one- and two-bedroom apartments. The monthly rent for each
type of apartment is different—the higher the floor, the higher the rent (the view is better),
and the rent is higher for apartments with more bedrooms. Table 9-1 shows the rental
amounts.

To determine a tenant’s rent, you need to know two pieces of information: the floor on which
the tenant rents an apartment and the number of bedrooms in the apartment. Within a Java
program, you can declare an array of rents using the following code:

int[][] rents = { {400, 450, 510},
{500, 560, 630},
{625, 676, 740},
{1000, 1250, 1600} };

If you declare two integers named floor and bedrooms, then any tenant’s rent can be
referred to as rents[floor][bedrooms]. Figure 9-10 shows an application that prompts
a user for a floor number and number of bedrooms. Figure 9-11 shows a typical
execution.

Floor Zero Bedrooms One Bedroom Two Bedrooms

0 400 450 510

1 500 560 630

2 625 676 740

3 1000 1250 1600

Table 9-1 Rents charged (in dollars)

458

C H A P T E R 9 Advanced Array Concepts

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

import javax.swing.*;
class FindRent
{

public static void main(String[] args)
{

int[][] rents = { {400, 450, 510},
{500, 560, 630},
{625, 676, 740},
{1000, 1250, 1600} };

String entry;
int floor;
int bedrooms;
entry = JOptionPane.showInputDialog(null,

"Enter a floor number ");
floor = Integer.parseInt(entry);
entry = JOptionPane.showInputDialog(null,

"Enter number of bedrooms ");
bedrooms = Integer.parseInt(entry);
JOptionPane.showMessageDialog(null,

"The rent for a " + bedrooms +
" bedroom apartment on floor " + floor +
" is $" + rents[floor][bedrooms]);

}
}

Figure 9-10 The FindRent class

Figure 9-11 Typical execution of the FindRent program

459

Using Two-Dimensional and Other Multidimensional Arrays

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Passing a Two-Dimensional Array to a Method
When you pass a two-dimensional array to a method, you pass the array name just as you
do with a one-dimensional array. A method that receives a two-dimensional array uses two
bracket pairs following the data type in the parameter list of the method header. For example,
the following method headers accept two-dimensional arrays of ints, doubles, and
Employees, respectively:

public static void displayScores(int[][]scoresArray)
public static boolean areAllPricesHigh(double[][] prices)
public static double computePayrollForAllEmployees(Employee[][] staff)

In each case, notice that the brackets indicating the array in the method header are empty.
There is no need to insert numbers into the brackets because each passed array name is a
starting memory address. The way you manipulate subscripts within the method determines
how rows and columns are accessed.

Using the length Field with a Two-Dimensional Array
In Chapter 8, you learned that a one-dimensional array has a length field that holds
the number of elements in the array. With a two-dimensional array, the length field
holds the number of rows in the array. Each row, in turn, has a length field that holds
the number of columns in the row. For example, suppose you declare a rents array
as follows:

int[][] rents = { {400, 450, 510},
{500, 560, 630},
{625, 676, 740},
{1000, 1250, 1600} };

The value of rents.length is 4 because there are four rows in the array. The value of
rents[0].length is 3 because there are three columns in the first row of the rents
array. Similarly, the value of rents[1].length also is 3 because there are three columns
in the second row.

Figure 9-12 shows an application that uses the length fields associated with the rents
array to display all the rents. The floor variable varies from 0 through one less than 4 in the
outer loop, and the bdrms variable varies from 0 through one less than 3 in the inner loop.
Figure 9-13 shows the output.

460

C H A P T E R 9 Advanced Array Concepts

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

class DisplayRents
{

public static void main(String[] args)
{

int[][] rents = { {400, 450, 510},
{500, 560, 630},
{625, 676, 740},
{1000, 1250, 1600} };

int floor;
int bdrms;
for(floor = 0; floor < rents.length; ++floor)

for(bdrms = 0; bdrms < rents[floor].length; ++bdrms)
System.out.println("Floor " + floor +

" Bedrooms " + bdrms + " Rent is $" +
rents[floor][bdrms]);

}
}

Figure 9-12 The DisplayRents class

Watch the video Two-Dimensional Arrays.

Figure 9-13 Output of the DisplayRents program

461

Using Two-Dimensional and Other Multidimensional Arrays

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Understanding Ragged Arrays
In a two-dimensional array, each row also is an array. In Java, you can declare each row
to have a different length. When a two-dimensional array has rows of different lengths, it
is a ragged array because you can picture the ends of each row as uneven. You create a
ragged array by defining the number of rows for a two-dimensional array, but not defining
the number of columns in the rows. For example, suppose that you have four sales
representatives, each of whom covers a different number of states as their sales territory.
Further suppose that you want an array to store total sales for each state for each sales
representative. You would define the array as follows:

double[][] sales = new double[4][];

This statement declares an array with four rows, but the rows are not yet created. Then,
you can declare the individual rows, based on the number of states covered by each
salesperson as follows:

sales[0] = new double[12];
sales[1] = new double[18];
sales[2] = new double[9];
sales[3] = new double[11];

Using Other Multidimensional Arrays
Besides one- and two-dimensional arrays, Java also supports arrays with three, four,
and more dimensions. The general term for arrays with more than one dimension is
multidimensional arrays. For example, if you own an apartment building with a number
of floors and different numbers of bedrooms available in apartments on each floor, you
can use a two-dimensional array to store the rental fees. If you own several apartment
buildings, you might want to employ a third dimension to store the building number.
An expression such as rents[building][floor][bedrooms] refers to a specific rent
figure for a building whose building number is stored in the building variable and
whose floor and bedroom numbers are stored in the floor and bedrooms variables.
Specifically, rents[5][1][2] refers to a two-bedroom apartment on the first floor of
building 5. When you are programming in Java, you can use four, five, or more
dimensions in an array. As long as you can keep track of the order of the variables
needed as subscripts, and as long as you don’t exhaust your computer’s memory, Java
lets you create arrays of any size.

462

C H A P T E R 9 Advanced Array Concepts

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Using Two-Dimensional and Other Multidimensional Arrays

1. Two-dimensional arrays have both rows and columns, so you must use two
subscripts when you access an element in a two-dimensional array.

2. The following array contains two columns and three rows:

int[][] myArray = {{12, 14, 19},
{33, 45, 88}};

3. With a two-dimensional array, the length field holds the number of rows in the
array; each row has a length field that holds the number of columns in the row.

. sn mul oc eer ht dna s wor owt sah nwohs yarr a ehT. 2# si t ne met at s esl af ehT

You Do It

Using a Two-Dimensional Array

In this section, you create an application that demonstrates using a two-dimensional
array.

