
CHAPTER 7
Characters, Strings,
and the
StringBuilder

In this chapter, you will:

Identify string data problems

Manipulate characters

Declare and compare String objects

Use other String methods

Convert String objects to numbers

Use the StringBuilder and StringBuffer classes

Unless noted otherwise, all images are © 2014 Cengage Learning

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Understanding String Data Problems
Manipulating characters and strings provides some challenges for the beginning Java
programmer. For example, consider the TryToCompareStrings application shown in
Figure 7-1. The main() method declares a String named aName and assigns “Carmen” to it.
The user is then prompted to enter a name. The application compares the two names using
the equivalency operator (==) and displays one of two messages indicating whether the
strings are equivalent.

Figure 7-2 shows the execution of the application. When the user types “Carmen” as the value
for anotherName, the application concludes that the two names are not equal.

The application in Figure 7-1 seems to produce incorrect results. The problem stems from
the fact that in Java, String is a class, and each created String is an object. As an object, a
String variable name is not a simple data type—it is a reference; that is, a variable that holds
a memory address. Therefore, when you compare two String objects using the == operator,
you are comparing not their values but their computer memory locations.

import java.util.Scanner;
public class TryToCompareStrings
{
 public static void main(String[] args)
 {
 String aName = "Carmen";
 String anotherName;
 Scanner input = new Scanner(System.in);
 System.out.print("Enter your name > ");
 anotherName = input.nextLine();
 if(aName == anotherName)
 System.out.println(aName + " equals " + anotherName);
 else
 System.out.println(aName + " does not equal " + anotherName);
 }
}

Don’t Do It
Do not use == to
compare Strings’
contents.

Figure 7-1 The TryToCompareStrings application

Figure 7-2 Execution of the TryToCompareStrings application

350

C H A P T E R 7 Characters, Strings, and the StringBuilder

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Programmers want to compare the contents of memory locations (the values stored there)
more frequently than they want to compare the locations themselves (the addresses).
Fortunately, the creators of Java have provided three classes that you can use when working
with text data; these classes provide you with many methods that make working with
characters and strings easier:

l Character—A class whose instances can hold a single character value and whose
methods manipulate and inspect single-character data

l String—A class for working with fixed-string data—that is, unchanging data composed
of multiple characters

l StringBuilder and StringBuffer—Classes for storing and manipulating changeable data
composed of multiple characters

TWO TRUTHS & A LIE

Understanding String Data Problems

1. A String is a simple data type that can hold text data.

2. Programmers want to compare the values of Strings more frequently than they
want to compare their memory addresses.

3. Character, String, and StringBuilder are useful built-in classes for working
with text data.

. sser dda yr o me ma
sdl ohti , si t aht ; ecner ef er a si e man el bai r av gnirtS A. 1# si t ne met at s esl af ehT

Manipulating Characters
You learned in Chapter 2 that the char data type is used to hold any single character—for
example, a letter, digit, or punctuation mark. In addition to the primitive data type char, Java
offers a Character class. The Character class contains standard methods for testing the
values of characters. Table 7-1 describes many of the Character class methods. The methods
that begin with “is”, such as isUpperCase(), return a Boolean value that can be used in
comparison statements; the methods that begin with “to”, such as toUpperCase(), return a
character that has been converted to the stated format.

351

Manipulating Characters

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The Character class is defined in java.lang and is automatically imported into every program you
write. The Character class inherits from java.lang.Object. You will learn more about the Object
class when you study inheritance concepts in the chapter Introduction to Inheritance.

Figure 7-3 contains an application that uses many of the methods shown in Table 7-1. The
application asks a user to enter a character. A String is accepted and the charAt() method
is used to extract the first character in the user-entered String. (The charAt()method belongs
to the String class; you will learn more about this class and method later in this chapter.) The
application determines the attributes of the character and displays information about it.

import java.util.Scanner;
public class TestCharacter
{

public static void main(String[] args)
{

char aChar;
String aString;
Scanner keyboard = new Scanner(System.in);
System.out.print("Enter a character… ");
aString = keyboard.nextLine();
aChar = aString.charAt(0);
System.out.println("The character is " + aChar);

Figure 7-3 The TestCharacter application (continues)

Method Description
isUpperCase() Tests if character is uppercase

toUpperCase() Returns the uppercase equivalent of the argument; no change is made if
the argument is not a lowercase letter

isLowerCase() Tests if character is lowercase

toLowerCase() Returns the lowercase equivalent of the argument; no change is made if
the argument is not an uppercase letter

isDigit() Returns true if the argument is a digit (0−9) and false otherwise

isLetter() Returns true if the argument is a letter and false otherwise

isLetterOrDigit() Returns true if the argument is a letter or digit and false otherwise

isWhitespace() Returns true if the argument is whitespace and false otherwise; this
includes the space, tab, newline, carriage return, and form feed

Table 7-1 Commonly used methods of the Character class

352

C H A P T E R 7 Characters, Strings, and the StringBuilder

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

if(Character.isUpperCase(aChar))
System.out.println(aChar + " is uppercase");

else
System.out.println(aChar + " is not uppercase");

if(Character.isLowerCase(aChar))
System.out.println(aChar + " is lowercase");

else
System.out.println(aChar + " is not lowercase");

aChar = Character.toLowerCase(aChar);
System.out.println("After toLowerCase(), aChar is " + aChar);
aChar = Character.toUpperCase(aChar);
System.out.println("After toUpperCase(), aChar is " + aChar);
if(Character.isLetterOrDigit(aChar))

System.out.println(aChar + " is a letter or digit");
else

System.out.println(aChar +
" is neither a letter nor a digit");

if(Character.isWhitespace(aChar))
System.out.println(aChar + " is whitespace");

else
System.out.println(aChar + " is not whitespace");

}
}

Figure 7-3 The TestCharacter application

You can tell that each of the Character class methods used in the TestCharacter application in
Figure 7-3 is a static method because the method name is used without an object reference—you use only
the class name, a dot, and the method name. You learned about the difference between static and instance
methods in Chapter 3.

The output of three typical executions of the TestCharacter application is shown in
Figure 7-4. For example, notice that when the character C is tested, you can see the
following:

l The value returned by the isUpperCase() method is true.

l The value returned by the isLowerCase() method is false.

l The value returned by the toLowerCase() method is ‘c’.

l The value returned by the toUpperCase() method is ‘C’.

l The value returned by the isLetterOrDigit() method is true.

l The value returned by the isWhitespace() method is false.

(continued)

353

Manipulating Characters

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Manipulating Characters

1. Character is a class, but char is a simple data type.

2. The Character class method isLowerCase() returns the lowercase version of
any uppercase character.

3. If a char variable holds the Unicode value for the Tab key, isWhitespace()
would be true and isLetterOrDigit() would be false.

. xi f er p si eht esu se man esohwsdoht e mssal c retcarahC eht ll a od sa, eslaf r o
eurt snr ut er)(esaCrewoLsi doht e mssal c retcarahC ehT. 2#si t ne met at s esl af ehT

Figure 7-4 Three typical executions of the TestCharacter application

354

C H A P T E R 7 Characters, Strings, and the StringBuilder

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You Do It

Retrieving and Testing a Character

In this section, you write a short program that extracts a character from a String and
uses its lowercase equivalent.

1. Open a new file in your text editor, and start a program that accepts a
response from a user using an input dialog box.

import javax.swing.JOptionPane;
public class YLoop
{

public static void main(String[] args)
{

2. Declare a constant character that holds the value that indicates a user wants
to continue. Also include the String the user enters, a variable to hold the
contents of the first character in that String, and a count of the number of
iterations performed.

final char YES_OPTION = 'y';
String entryString;
char entryChar;
int count = 0;

3. Accept a String response from the user, and use the charAt() method to
extract the first character in the String.

entryString = JOptionPane.showInputDialog(null,
"Do you want to see a greeting?");

entryChar = entryString.charAt(0);

4. Write a loop that is controlled by comparing the lowercase equivalent of the
entry String’s first character to 'y'. Within the loop, count is incremented
and then displayed along with a greeting and a prompt that asks the user
whether an additional greeting should be displayed. The first character is
extracted from the new String the user enters.

while(Character.toLowerCase(entryChar) == YES_OPTION)
{

++count;
entryString = JOptionPane.showInputDialog(null,

"Greeting #" + count +
" Hello!\nDo you want to see another greeting?");

entryChar = entryString.charAt(0);
}

(continues)

355

Manipulating Characters

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5. Add closing curly braces for the main() method and for the class.

6. Save the file as YLoop.java, and then compile and execute it. Figure 7-5
shows the input dialog box that appears. Whether the user enters Yes, yes,
yeah, Yup, Y, or y, the loop will continue. When the user enters anything that
does not start with y or Y, the loop ends. (If the user clicks OK without
entering anything in the dialog box, an error message is displayed and the
program ends abruptly. You will learn to manage this type of error in the
chapter Exception Handling.)

Examining the Character Class at the Java Web Site

1. Using a Web browser, go to the Java Web site at
www.oracle.com/technetwork/java/index.html, and select
Java APIs and Java SE 7. Using the alphabetical list of classes, find the
Character class and select it.

2. Examine the extensive list of methods for the Character class. Find one
with which you are familiar, such as toLowerCase(). Notice that there are
two overloaded versions of the method. The one you used in the YLoop
application accepts a char and returns a char. The other version that
accepts and returns an int uses Unicode values. Appendix B of this book
provides more information on Unicode.