1. Open a new file in your text editor, and start a class that will demonstrate a
working two-dimensional array:

import java.util.Scanner;
class TwoDimensionalArrayDemo
{

public static void main(String[] args)
{

2. Declare a three-by-three array of integers. By default, the elements will all be
initialized to 0.

int[][] count = new int[3][3];

3. Declare a Scanner object for input, variables to hold a row and column,
and a constant that can be used to indicate when the user wants to quit
the application.

Scanner input = new Scanner(System.in);
int row, column;
final int QUIT = 99;

(continues)

463

Using Two-Dimensional and Other Multidimensional Arrays

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4. Prompt the user to enter a row or the QUIT value to quit, then accept the
user’s input.

System.out.print("Enter a row or " + QUIT +
" to quit > ");

row = input.nextInt();

5. In a loop that continues if the user has not entered the QUIT value, prompt
the user for a column. If the row and column are both within appropriate
ranges, add 1 to the element in the selected position.

while(row != QUIT)
{

System.out.print("Enter a column > ");
column = input.nextInt();
if(row < count.length && column < count[row].length)
{

count[row][column]++;

6. Still within the if statement that checks for a valid row and column, add a
nested loop that displays each row and column of the newly incremented
array. The elements in each row are displayed on the same line, and a new
line is started at the end of each row. Add a closing curly brace for the
if statement.

for(int r = 0; r < count.length; ++r)
{

for(int c = 0; c < count[r].length; ++c)
System.out.print(count[r][c] + " ");

System.out.println();
}

}

7. Add an else clause to the if statement to display an error message when
the row or column value is too high.

else
System.out.println("Invalid position selected");

8. At the end of the loop, prompt the user for and accept the next row number.
Add closing curly braces for the loop, the main() method, and the class.

System.out.print("Enter a row or " + QUIT +
" to quit > ");

row = input.nextInt();
}

}
}

(continued)

(continues)

464

C H A P T E R 9 Advanced Array Concepts

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

9. Save the file as TwoDimensionalArrayDemo.java. Compile and execute
the program. Figure 9-14 shows a typical execution. As the user continues
to enter row and column values, the appropriate elements in the array are
incremented.

Using the Arrays Class
When you fully understand the power of arrays, you will want to use them to store all kinds of
objects. Frequently, you will want to perform similar tasks with different arrays—for example,
filling them with values and sorting their elements. Java provides an Arrays class, which
contains many useful methods for manipulating arrays. Table 9-2 shows some of the useful
methods of the Arrays class. For each method listed in the left column of the table, type
stands for a data type; an overloaded version of each method exists for each appropriate data
type. For example, there is a version of the sort() method to sort int, double, char, byte,
float, long, short, and Object arrays.

(continued)

Figure 9-14 Typical execution of the TwoDimensionalArrayDemo program

465

Using the Arrays Class

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You will learn about the Object class in the chapter Advanced Inheritance Concepts.

The methods in the Arrays class are static methods, which means you use them with the
class name without instantiating an Arrays object. The Arrays class is located in the
java.util package, so you can use the statement import java.util.*; to access it.
The ArraysDemo application in Figure 9-15 demonstrates how you can use some of the
methods in the Arrays class. In the ArraysDemo class, the myScores array is created to
hold five integers. Then, a message and the array reference are passed to a display()
method. The first line of the output in Figure 9-16 shows that the original array is filled
with 0s at creation. After the first display, the Arrays.fill() method is called in the
first shaded statement in Figure 9-15. Because the arguments are the name of the array and the
number 8, when the array is displayed a second time the output is all 8s. In the application,
two of the array elements are changed to 6 and 3, and the array is displayed again. Finally,
in the second shaded statement, the Arrays.sort() method is called. The output in
Figure 9-16 shows that when the display() method executes the fourth time, the array
elements have been sorted in ascending order.

Method Purpose
static int binarySearch(type [] a, type key) Searches the specified array for the

specified key value using the binary
search algorithm

static boolean equals(type[] a, type[] a2) Returns true if the two specified arrays
of the same type are equal to one another

static void fill(type[] a, type val) Assigns the specified value to each
element of the specified array

static void sort(type[] a) Sorts the specified array into ascending
order

static void sort(type[] a, int fromIndex,
int toIndex)

Sorts the specified range of the specified
array into ascending order

Table 9-2 Useful methods of the Arrays class

466

C H A P T E R 9 Advanced Array Concepts

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

import java.util.*;
public class ArraysDemo
{

public static void main(String[] args)
{

int[] myScores = new int [5];
display("Original array: ", myScores);
Arrays.fill(myScores, 8);
display("After filling with 8s: ", myScores);
myScores[2] = 6;
myScores[4] = 3;
display("After changing two values: ", myScores);
Arrays.sort(myScores);
display("After sorting: ", myScores);

}

public static void display(String message, int array[])
{

int sz = array.length;
System.out.print(message);
for(int x = 0; x < sz; ++x)

System.out.print(array[x] + " ");
System.out.println();

}
}

Figure 9-15 The ArraysDemo application

Figure 9-16 Output of the ArraysDemo application

467

Using the Arrays Class

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The Arrays class binarySearch() methods provide convenient ways to search through
sorted lists of values of various data types. It is important that the list be in order before
you use it in a call to binarySearch(); otherwise, the results are unpredictable. You do
not have to understand how a binary search works to use the binarySearch() method,
but basically the operation takes place as follows:

l You have a sorted array and an item for which you are searching within the array.
Based on the array size, you determine the middle position. (In an array with an even
number of elements, this can be either of the two middle positions.)

l You compare the item you are looking for with the element in the middle position of
the array and decide whether your item is above that point in the array—that is, whether
your item’s value is less than the middle-point value.

l If it is above that point in the array, you next find the middle position of the top half of
the array; if it is not above that point, you find the middle position of the bottom half.
Either way, you compare your item with that of the new middle position and divide the
search area in half again.

l Ultimately, you find the element or determine that it is not in the array.

Programmers often refer to a binary search as a “divide and conquer” procedure. If you have ever played
a game in which you tried to guess what number someone was thinking, you might have used a similar
technique.

Suppose your organization uses six single-character product codes. Figure 9-17
contains a VerifyCode application that verifies a product code entered by the user.
The array codes holds six values in ascending order. The user enters a code that is
extracted from the first String position using the String class charAt() method.
Next, the array of valid characters and the user-entered character are passed to the
Arrays.binarySearch() method. If the character is found in the array, its position is
returned. If the character is not found in the array, a negative integer is returned and
the application displays an error message. Figure 9-18 shows the program’s execution
when the user enters K; the character is found in position 2 (the third position) in
the array.