Figure 7-5 Dialog box displayed by the YLoop application

(continued)

356

C H A P T E R 7 Characters, Strings, and the StringBuilder

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html

Declaring and Comparing String Objects
You learned in Chapter 1 that a sequence of characters enclosed within double quotation
marks is a literal string. (Programmers might also call it a “string literal.”) You have used many
literal strings, such as “First Java application”, and you have assigned values to String objects
and used them within methods, such as println() and showMessageDialog(). A literal
string is an unnamed object, or anonymous object, of the String class, and a String variable
is simply a named object of the same class. The class String is defined in java.lang.String,
which is automatically imported into every program you write.

You have declared a String array named args in every main() method header that you have written.
You will learn about arrays in the next chapter.

When you declare a String object, the String itself—that is, the series of characters contained
in the String—is distinct from the identifier you use to refer to it. You can create a String
object by using the keyword new and the String constructor, just as you would create an object
of any other type. For example, the following statement defines an object named aGreeting,
declares it to be of type String, and assigns an initial value of “Hello” to the String:

String aGreeting = new String("Hello");

The variable aGreeting stores a reference to a String object—it keeps track of where the
String object is stored in memory. When you declare and initialize aGreeting, it links to the
initializing String value. Because Strings are declared so routinely in programs, Java
provides a shortcut, so you can declare a String containing “Hello” with the following
statement that omits the keyword new and does not explicitly call the class constructor:

String aGreeting = "Hello";

Comparing String Values
In Java, String is a class, and each created String is an object. A String variable name is a
reference; that is, a String variable name refers to a location in memory, rather than to a
particular value.

The distinction is subtle, but when you declare a variable of a basic, primitive type, such as
int x = 10;, the memory address where x is located holds the value 10. If you later assign a
new value to x, the new value replaces the old one at the assigned memory address. For
example, if you code x = 45;, then 45 replaces 10 at the address of x.

In contrast, when you declare a String, such as String aGreeting = "Hello";, aGreeting
does not hold the characters “Hello”; instead it holds a memory address where the characters
are stored.

The left side of Figure 7-6 shows a diagram of computer memory if aGreeting happens to be
stored at memory address 10876 and the String “Hello” happens to be stored at memory
address 26040. You cannot choose the memory address where a value is stored. Addresses
such as 10876 and 26040 are chosen by the operating system.

357

Declaring and Comparing String Objects

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

When you refer to aGreeting, you actually are accessing the address of the characters you
want to use. (In the example on the left side of Figure 7-6, the memory location beginning at
address 32564 has not yet been used and holds garbage values.)

If you subsequently assign a new value to aGreeting, such as aGreeting = "Bonjour";,
the address held by aGreeting is altered; now, aGreeting holds a new address where the
characters “Bonjour” are stored. As shown on the right side of Figure 7-6, “Bonjour” is an
entirely new object created with its own location. The “Hello” String is still in memory, but
aGreeting no longer holds its address. Eventually, a part of the Java system called the garbage
collector discards the “Hello” characters. Strings, therefore, are never actually changed;
instead, new Strings are created and String references hold the new addresses. Strings
and other objects that can’t be changed are immutable.

The creators of Java made Strings immutable for several reasons. For example, in environments
where multiple programs (or parts of programs, called threads of execution) run concurrently, one
logical path cannot change a String being used by another path. The compiler can also be made
to execute more efficiently with immutable String objects. In simple programs, you don’t care
much about these features. However, immutability leads to performance problems. Later in this chapter,
you will learn that if you want to use a mutable object to hold strings of characters, you can use the
StringBuilder class.

String aGreeting = "Hello";

Address 10876, named aGreeting

26040

Address 26040

Hello

XXYYZZ223

Address 32564

String aGreeting = "Hello";
aGreeting = "Bonjour";

Address 10876, named aGreeting

32564

Hello

Address 26040

Address 32564

Bonjour

aGreeting
holds the address
where “Hello” is
stored.

aGreeting
holds the address
where “Bonjour”
is stored.

Figure 7-6 Contents of aGreeting at declaration and after an assignment

358

C H A P T E R 7 Characters, Strings, and the StringBuilder

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Because String references hold memory addresses, making simple comparisons between them
often produces misleading results. For example, recall the TryToCompareStrings application in
Figure 7-1. In this example, Java evaluates the String variables aName and anotherName as not
equal because even though the variables contain the same series of characters, one set is
assigned directly and the other is entered from the keyboard and stored in a different area of
memory. When you compare Strings with the == operator, you are comparing their memory
addresses, not their values. Furthermore, when you try to compare Strings using the less-than
(<) or greater-than (>) operator, the program will not even compile.

If you declare two String objects and initialize both to the same value, the value is stored
only once in memory and the two object references hold the same memory address. Because
the String is stored just once, memory is saved. Consider the following example in which
the same value is assigned to two Strings (as opposed to getting one from user input). The
reason for the output in the following example is misleading. When you write the
following code, the output is Strings are the same.

String firstString = "abc";
String secondString = "abc";
if(firstString == secondString)

System.out.println("Strings are the same");

The output is Strings are the same because the memory addresses held by firstString and
secondString are the same, not because their contents are the same.