The negative integer returned by the binarySearch() method when the value is not found is the negative
equivalent of the array size. In most applications, you do not care about the exact value returned when there
is no match; you care only whether it is negative.

468

C H A P T E R 9 Advanced Array Concepts

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

import java.util.*;
import javax.swing.*;
public class VerifyCode
{

public static void main(String[] args)
{

char[] codes = {'B', 'E', 'K', 'M', 'P', 'T'};
String entry;
char usersCode;
int position;
entry = JOptionPane.showInputDialog(null,

"Enter a product code");
usersCode = entry.charAt(0);
position = Arrays.binarySearch(codes, usersCode);
if(position >= 0)

JOptionPane.showMessageDialog(null, "Position of " +
usersCode + " is " + position);

else
JOptionPane.showMessageDialog(null, usersCode +

" is an invalid code");
}

}

Figure 9-17 The VerifyCode application

The sort() and binarySearch()methods in the Arrays class are very useful and allow you to achieve
results by writing many fewer instructions than if you had to write the methods yourself. This does not mean
you wasted your time reading about sorting and searching methods earlier in this chapter. The more
completely you understand how arrays can be manipulated, the more useful, efficient, and creative your
future applications will be.

Figure 9-18 Typical execution of the VerifyCode application

469

Using the Arrays Class

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Using the Arrays Class

1. The Arrays class contains methods for manipulating arrays, such as
binarySearch(), fill(), and sort().

2. You can use the Arrays class binarySearch() method successfully on
any array as soon as you have assigned values to the array elements.

3. The binarySearch() method works by continuously deciding whether the
element sought is above or below the halfway point in sublists of the
original list.

.r edr o ni ebt su mst ne mel e yarr a eht , yll uf sseccus doht e m
)(hcraeSyranib ssal c syarrA eht esu nac uoy er of eB. 2# si t ne met at s esl af ehT

You Do It

Using Arrays Class Methods

In this section, you create an application that demonstrates several Arrays
class methods. The application will allow the user to enter a menu of entrees
that are available for the day at a restaurant. Then, the application will present
the menu to the user, allow a request, and indicate whether the requested item
is on the menu.

1. Open a new file in your text editor, and type the import statements
you need to create an application that will use the JOptionPane and
the Arrays classes:

import java.util.*;
import javax.swing.*;

2. Add the first few lines of the MenuSearch application class:

public class MenuSearch
{

public static void main(String[] args)
{

(continues)

470

C H A P T E R 9 Advanced Array Concepts

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. Declare an array to hold the day’s menu choices; the user is allowed to enter
up to 10 entrees. Also declare two Strings—one to hold the user’s current
entry and the other to accumulate the entire menu list as it is entered. The
two String variables are initialized to empty Strings using quotation marks;
if you do not initialize these Strings, you receive a compiler error because
you might attempt to display them without having entered a legitimate value.
Also, declare an integer to use as a subscript for the array, another to hold
the number of menu items entered, and a third to hold the highest allowable
subscript, which is 1 less than the array size:

String[] menuChoices = new String[10];
String entry= "", menuString = "";
int x = 0;
int numEntered;
int highestSub = menuChoices.length - 1;

4. Use the Arrays.fill() method to fill the menu array with z characters, as
shown in the following line of code. You use this method so that when you
perform a search later, actual values will be stored in any unused menu
positions. If you ignore this step and fill less than half the array, your
search method might generate an error.

Arrays.fill(menuChoices, "zzzzzzz");

Lowercase zs were purposely chosen as the array fill characters because
they have a higher value than any other letter. Therefore, when the user’s
entries are sorted, the zzzzzzz entries will be at the bottom of the list.

5. Display an input dialog box into which the user can enter a menu item. Allow
the user to quit before entering 10 items by typing “zzz”. (Using a value such
as “zzz” is a common programming technique to check for the user’s desire
to stop entering data. If the data items are numeric instead of text, you might
use a value such as 999. Values the user enters that are not “real” data, but
just signals to stop, are often called dummy values.) After the user enters
the first menu item, the application enters a loop that continues to add the
entered item to the menu list, increase the subscript, and prompt for a new
menu item. The loop continues while the user has not entered “zzz” and the
subscript has not exceeded the allowable limit. When the loop ends, save the
number of menu items entered:

(continued)

(continues)

471

Using the Arrays Class

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

menuChoices[x] = JOptionPane.showInputDialog(null,
"Enter an item for today’s menu, or zzz to quit:");

while(!menuChoices[x].equals("zzz") && x < highestSub)
{

menuString = menuString + menuChoices[x] + "\n";
++x;
if(x < highestSub)

menuChoices[x] = JOptionPane.showInputDialog(null,
"Enter an item for today’s menu, or zzz to quit");

}
numEntered = x;

6. When the menu is complete, display it for the user and allow the user to make
a request:

entry = JOptionPane.showInputDialog(null,
"Today's menu is:\n" + menuString +
"Please make a selection:");

7. Sort the array from index position 0 to numEntered so that it is in ascending
order prior to using the binarySearch() method. If you do not sort the array,
the result of the binarySearch() method is unpredictable. You could sort the
entire array, but it is more efficient to sort only the elements that hold actual
menu items:

Arrays.sort(menuChoices, 0, numEntered);

8. Use the Arrays.binarySearch() method to search for the requested entry
in the previously sorted array. If the method returns a nonnegative value that
is less than the numEntered value, display the message “Excellent choice”;
otherwise, display an error message:

x = Arrays.binarySearch(menuChoices, entry);
if(x >= 0 && x < numEntered)

JOptionPane.showMessageDialog(null, "Excellent choice");
else

JOptionPane.showMessageDialog(null,
"Sorry - that item is not on tonight’s menu");

9. Add the closing curly braces for the main() method and the class, and save
the file as MenuSearch.java. Compile and execute the application. When
prompted, enter as many menu choices as you want, and enter “zzz” when
you want to quit data entry. When prompted again, enter a menu choice and
observe the results. (A choice you enter must match the spelling in the menu
exactly.) Figure 9-19 shows a typical menu as it is presented to the user,
and the results after the user makes a valid choice.

(continued)

(continues)

472

C H A P T E R 9 Advanced Array Concepts

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using the ArrayList class
In addition to the Arrays class, Java provides an ArrayList class that can be used to create
containers that store lists of objects. The ArrayList class provides some advantages over
the Arrays class. Specifically, an ArrayList is dynamically resizable, meaning that its size
can change during program execution. This means that:

l You can add an item at any point in an ArrayList container, and the array size expands
automatically to accommodate the new item.

l You can remove an item at any point in an ArrayList container, and the array size
contracts automatically.