Fortunately, the String class provides you with a number of useful methods that compare
Strings in the way you usually intend. The String class equals() method evaluates the
contents of two String objects to determine if they are equivalent. The method returns
true if the objects have identical contents, no matter how the contents were assigned. For
example, Figure 7-7 shows a CompareStrings application, which is identical to the
TryToCompareStrings application in Figure 7-1 except for the shaded comparison.

import java.util.Scanner;
public class CompareStrings
{

public static void main(String[] args)
{

String aName = "Carmen";
String anotherName;
Scanner input = new Scanner(System.in);
System.out.print("Enter your name > ");
anotherName = input.nextLine();
if(aName.equals(anotherName))

System.out.println(aName + " equals " + anotherName);
else

System.out.println(aName + " does not equal " + anotherName);
}

}

Figure 7-7 The CompareStrings application

359

Declaring and Comparing String Objects

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

When a user runs the CompareStrings application and enters “Carmen” for the name, the
output appears as shown in Figure 7-8; the contents of the Strings are equal. The String
class equals() method returns true only if two Strings are identical in content. Thus, a
String that refers to “Carmen ” (with a space after the n) is not equivalent to a String that
refers to “Carmen” (with no space after the n).

Technically, the equals() method does not perform an alphabetical comparison with Strings; it
performs a lexicographical comparison—a comparison based on the integer Unicode values of
the characters.

Each String declared in Figure 7-7 (aName and anotherName) is an object of type String,
so each String has access to the String class equals() method. If you analyze how the
equals() method is used in the application in Figure 7-7, you can tell quite a bit about
how the method was written by Java’s creators:

l Because you use the equals() method with a String object and the method uses the
unique contents of that object to make a comparison, you can tell that it is not a static
method.

l Because the call to the equals() method can be used in an if statement, you can tell that
it returns a Boolean value.

l Because you see a String used between the parentheses in the method call, you can tell
that the equals() method takes a String argument.

So, the method header of the equals() method within the String class must be similar to the
following:

public boolean equals(String s)

The only thing you do not know about the method header is the local name used for the
String argument—it might be s, or it might be any other legal Java identifier. When you use a
prewritten method such as equals(), you do not know how the code looks inside it. For
example, you do not know whether the equals() method compares the characters in the
Strings from left to right or from right to left. All you know is that the method returns true if
the two Strings are completely equivalent and false if they are not.

Figure 7-8 Output of the CompareStrings application

360

C H A P T E R 7 Characters, Strings, and the StringBuilder

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Because both aName and anotherName are Strings in the application in Figure 7-7, the aName
object can call equals() with aName.equals(anotherName) as shown, or the anotherName
object could call equals() with anotherName.equals(aName). The equals() method can
take either a variable String object or a literal string as its argument.

The String class equalsIgnoreCase() method is similar to the equals() method. As its
name implies, this method ignores case when determining if two Strings are equivalent.
Thus, if you declare a String as String aName = "Carmen";, then aName.equals("caRMen")
is false, but aName.equalsIgnoreCase("caRMen") is true. This method is useful when users
type responses to prompts in your programs. You cannot predict when a user might use the
Shift key or the Caps Lock key during data entry.

When the String class compareTo() method is used to compare two Strings, it provides
additional information to the user in the form of an integer value. When you use compareTo()
to compare two String objects, the method returns zero only if the two Strings refer to the
same value. If there is any difference between the Strings, a negative number is returned if
the calling object is “less than” the argument, and a positive number is returned if the calling
object is “more than” the argument. Strings are considered “less than” or “more than” each
other based on their Unicode values; thus, “a” is less than “b”, and “b” is less than “c”. For
example, if aName refers to “Roger”, then aName.compareTo("Robert"); returns a 5. The
number is positive, indicating that “Roger” is more than “Robert”. This does not mean that
“Roger” has more characters than “Robert”; it means that “Roger” is alphabetically “more”
than “Robert”. The comparison proceeds as follows:

l The R in “Roger” and the R in “Robert” are compared, and found to be equal.

l The o in “Roger” and the o in “Robert” are compared, and found to be equal.

l The g in “Roger” and the b in “Robert” are compared; they are different. The numeric
value of g minus the numeric value of b is 5 (because g is five letters after b in the
alphabet), so the compareTo() method returns the value 5.

Often, you won’t care what the specific return value of compareTo() is; you simply
want to determine if it is positive or negative. For example, you can use a test such as
if(aWord.compareTo(anotherWord) < 0) to determine whether aWord is alphabetically
less than anotherWord. If aWord is a String variable that refers to the value “hamster”,
and anotherWord is a String variable that refers to the value “iguana”, the comparison
if(aWord.compareTo(anotherWord) < 0) yields true.