To use the ArrayList class, you must use one of the following import statements:

import java.util.ArrayList;
import java.util.*;

Then, to declare an ArrayList, you can use the default constructor, as in the following
example:

ArrayList names = new ArrayList();

The default constructor creates an ArrayList with a capacity of 10 items. An ArrayList’s
capacity is the number of items it can hold without having to increase its size. By definition,
an ArrayList’s capacity is greater than or equal to its size. You can also specify a capacity if
you like. For example, the following statement declares an ArrayList that can hold 20 names:

ArrayList names = new ArrayList(20);

(continued)

Figure 9-19 Typical execution of the MenuSearch application

473

Using the ArrayList class

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

If you know you will need more than 10 items at the outset, it is more efficient to create an
ArrayList with a larger capacity.

Table 9-3 summarizes some useful ArrayList methods.

In the chapter Advanced Inheritance Concepts, you will learn that the Object class is the most generic
Java class.

To add an item to the end of an ArrayList, you can use the add() method. For example,
to add the name Abigail to an ArrayList named names, you can make the following
statement:

names.add("Abigail");

You can insert an item into a specific position in an ArrayList by using an overloaded
version of the add() method that includes the position. For example, to insert the name
Bob in the first position of the names ArrayList, you use the following statement:

names.add(0, "Bob");

With each of the methods described in this section, you receive an error message if the
position number is invalid for the ArrayList.

As you can see from Table 9-3, you also can alter and remove items from an ArrayList.
The ArrayList class contains a size() method that returns the current size of the
ArrayList. Figure 9-20 contains a program that demonstrates each of these methods.

Method Purpose
public void add(Object)
public void add(int, Object)

Adds an item to an ArrayList; the default
version adds an item at the next available
location; an overloaded version allows you to
specify a position at which to add the item

public void remove(int) Removes an item from an ArrayList at a
specified location

public void set(int, Object) Alters an item at a specified ArrayList location

Object get(int) Retrieves an item from a specified location in an
ArrayList

public int size() Returns the current ArrayList size

Table 9-3 Useful methods of the ArrayList class

474

C H A P T E R 9 Advanced Array Concepts

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

import java.util.ArrayList;
public class ArrayListDemo
{

public static void main(String[] args)
{

ArrayList names = new ArrayList();
names.add("Abigail");
display(names);
names.add("Brian");
display(names);
names.add("Zachary");
display(names);
names.add(2, "Christy");
display(names);
names.remove(1);
display(names);
names.set(0, "Annette");
display(names);

}
public static void display(ArrayList names)
{

System.out.println("\nThe size of the list is " + names.size());
for(int x = 0; x < names.size(); ++x)

System.out.println("position " + x + " Name: " +
names.get(x));

}
}

Figure 9-20 The ArrayListDemo program

When you compile the ArrayListDemo program, you receive a compiler warning indicating that the
program uses unchecked or unsafe operations. You will learn how to eliminate this message in the next
section.

In the application in Figure 9-20, an ArrayList is created and Abigail is added to the list.
The ArrayList is passed to a display() method that displays the current list size and all the
names in the list. You can see from the output in Figure 9-21 that at this point, the ArrayList
size is 1, and the array contains just one name. Examine the program in Figure 9-20 along
with the output in Figure 9-21 so that you understand how the ArrayList is altered as
names are added, removed, and replaced.

475

Using the ArrayList class

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You can display the contents of an ArrayList of Strings without looping through
the values. For example, Figure 9-22 shows an ArrayList named students that the user
populates interactively. Displaying the array name as shown in the shaded statement
produces a comma-separated list between square brackets. Figure 9-23 shows a typical
execution.

Figure 9-21 Output of the ArrayListDemo program

476

C H A P T E R 9 Advanced Array Concepts

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

import javax.swing.*;
import java.util.ArrayList;
public class ArrayListDemo2
{

public static void main(String[] args)
{

ArrayList students = new ArrayList();
String name;
final int LIMIT = 4;
for(int x = 0; x < LIMIT; ++x)
{

name = JOptionPane.showInputDialog(null,
"Enter a student's name");

students.add(name);
}
System.out.println("The names are " + students);

}
}

Figure 9-22 The ArrayListDemo2 class

Figure 9-23 Typical execution of the ArrayListDemo2 application

477

Using the ArrayList class

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You can achieve similar results using the name for ArrayLists of any class type. In Chapter 7, you learned
that every class contains a toString() method that converts its objects to Strings; this method is
used when you display an ArrayList’s name. However, unless you have overridden the toString()
method within a class, the String that is returned by toString() is not very useful. You will learn more
about writing this method in the chapter Advanced Inheritance Concepts.

You can sort an ArrayList using the Collections.sort() method and providing the
ArrayList as the argument—for example:

Collections.sort(students);

To use this method, you must import the java.util.Collections package at the top
of the file.

Understanding the Limitations of the ArrayList Class
An ArrayList can be used to store any type of object reference. In fact, one ArrayList
can store multiple types. However, this creates two drawbacks:

l You cannot use an ArrayList to store primitive types such as int, double, or char
because those types are not references. If you want to work with primitive types, you
can create an array or use the Arrays class, but you cannot use the ArrayList class.

l When you want to store ArrayList elements, you must cast them to the appropriate
reference type before you can do so, or you must declare a reference type in the
ArrayList declaration.

For example, if you want to declare a String to hold the first name in the names ArrayList,
you must make statements such as the following:

String firstName;
firstName = (String)names.get(0);

The cast operator (String) converts the generic returned object from the get() method to a
String. If you do not perform this cast, you receive an error message indicating that you are
using incompatible types. (You first learned about the cast operator in Chapter 2.)

You can eliminate the need to perform a cast with ArrayList objects by specifying the
type that an ArrayList can hold. For example, you can declare an ArrayList of names
as follows:

ArrayList<String> names = new ArrayList<String>();

Creating an ArrayList declaration with a specified type provides several advantages:

l You no longer have to use the cast operator when retrieving an item from the ArrayList.

l Java checks to make sure that only items of the appropriate type are added to the list.

l The compiler warning that indicates your program uses an unchecked or unsafe operation
is eliminated.

478

C H A P T E R 9 Advanced Array Concepts

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Using the ArrayList Class

1. An advantage of the ArrayList class over the Arrays class is that an
ArrayList is dynamically resizable.

2. An advantage of the ArrayList class over the Arrays class is that it can
hold multiple object types.

3. An advantage of the ArrayList class over the Arrays class is that it can
hold primitive data types such as int and double.

. sepyt evi ti mi r p dl oh
t onnacti t aht si ssal c tsiLyarrA eht f o egat navdasi d A. 3# si t ne met at s esl af ehT

Creating Enumerations
Data types have a specific set of values. For example, in Chapter 2 you learned that a
byte cannot hold a value larger than 127 and an int cannot hold a value larger than
2,147,483,647. You can also create your own data types that have a finite set of legal values.
A programmer-created data type with a fixed set of values is an enumerated data type.

In Java, you create an enumerated data type in a statement that uses the keyword enum, an
identifier for the type, and a pair of curly braces that contain a list of the enum constants,
which are the allowed values for the type. For example, the following code creates an
enumerated type named Month that contains 12 values:

enum Month {JAN, FEB, MAR, APR, MAY, JUN,
JUL, AUG, SEP, OCT, NOV, DEC};

By convention, the identifier for an enumerated type begins with an uppercase letter.
This convention makes sense because an enumerated type is a class. Also, by convention,
the enum constants, like other constants, appear in all uppercase letters. The constants
are not strings and they are not enclosed in quotes; they are Java identifiers.

After you create an enumerated data type, you can declare variables of that type. For example,
you might declare the following:

Month birthMonth;

You can assign any of the enum constants to the variable. Therefore, you can code a
statement such as the following:

birthMonth = Month.MAY;

479

Creating Enumerations

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

An enumeration type like Month is a class, and its enum constants act like objects instantiated
from the class, including having access to the methods of the class. These built-in methods
include the ones shown in Table 9-4. Each of these methods is nonstatic; that is, each is used
with an enum object.

Several static methods are also available to use with enumerations. These are used with
the type and not with the individual constants. Table 9-5 describes two useful static
methods.

Method Description Example if birthMonth = Month.MAY

toString() The toString() method returns the
name of the calling constant object.

birthMonth.toString() has the
value “MAY”
You can pass birthMonth to print()
or println(), and it is automatically
converted to its string equivalent.

ordinal() The ordinal() method returns an
integer that represents the constant’s
position in the list of constants. As with
arrays, the first position is 0.

birthMonth.ordinal() is 4

equals() The equals() method returns true
if its argument is equal to the calling
object’s value.

birthMonth.equals(Month.MAY)
is true
birthMonth.equals(Month.NOV)
is false

compareTo() The compareTo() method returns a
negative integer if the calling object’s
ordinal value is less than that of the
argument, 0 if they are the same, and
a positive integer if the calling object’s
ordinal value is greater than that of the
argument.

birthMonth.compareTo(Month.JUL)
is negative
birthMonth.compareTo(Month.FEB)
is positive
birthMonth.compareTo(Month.MAY)
is 0

Table 9-4 Some useful nonstatic enum methods

Method Description Example with Month Enumeration
valueOf() The valueOf()method accepts a

string parameter and returns an
enumeration constant.

Month.valueOf("DEC") returns the
DEC enum constant.

values() The values() method returns an
array of the enumerated
constants.

Month.values() returns an array
with 12 elements that contain the enum
constants.

Table 9-5 Some static enum methods

480

C H A P T E R 9 Advanced Array Concepts

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You can declare an enumerated type in its own file, in which case the filename matches the
type name and has a .java extension. You will use this approach in a “You Do It” exercise later
in this chapter. Alternatively, you can declare an enumerated type within a class but not
within a method. Figure 9-24 is an application that declares a Month enumeration and
demonstrates its use. Figure 9-25 shows two typical executions.

import java.util.Scanner;
public class EnumDemo
{

enum Month {JAN, FEB, MAR, APR, MAY, JUN,
JUL, AUG, SEP, OCT, NOV, DEC};

public static void main(String[] args)
{

Month birthMonth;
String userEntry;
int position;
int comparison;
Scanner input = new Scanner(System.in);
System.out.println("The months are:");
for(Month mon : Month.values())

System.out.print(mon + " ");
System.out.print("\n\nEnter the first three letters of " +

"your birth month >> ");
userEntry = input.nextLine().toUpperCase();
birthMonth = Month.valueOf(userEntry);
System.out.println("You entered " + birthMonth);
position = birthMonth.ordinal();
System.out.println(birthMonth + " is in position " + position);
System.out.println("So its month number is " + (position + 1));
comparison = birthMonth.compareTo(Month.JUN);
if(comparison < 0)

System.out.println(birthMonth +
" is earlier in the year than " + Month.JUN);

else
if(comparison > 0)

System.out.println(birthMonth +
" is later in the year than " + Month.JUN);

else
System.out.println(birthMonth + " is " + Month.JUN);

}
}

Figure 9-24 The EnumDemo class

481

Creating Enumerations

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In the application in Figure 9-24, a Month enumeration is declared; in the main() method,
a Month variable is declared in the first shaded statement. The second shaded statement
uses the enhanced for loop, which you first learned to use with arrays in Chapter 8.
The enhanced for loop declares a local Month variable named mon that takes on the
value of each element in the Month.value() array in turn so it can be displayed.

In the program in Figure 9-24, the user then is prompted to enter the first three letters
for a month, which are converted to their uppercase equivalents. The third shaded
statement in the figure uses the valueOf() method to convert the user’s string to an
enumeration value. The fourth shaded statement gets the position of the month in the
enumeration list. The last shaded statement compares the entered month to the JUN
constant. This is followed by an if statement that displays whether the user’s entered
month comes before or after JUN in the list or is equivalent to it.

Starting with Java 7, you can use comparison operators with enumeration constants
instead of using the compareTo() method to return a number. For example, you can
write the following:

if(birthMonth < Month.JUN)
System.out.println(birthMonth +
" is earlier in the year than " + Month.JUN);

You can use enumerations to control a switch structure. Figure 9-26 contains a class that
declares a Property enumeration for a real estate company. The program assigns one of the
values to a Property variable and then uses a switch structure to display an appropriate
message. Figure 9-27 shows the result.

Figure 9-25 Two typical executions of the EnumDemo application

482

C H A P T E R 9 Advanced Array Concepts

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

import java.util.Scanner;
public class EnumDemo2
{

enum Property {SINGLE_FAMILY, MULTIPLE_FAMILY,
CONDOMINIUM, LAND, BUSINESS};

public static void main(String[] args)
{

Property propForSale = Property.MULTIPLE_FAMILY;
switch(propForSale)
{

case SINGLE_FAMILY:
case MULTIPLE_FAMILY:

System.out.println("Listing fee is 5%");
break;

case CONDOMINIUM:
System.out.println("Listing fee is 6%");
break;

case LAND:
case BUSINESS:

System.out.println
("We do not handle this type of property");

}
}

}

Figure 9-26 The EnumDemo2 class

Creating an enumeration type provides you with several advantages. For example, the
Month enumeration improves your programs in the following ways:

l If you did not create an enumerated type for month values, you could use another type—for
example, ints or Strings. The problem is that any value could be assigned to an int or
String variable, but only the 12 allowed values can be assigned to a Month.

l If you did not create an enumerated type for month values, you could create another
type to represent months, but invalid behavior could be applied to the values. For example,
if you used integers to represent months, you could add, subtract, multiply, or divide two
months, which is not logical. Programmers say using enums makes the values type-safe.
Type-safe describes a data type for which only appropriate behaviors are allowed.