Empty and null Strings
Programmers are often confused by the difference between empty Strings and null
Strings. You can create an empty String named word1 and two null Strings named word2
and word3 with the following statements:

String word1 = "";
String word2 = null;
String word3;

361

Declaring and Comparing String Objects

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The empty String word1 references a memory address where no characters are stored. The
null String word2 uses the Java keyword null so that word2 does not yet hold a memory
address. The unassigned String word3 is also a null String by default. A significant
difference between these declarations is that word1 can be used with the String methods
described in this chapter, but word2 and word3 cannot. For example, assuming a String named
someOtherString has been assigned a value, then the comparison
word1.equals(someOtherString) is valid, but word2.equals(someOtherString) causes
an error.

Because Strings are set to null by default, some programmers think explicitly setting a
String to null is redundant. Other programmers feel that explicitly using the keyword null
makes your intentions clearer to those reading your program. You should use the style your
organization recommends.

Watch the video Comparing Strings.

TWO TRUTHS & A LIE

Declaring and Comparing String Objects

1. To create a String object, you must use the keyword new and explicitly call the
class constructor.

2. When you compare Strings with the == operator, you are comparing their
memory addresses, not their values.

3. When you compare Strings with the equals() method, you are comparing
their values, not their memory addresses.

.r ot curt snoc gnirtS eht gnill ac yl ti cil pxet uohti w dna wen dr owyek
eht t uohti wr o hti wt cej bo gnirtS a et aer c nac uoY. 1# si t ne met at s esl af ehT

You Do It

Examining the String Class at the Java Web Site

In this section, you learn more about the String class.

1. Using a Web browser, go to the Java Web site, and select Java APIs and
Java SE 7. Using the alphabetical list of classes, find the String class and
select it.

(continues)

362

C H A P T E R 7 Characters, Strings, and the StringBuilder

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. Examine the equals() method. In the last section you saw this method used
in expressions such as aName.equals(anotherName). Because equals() is
used with the object aName, you could predict that the equals() method is
not static. When you look at the documentation for the equals() method,
you can see this is true. You also can see that it returns a boolean value.
What you might have predicted is that the equals() method takes a String
argument, because anotherName is a String. However, the documentation
shows that the equals() method accepts an Object argument. You will learn
more about the Object class in the chapter Advanced Inheritance Concepts,
but for now understand that a String is a type of Object. Object is a class
from which all other classes stem. In Java, every class is a type of Object.

Using Other String Methods
A wide variety of additional methods are available with the String class. The methods
toUpperCase() and toLowerCase() convert any String to its uppercase or lowercase
equivalent. For example, if you declare a String as String aWord = "something";, then the
string “something” is created in memory and its address is assigned to aWord. The statement
aWord = aWord.toUpperCase() creates “SOMETHING” in memory and assigns its address to
aWord. Because aWord now refers to “SOMETHING,” aWord = aWord.toLowerCase() alters aWord
to refer to “something”.

The length() method is an accessor method that returns the length of a String. For
example, the following statements result in the variable len that holds the value 5.

String greeting = "Hello";
int len = greeting.length();

In Chapter 2, you learned that your own accessor methods often start with the prefix get. The creators of
Java did not follow this convention when naming the length() method.

When you must determine whether a String is empty, it is more efficient to compare its
length to 0 than it is to use the equals() method.

The indexOf() method determines whether a specific character occurs within a String.
If it does, the method returns the position of the character; the first position of a String
is zero. The return value is –1 if the character does not exist in the String. For example,
in String myName = "Stacy";, the value of myName.indexOf('S') is “0”, the value of
myName.indexOf('a') is “2”, and the value of myName.indexOf('q') is “‒1”.

(continued)

363

Using Other String Methods

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The charAt() method requires an integer argument that indicates the position of the
character that the method returns, starting with 0. For example, if myName is a String that
refers to “Stacy”, the value of myName.charAt(0) is “S” and the value of myName.charAt(4) is
“y”. An error occurs if you use an argument that is negative, or greater than or equal to the
length of the calling String . Instead of using a constant argument with charAt(), frequently
you will want to use a variable argument to examine every character in a loop. For example, to
count the number of spaces in the String mySentence, you might write a loop like the
following:

for(int x = 0; x < myName.length(); ++x)
if(mySentence.charAt(x) == ' ')

++countOfSpaces;

The endsWith() method and the startsWith() method each take a String argument and
return true or false if a String object does or does not end or start with the specified
argument. For example, if String myName = "Stacy";, then myName.startsWith("Sta") is
true, and myName.endsWith("z") is false. These methods are case sensitive, so if String
myName = "Stacy";, then myName.startsWith("sta") is false.

The replace() method allows you to replace all occurrences of some character
within a String. For example, if String yourName = "Annette";, then String
goofyName = yourName.replace('n', 'X'); assigns "AXXette" to goofyName.
The statement goofyName = yourName.replace('p', 'X'); would assign "Annette"
to goofyName without any changes because 'p' is not found in yourName.
The replace() method is case sensitive, so if String yourName = "Annette";,
then String goofyName = yourName.replace('N', 'X'); results in no change.