Figure 9-27 Output of the EnumDemo2 application

483

Creating Enumerations

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

l The enum constants provide a form of self-documentation. Someone reading your
program might misinterpret what 9 means as a month value, but there is less confusion
when you use the identifier OCT.

l As with other classes, you can also add methods and other fields to an enum type.

Watch the video Enumerations.

TWO TRUTHS & A LIE

Creating Enumerations

Assume that you have coded the following:
enum Color {RED, WHITE, BLUE};
Color myColor = Color.RED;

1. The value of myColor.ordinal() is 1.

2. The value of myColor.compareTo(Color.RED) is 0.

3. The value of myColor < Color.WHITE is true.

. 0 si)(lanidro.roloCym
f o eul av eht ,t nat snoc mune t sri f eht sA. 1# si t ne met at s esl af ehT

You Do It

Creating Enumerations

In this section, you create two enumerations that hold colors and car model types.
You will use them as field types in a Car class and write a demonstration program
that shows how the enumerations are used.

1. Open a new file in your text editor, and type the following Color enumeration:

enum Color {BLACK, BLUE, GREEN, RED, WHITE, YELLOW};

2. Save the file as Color.java.

(continues)

484

C H A P T E R 9 Advanced Array Concepts

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. Open a new file in your text editor, and create the following Model enumeration:

enum Model {SEDAN, CONVERTIBLE, MINIVAN};

4. Save the file as Model.java. Next, open a new file in your text editor, and
start to define a Car class that holds three fields: a year, a model, and a color.

public class Car
{

private int year;
private Model model;
private Color color;

5. Add a constructor for the Car class that accepts parameters that hold the
values for year, model, and color as follows:

public Car(int yr, Model m, Color c)
{

year = yr;
model = m;
color = c;

}

6. Add a display() method that displays a Car object’s data, then add a
closing curly brace for the class.

public void display()
{

System.out.println("Car is a " + year +
" " + color + " " + model);

}
}

7. Save the file as Car.java.

8. Open a new file in your text editor, and write a short demonstration
program that instantiates two Car objects and assigns values to them
using enumeration values for the models and colors.

public class CarDemo
{

public static void main(String[] args)
{

Car firstCar = new Car(2009, Model.MINIVAN, Color.BLUE);
Car secondcar = new Car(2011, Model.CONVERTIBLE,

Color.RED);
firstCar.display();
secondcar.display();

}
}

(continued)

(continues)

485

Creating Enumerations

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

9. Save the file as CarDemo.java, and then compile and execute it. Figure 9-28
shows that the values are assigned correctly.

Don’t Do It
l Don’t forget that the first subscript used with a two-dimensional array represents the row

and that the second subscript represents the column.

l Don’t try to store primitive data types in an ArrayList structure.

l Don’t think enum constants are strings; they are not enclosed in quotes.

Key Terms
Sorting is the process of arranging a series of objects in some logical order.

Ascending order describes the order of objects arranged from lowest to highest value.

Descending order describes the order of objects arranged from highest to lowest value.

An algorithm is a process or set of steps that solve a problem.

A bubble sort is a type of sort in which you continue to compare pairs of items, swapping
them if they are out of order, so that the smallest items “bubble” to the top of the list,
eventually creating a sorted list.

(continued)

Figure 9-28 Output of the CarDemo program

486

C H A P T E R 9 Advanced Array Concepts

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

With an insertion sort, you look at each list element one at a time, and if an element is out
of order relative to any of the items earlier in the list, you move each earlier item down
one position and then insert the tested element.

A one-dimensional array or single-dimensional array contains one column of values; you
access its elements using a single subscript.

Two-dimensional arrays have two or more columns of values, and you must use two
subscripts to access an element.

Matrix and table are names used for two-dimensional arrays.

A ragged array is a two-dimensional array that has rows of different lengths.

Multidimensional arrays contain two or more dimensions.

The Java Arrays class is a built-in class that contains many useful methods for manipulating
arrays, such as methods to search, fill, compare, and sort arrays.

Dummy values are values the user enters that are not “real” data; they are just signals to stop
data entry.

The ArrayList class provides a dynamically resizable container that stores lists of objects.

Dynamically resizable describes an object whose size can change during program execution.

An ArrayList’s capacity is the number of items it can hold without having to increase
its size.

An enumerated data type is a programmer-created data type with a fixed set of values.

The enum constants are the allowed values for an enumerated data type.

Type-safe describes a data type for which only appropriate behaviors are allowed.

Chapter Summary
l Sorting is the process of arranging a series of objects in ascending or descending order.

With a bubble sort, you continue to compare pairs of items, swapping them if they are out
of order, so that the smallest items “bubble” to the top of the list, eventually creating a
sorted list.

l With an insertion sort, you look at each list element one at a time, and if an element is out
of order relative to any of the items earlier in the list, you move each earlier item down
one position and then insert the tested element.

l You can sort arrays of objects in much the same way that you sort arrays of primitive
types. The major difference occurs when you make the comparison that determines
whether you want to swap two array elements. When array elements are objects, you
usually want to sort based on a particular object field.

487

Chapter Summary

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

l An array that you can picture as a column of values, and whose elements you can
access using a single subscript, is a one-dimensional or single-dimensional array.
Two-dimensional arrays have both rows and columns. You must use two subscripts
when you access an element in a two-dimensional array. To declare a two-dimensional
array, you type two sets of brackets after the array type.

l The Java Arrays class contains many useful methods for manipulating arrays.
These methods provide ways to easily search, compare, fill, and sort arrays.

l The Java ArrayList class contains useful methods for manipulating dynamically sized
arrays. You can add objects to, remove objects from, and replace objects in ArrayList
containers.

l A programmer-created data type with a fixed set of values is an enumerated data type.
In Java, you create an enumerated data type in a statement that uses the keyword enum,
an identifier for the type, and a pair of curly braces that contain a list of the enum
constants, which are the allowed values for the type.

Review Questions
1. When you place objects in order beginning with the object with the highest value,

you are sorting in order.

a. acquiescing
b. ascending

c. demeaning
d. descending

2. Using a bubble sort involves .

a. comparing parallel arrays
b. comparing each array element to the average
c. comparing each array element to the adjacent array element
d. swapping every array element with its adjacent element

3. When you use a bubble sort to perform an ascending sort, after the first pass
through an array the largest value is .

a. at the beginning of the list
b. in the middle of the list
c. at the end of the list
d. It is impossible to determine the answer without more information.

488

C H A P T E R 9 Advanced Array Concepts

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4. When you use a bubble sort to perform an ascending sort, after the first pass
through an array the smallest value is .

a. at the beginning of the list
b. in the middle of the list
c. at the end of the list
d. It is impossible to determine the answer without more information.

5. When array elements are objects, you usually want to sort based on a
particular of the object.

a. field
b. method

c. name
d. type

6. The following defines a array:

int[][]nums={{1, 2}, {3, 4}, {5, 6}};

a. one-dimensional
b. two-dimensional

c. three-dimensional
d. six-dimensional

7. How many rows are contained in the following array?

double[][] prices = {{2.56, 3.57, 4.58, 5.59},
{12.35, 13.35, 14.35, 15.00}};

a. 1
b. 2

c. 4
d. 8

8. How many columns are contained in the following array?

double[][] prices = {{2.56, 3.57, 4.58, 5.59},
{12.35, 13.35, 14.35, 15.00}};

a. 1
b. 2

c. 4
d. 8

9. In the following array, what is the value of code[2][1]?

char[][] code = {{ 'A ', 'D ', 'M '},
{ 'P ', 'R ', 'S '},
{ 'U ', 'V ', 'Z '}};

a. 'P'

b. 'R'

c. 'U'

d. 'V'

489

Review Questions

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10. In the following array, what is the value of address[1][1]?

String address = {{ "123 Oak ", "345 Elm "},
{ "87 Maple ", "901 Linden "}};

a. "123 Oak "

b. "345 Elm "

c. "87 Maple "

d. "901 Linden "

11. In the following array, what is the value of fees.length?

double[][] fees = {{3.00, 3.50, 4.00, 5.00},
{6.35, 7.35, 8.35, 9.00}};

a. 2
b. 4

c. 8
d. none of the above

12. In the following array, what is the value of fees[1].length?

double[][] fees = {{3.00, 3.50, 4.00, 5.00},
{6.35, 7.35, 8.35, 9.00}};

a. 2
b. 4

c. 8
d. none of the above

13. You place after the data type in the parameter list of a method
that receives a two-dimensional array.

a. a pair of empty brackets
b. two pairs of empty brackets
c. a pair of brackets that contain the number of rows followed by a pair of

empty brackets
d. a pair of empty brackets followed by brackets that contain the number of

columns

14. A array has rows of different lengths.

a. ragged
b. jagged

c. haggard
d. tattered

15. If the value of credits[0].length is not equal to credits[1].length, you
know credits is .

a. a three-dimensional array
b. an uninitialized array

c. a partially populated array
d. a jagged array

490

C H A P T E R 9 Advanced Array Concepts

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

16. Which of the following is true if a successfully running program contains the
following statement:

Arrays.fill(tax, 10);

a. tax is a two-dimensional array.
b. fill() is a nonstatic method.

c. tax is an array with 10 elements.
d. none of the above

17. Which of the following is a requirement when you use a binary search method
with an array?

a. The array must be numeric.
b. The array must have been sorted in ascending order.
c. The array must have at least three elements.
d. none of the above

18. The chief advantage to using the ArrayList class instead of the Arrays class is
that an ArrayList .

a. can be much larger
b. is easier to search
c. is dynamically resizable
d. can be used as an argument to a static method

19. The chief disadvantage to using the ArrayList class instead of the Arrays class is
that an ArrayList .

a. cannot be sorted
b. cannot store primitive data types
c. cannot be accessed using subscripts
d. All of the above are disadvantages to using an ArrayList.

20. An advantage to using an enumerated data type is .

a. errors are reduced because only a limited set of values can be used with
the type

b. time is saved because programs with enumerated types compile faster
c. coding time is reduced because enumerated types are created automatically

by the compiler
d. All of the above are true.

491

Review Questions

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exercises

Programming Exercises

1. Write an application containing an array of 10 String values, and display them
in ascending order. Save the file as SortStrings.java.

2. a. The mean of a list of numbers is its arithmetic average. The median of a list is its
middle value when the values are placed in order. For example, if a list contains
1, 4, 7, 8, and 10, then the mean is 6 and the median is 7. Write an application
that allows you to enter five integers and displays the values, their mean, and
their median. Save the file as MeanMedian.java.

b. Revise the MeanMedian class so that the user can enter any number of
values up to 20. If the list has an even number of values, the median is the
numeric average of the values in the two middle positions. Save the file as
MeanMedian2.java.

3. a. Radio station JAVA wants a class to keep track of recordings it plays. Create
a class named Recording that contains fields to hold methods for setting and
getting a Recording’s title, artist, and playing time in seconds. Save the file as
Recording.java.

b. Write an application that instantiates five Recording objects and prompts
the user for values for the data fields. Then prompt the user to enter which
field the Recordings should be sorted by—song title, artist, or playing time.
Perform the requested sort procedure, and display the Recording objects.
Save the file as RecordingSort.java.

4. In Chapter 8, you created a Salesperson class with fields for an ID number and
sales values. Now, create an application that allows a user to enter values for an
array of seven Salesperson objects. Offer the user the choice of displaying the
objects in order by either ID number or sales value. Save the application as
SalespersonSort.java.

5. In Chapter 8, you created a Salesperson class with fields for an ID number and
sales values. Now, create an application that allows you to store an array that
acts as a database of any number of Salesperson objects up to 20. While the
user decides to continue, offer three options: to add a record to the database,
to delete a record from the database, or to change a record in the database.
Then proceed as follows:

l If the user selects the add option, issue an error message if the database is full.
Otherwise, prompt the user for an ID number. If the ID number already exists
in the database, issue an error message. Otherwise, prompt the user for a sales
value, and add the new record to the database.

492

C H A P T E R 9 Advanced Array Concepts

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

l If the user selects the delete option, issue an error message if the database is
empty. Otherwise, prompt the user for an ID number. If the ID number does
not exist, issue an error message. Otherwise, do not access the record for any
future processing.

l If the user selects the change option, issue an error message if the database is
empty. Otherwise, prompt the user for an ID number. If the requested record
does not exist, issue an error message. Otherwise, prompt the user for a new
sales value, and change the sales value for the record.

After each option executes, display the updated database in ascending order by
Salesperson ID number, and prompt the user to select the next action. Save the
application as SalespersonDatabase.java.

6. Write an application that stores at least four different course names and meeting
days and times in a two-dimensional array. Allow the user to enter a course name
(such as “CIS 110”), and display the day of the week and time that the course is
held (such as “Th 3:30”). If the course does not exist, display an error message.
Save the file as Schedule.java.