Although not part of the String class, the toString() method is useful when working with
String objects. It converts any object to a String. In particular, it is useful when you want to
convert primitive data types to Strings. So, if you declare theString and someInt = 4;, as
follows, then after the following statements, theString refers to “4”:

String theString;
int someInt = 4;
theString = Integer.toString(someInt);

If you declare another String and a double as follows, then after the following statements,
aString refers to “8.25”:

String aString;
double someDouble = 8.25;
aString = Double.toString(someDouble);

You also can use concatenation to convert any primitive type to a String. You can join a
simple variable to a String, creating a longer String using the + operator. For example, if you
declare a variable as int myAge = 25;, the following statement results in aString that refers
to “My age is 25”:

String aString = "My age is " + myAge;

364

C H A P T E R 7 Characters, Strings, and the StringBuilder

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Similarly, if you write the following, then anotherString refers to “12.34”.

String anotherString;
float someFloat = 12.34f;
anotherString = "" + someFloat;

The Java interpreter first converts the float 12.34f to a String “12.34” and adds it to the empty
String “”.

The toString() method does not originate in the String class; it is a method included in Java
that you can use with any type of object. In the chapter Advanced Inheritance Concepts, you will
learn how to construct versions of the method for your own classes and that toString() originates
in the Object class. You have been using toString() throughout this book without knowing it.
When you use print() and println(), their arguments are automatically converted to
Strings if necessary. You don’t need import statements to use toString() because it is part
of java.lang, which is imported automatically. Because the toString() method you use with
println() takes arguments of any primitive type, including int, char, double, and so on, it is
a working example of polymorphism.

You already know that you can concatenate Strings with other Strings or values by
using a plus sign (+); you have used this approach in methods such as println() and
showMessageDialog() since Chapter 1. For example, you can display a firstName, a
space, and a lastName with the following statement:

System.out.println(firstName + " " + lastName);

In addition, you can extract part of a String with the substring() method and use it
alone or concatenate it with another String. The substring() method takes two integer
arguments—a start position and an end position—that are both based on the fact that a
String’s first position is position zero. The length of the extracted substring is the
difference between the second integer and the first integer; if you call the method
without a second integer argument, the substring extends to the end of the original
string.

For example, the application in Figure 7-9 prompts the user for a customer’s first
and last names. The application then extracts these names so that a friendly business
letter can be constructed. After the application prompts the user to enter a name,
a loop control variable is initialized to 0. While the variable remains less than the
length of the entered name, each character is compared to the space character. When
a space is found, two new strings are created. The first, firstName, is the substring
of the original entry from position 0 to the location where the space was found.
The second, familyName, is the substring of the original entry from the position after
the space to the end of the string. Once the first and last names have been created,
the loop control variable is set to the length of the original string so the loop will
exit and proceed to the display of the friendly business letter. Figure 7-10 shows the
data entry screen as well as the output letter created.

365

Using Other String Methods

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

import javax.swing.*;
public class BusinessLetter
{

public static void main(String[] args)
{

String name;
String firstName = "";
String familyName = "";
int x;
char c;
name = JOptionPane.showInputDialog(null,

"Please enter customer's first and last name");
x = 0;
while(x < name.length())
{

if(name.charAt(x) == ' ')
{

firstName = name.substring(0, x);
familyName = name.substring(x + 1, name.length());
x = name.length();

}
++x;

}
JOptionPane.showMessageDialog(null,

"Dear " + firstName +
",\nI am so glad we are on a first name basis" +
"\nbecause I would like the opportunity to" +
"\ntalk to you about an affordable insurance" +
"\nprotection plan for the entire " + familyName +
"\nfamily. Call A-One Family Insurance today" +
"\nat 1-800-555-9287.");

}
}

Figure 7-9 The BusinessLetter application

To keep the example simple, the BusinessLetter application in Figure 7-9 displays a letter for just one
customer. An actual business application would most likely allow a clerk to enter dozens or even hundreds of
customer names and store them in a data file for future use. You will learn to store data permanently in files in
the chapter File Input and Output. For now, just concentrate on the string-handling capabilities of the
application.

366

C H A P T E R 7 Characters, Strings, and the StringBuilder

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The regionMatches()method can be used to test whether two String regions are the same.
One version of the regionMatches() method takes four arguments—the position at which to
start in the calling String, the other String being compared, the position to start in the other
String, and the length of the comparison. For example, suppose that you have declared two
String objects as follows:

String firstString = "abcde";
String secondString = "xxbcdef";

Then, the expression firstString.regionMatches(1, secondString, 2, 4) is true
because the four-character substring starting at position 1 in firstString is "bcde" and the
four-character substring starting at position 2 in secondString is also "bcde". The expression
firstString.regionMatches(0, secondString, 3, 2) is false because the two-character
substring starting at position 0 in firstString is "ab" and the two-character substring
starting at position 3 in secondString is "cd".

A second version of the regionMatches() method takes an additional boolean argument as
the first argument. This argument represents whether case should be ignored in deciding
whether regions match. For example, suppose that you have declared two Strings as follows:

String thirdString = "123 Maple Drive";
String fourthString = "a maple tree";

Then the following expression is true because the substring of thirdString that starts at
position 4 and continues for five characters is "Maple", the substring of fourthString that
starts at position 2 and continues for five characters is "maple", and the argument that
ignores case has been set to true:

thirdString.regionMatches(true, 4, fourthString, 2, 5)

Figure 7-10 Typical execution of the BusinessLetter application

367

Using Other String Methods

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Using Other String Methods

1. Assume that myName is a String defined as “molly”. The value
of myName.toUpperCase() is “Molly”.

2. Assume that myName is a String defined as “molly”. The value of
myName.length() is “5”.

3. Assume that myName is a String defined as “molly”. The value
of myName.indexOf('M') is –1.

.” YLLOM“ si
)(esaCreppUot.emaNym neht ,”yll o m“ si emaNymfI . 1# si t ne met at s esl af ehT

You Do It

Using String Class Methods

To demonstrate the use of the String methods, in this section you create an
application that asks a user for a name and then “fixes” the name so that the first letter
of each new word is uppercase, whether or not the user entered the name that way.

1. Open a new text file in your text editor. Enter the following first few lines of
a RepairName program. The program declares several variables, including
two strings that will refer to a name: one will be “repaired” with correct
capitalization; the other will be saved as the user entered it so it can be
displayed in its original form at the end of the program. After declaring
the variables, prompt the user for a name:

import javax.swing.*;
public class RepairName
{

public static void main(String[] args)
{

String name, saveOriginalName;
int stringLength;
int i;
char c;
name = JOptionPane.showInputDialog(null,

"Please enter your first and last name");

(continues)

368

C H A P T E R 7 Characters, Strings, and the StringBuilder

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. Store the name entered in the saveOriginalName variable. Next, calculate
the length of the name the user entered, then begin a loop that will examine
every character in the name. The first character of a name is always capitalized,
so when the loop control variable i is 0, the character in that position in the
name string is extracted and converted to its uppercase equivalent. Then the
name is replaced with the uppercase character appended to the remainder
of the existing name.

saveOriginalName = name;
stringLength = name.length();
for(i=0; i < stringLength; i++)
{

c = name.charAt(i);
if(i == 0)
{

c = Character.toUpperCase(c);
name = c + name.substring(1, stringLength);

}

3. After the first character in the name is converted, the program looks through
the rest of the name, testing for spaces and capitalizing every character that
follows a space. When a space is found at position i, i is increased, the next
character is extracted from the name, the character is converted to its
uppercase version, and a new name string is created using the old string up
to the current position, the newly capitalized letter, and the remainder of the
name string. The if…else ends and the for loop ends.

else
if(name.charAt(i) == ' ')
{

++i;
c = name.charAt(i);
c = Character.toUpperCase(c);
name = name.substring(0, i) + c +

name.substring(i + 1, stringLength);
}

}

4. After every character has been examined, display the original and repaired
names, and add closing braces for the main() method and the class.

JOptionPane.showMessageDialog(null, "Original name was " +
saveOriginalName + "\nRepaired name is " + name);

}
}

(continued)

(continues)

369

Using Other String Methods

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5. Save the application as RepairName.java, and then compile and run the
program. Figure 7-11 shows a typical program execution. Make certain you
understand how all the String methods contribute to the success of this
program.

Converting String Objects to Numbers
If a String contains all numbers, as in “649”, you can convert it from a String to a number
so you can use it for arithmetic or you can use it like any other number. For example,
suppose you ask a user to enter a salary in an input dialog box. When you accept input using
showInputDialog(), the accepted value is always a String. To be able to use the value in
arithmetic statements, you must convert the String to a number.

When you use any of the methods described in this section to attempt to convert a String to a number, but
the String does not represent a valid number (for example, if it contains letters), or the String
represents the wrong kind of number (for example, it contains a decimal point but is being converted to an
integer), an error called a NumberFormatException occurs. You will learn about exceptions in the
chapter Exception Handling.

To convert a String to an integer, you use the Integer class, which is part of java.lang and
is automatically imported into programs you write. The Integer class is an example of a
wrapper. A wrapper is a class or object that is “wrapped around” a simpler element; the
Integer wrapper class contains a simple integer and useful methods to manipulate it. You
have already used the parseInt() method, which is part of the Integer class; it takes a
String argument and returns its integer value. For example, the following statement stores
the numeric value 649 in the variable anInt:

int anInt = Integer.parseInt("649");

(continued)

Figure 7-11 Typical execution of the RepairName application

370

C H A P T E R 7 Characters, Strings, and the StringBuilder

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You can then use the integer value just as you would any other integer. You can tell that
parseInt() is a static method because you use it with the class name and not with an object.