7. a. Table 9-6 shows the various services offered by a hair salon, including its prices
and times required:

Create a class that holds the service description, price, and number of
minutes it takes to perform the service. Include a constructor that requires
arguments for all three data fields and three get methods that each return
one of the data field’s values. Save the class as Service.java.

b. Write an application named SalonReport that contains an array to hold six
Service objects, and fill it with the data from Table 9-6. Include methods to
sort the array in ascending order by each of the data fields. Prompt the user for
the preferred sort order, and display the list of services in the requested order.
Save the program as SalonReport.java.

Service Description Price ($) Time (Minutes)

Cut 8.00 15

Shampoo 4.00 10

Manicure 18.00 30

Style 48.00 55

Permanent 18.00 35

Trim 6.00 5

Table 9-6 Salon services, prices, and times

493

Exercises

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8. Create an application that contains an enumeration that represents the days
of the week. Display a list of the days, then prompt the user for a day. Display
business hours for the chosen day. Assume that the business is open from 11 to
5 on Sunday, 9 to 9 on weekdays, and 10 to 6 on Saturday. Save the file as
DayOfWeek.java.

9. Create a class named Majors that includes an enumeration for the six majors offered
by a college as follows: ACC, CHEM, CIS, ENG, HIS, PHYS. Display the enumeration
values for the user, then prompt the user to enter a major. Display the college division
in which the major falls. ACC and CIS are in the Business Division, CHEM and PHYS
are in the Science Division, and ENG and HIS are in the Humanities Division. Save
the file as Majors.java.

10. Create a class named AppointmentKeeper that stores a two-dimensional String
array with 31 rows and 24 columns. The program allows a user to choose a day
and an hour continuously and then to enter a String value that describes an
appointment. After the user finishes entering data, prompt the user continuously
to enter a day, and show the 24 appointment slots for the day. Save the file as
AppointmentKeeper.java. Figure 9-29 shows part of a typical execution.

Figure 9-29 Part of a typical execution of the AppointmentKeeper program

494

C H A P T E R 9 Advanced Array Concepts

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

1. Each of the following files in the Chapter09 folder in your downloadable
student files has syntax and/or logic errors. In each case, determine the
problem and fix the program. After you correct the errors, save each file
using the same filename preceded with Fix. For example, DebugNine1.java
will become FixDebugNine1.java.

a. DebugNine1.java
b. DebugNine2.java
c. DebugNine3.java
d. DebugNine4.java
e. Movie.java, which is used by DebugNine2.java.

Game Zone
1. Create a guessing game called “Does It Have Legs?”, in which you think of an animal

and the computer tries to guess what it is. The game continually becomes “smarter”
as you play because you teach it how to become more specific with its questions.
For example, a typical game session might proceed as follows:

Computer: Does the animal you are thinking of have legs?

Player: Yes.
Computer: Is it a dog?
Player: Yes.
Computer: Yay! I win. Do you want to play again?

Player: Yes.
Computer: Does the animal you are thinking of have legs?

Player: Yes.
Computer: Is it a dog?
Player: No.

Computer: I give up. What was your animal?

Player: Horse.

Computer: Type a question for which the answer is Yes for Dog but No for Horse.

Player: Does it live in the house?

Computer: Do you want to play again?

Player: Yes.
Computer: Does the animal you are thinking of have legs?

Player: Yes.

Debugging Exercises

495

Exercises

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Computer: Does it live in the house?

Player: No.

Computer: Is it a Horse?

Player: No.

Computer: I give up. What was your animal?

Player: Cow.
Computer: Type a question for which the answer is Yes for Horse but No for Cow.

Player: Do people ride it?

Computer: Do you want to play again?

Player: Yes.
Computer: Does the animal you are thinking of have legs?

Player: Yes.
Computer: Does it live in the house?

Player: No.

Computer: Do people ride it?

Player: No.

Computer: Is it a Cow?
Player: Yes.
Computer: Yay! I win. Do you want to play again?

Player: No.

(Hint: You might want to look up “binary trees” on the Internet as a method to
organize this application.)

Save the application as DoesItHaveLegs.java.

2. a. Create a Tic-Tac-Toe game. In this game, two players alternate placing
Xs and Os into a grid until one player has three matching symbols in a row,
either horizontally, vertically, or diagonally. Create a game in which the user
is presented with a three-by-three grid containing the digits 1 through 9.
When the user chooses a position by typing a number, place an X in the
appropriate spot. Generate a random number for the position where the
computer will place an O. Do not allow the player or the computer to place
a symbol where one has already been placed. Figure 9-30 shows the first
four windows in a typical game. When either the player or computer has
three symbols in a row, declare a winner; if all positions have been exhausted
and no one has three symbols in a row, declare a tie. Save the game as
TicTacToe.java.

496

C H A P T E R 9 Advanced Array Concepts

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

b. In the TicTacToe application, the computer’s selection is chosen randomly.
Improve the TicTacToe game so that when the computer has two Os in any
row, column, or diagonal, it selects the winning position for its next move
rather than selecting a position randomly. Save the improved game as
TicTacToe2.java.

3. In Chapter 8, you created an application class named FullDeck that implemented
a 52-element array that represented each card in a standard deck of playing cards.
Now, create an enumeration that holds the four suits: SPADES, HEARTS, DIAMONDS,
and CLUBS. Save the enumeration in a file named Suit.java. Modify the Card
class from Chapter 8 to use the enumeration, and save the class as Card2.java.
Modify the FullDeck application to use the new Card class, and save the
application as FullDeck2.java.

4. In Chapter 7, you improved a Rock Paper Scissors game played between a user
and the computer. Add an enumeration that holds three values that represent
ROCK, PAPER, and SCISSORS, and use it for all comparisons in the program. Save
the file as RockPaperScissors3.java.

Figure 9-30 Typical game of TicTacToe in progress

497

Exercises

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Case Problems

1. In the last chapter, you modified the EventDemo program for Carly’s Catering
to accept and display data for an array of three Event objects. Now, modify
the program to use an array of eight Event objects. Prompt the user to choose
an option to sort Events in ascending order by event number, number of guests,
or event type. Display the sorted list and continue to prompt the user for sorting
options until the user enters a sentinel value. Save the file as EventDemo.java.

2. In the last chapter, you modified the RentalDemo program for Sammy’s Seashore
Supplies to accept and display data for an array of three Rental objects. Now,
modify the program to use an array of eight Rental objects. Prompt the user to
choose an option to sort Rentals in ascending order by contract number, price, or
equipment type. Display the sorted list and continue to prompt the user for sorting
options until the user enters a sentinel value. Save the file as RentalDemo.java.

498

C H A P T E R 9 Advanced Array Concepts

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