Alternatively, you can use the Integer class valueOf() method to convert a String to an
Integer class object, and then use the Integer class intValue() method to extract
the simple integer from its wrapper class. The ConvertStringToInteger application in
Figure 7-12 shows how you can accomplish the conversion. When the user enters a String in
the showInputDialog() method, the String is stored in stringHours. The application then
uses the valueOf() method to convert the String to an Integer object and uses the
intValue() method to extract the integer. When the user enters “37” as the String, it is
converted to a number that can be used in a mathematical statement, and the output appears
as expected; this output is shown in Figure 7-13.

import javax.swing.JOptionPane;
public class ConvertStringToInteger
{

public static void main(String[] args)
{

String stringHours;
int hours;
Integer integerHours;
final double PAY_RATE = 12.25;
stringHours = JOptionPane.showInputDialog(null,

"How many hours did you work this week?");
integerHours = Integer.valueOf(stringHours);
hours = integerHours.intValue();
JOptionPane.showMessageDialog(null, "You worked " +

hours + " hours at $" + PAY_RATE + " per hour" +
"\nThat's $" + (hours * PAY_RATE));

}
}

Figure 7-12 The ConvertStringToInteger application

Figure 7-13 Typical execution of the ConvertStringToInteger application

371

Converting String Objects to Numbers

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

It is also easy to convert a String object to a double value. You must use the Double class,
which, like the Integer class, is a wrapper class and is imported into your programs
automatically. The Double class parseDouble()method takes a String argument and returns
its double value. For example, the following statement stores the numeric value 147.82 in the
variable doubleValue.

double doubleValue = Double.parseDouble("147.82");

To convert a String containing “147.82” to a double, you also can use the following code:

String stringValue = new String("147.82");
Double tempValue = Double.valueOf(stringValue);
double value = tempValue.doubleValue();

In this example, stringValue is passed to the Double.valueOf() method, which returns a
Double object. The doubleValue() method is used with the tempValue object; this method
returns a simple double that is stored in value.

The methods parseInt() and parseDouble() are newer than the valueOf() methods, and many
programmers prefer to use them when writing new applications.

Besides Double and Integer, other wrapper classes such as Float and Long also provide valueOf()
methods that convert Strings to the wrapper types. Additionally, the classes provide parseFloat() and
parseLong() methods, respectively.

Watch the video String Methods.

TWO TRUTHS & A LIE

Converting String Objects to Numbers

1. The Integer and Double classes are wrapper classes.

2. The value of Integer.parseInt("22.22") is 22.

3. The value of Double.parseDouble("22.22") is 22.22.

.r eget ni na ot detr evnoc ebt onnac doht e m)(tnIesrap eht ot t ne mugr a gnirtS eht
esuaceb kr owt on seod)"22.22"(tnIesrap.regetnI. 2# si t ne met at s esl af ehT

372

C H A P T E R 7 Characters, Strings, and the StringBuilder

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You Do It

Converting a String to an Integer

In the next steps, you write a program that prompts the user for a number, reads
characters from the keyboard, stores the characters in a String, and then converts
the String to an integer that can be used in arithmetic statements.

1. Open a new text file in your text editor. Type the first few lines of a
NumberInput class that will accept string input:

import javax.swing.*;
public class NumberInput
{

public static void main(String[] args)
{

2. Declare the following variables for the input String, the integer to which it is
converted, and the result:

String inputString;
int inputNumber;
int result;

3. Declare a constant that holds a multiplier factor. This program will multiply the
user’s input by 10:

final int FACTOR = 10;

4. Enter the following input dialog box statement that stores the user keyboard
input in the String variable inputString:

inputString = JOptionPane.showInputDialog(null,
"Enter a number");

5. Use the following Integer.parseInt() method to convert the input String to
an integer. Then multiply the integer by 10 and display the result:

inputNumber = Integer.parseInt(inputString);
result = inputNumber * FACTOR;
JOptionPane.showMessageDialog(null,

inputNumber + " * " + FACTOR + " = " + result);

6. Add the final two closing curly braces for the program, then save the program
as NumberInput.java and compile and test the program. Figure 7-14 shows
a typical execution. Even though the user enters a String, it can be used
successfully in an arithmetic statement because it was converted using the
parseInt() method.

(continues)

373

Converting String Objects to Numbers

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Examining the parseInt() Method at the Java Web Site

1. Using a Web browser, go to the Java Web site, and select Java APIs and
Java SE 7. Using the alphabetical list of classes, find the Integer class and
select it.

2. Find the parseInt() method that accepts a String parameter and examine
it. You can see that the method is static, which is why you use it with the
class name Integer and not with an object. You also see that it returns an
int. You have used this method since the earliest chapters of this book, but
now that you understand classes, objects, and methods, you can more easily
interpret the Java documentation.

Learning About the StringBuilder
and StringBuffer Classes
In Java, the value of a String is fixed after the String is created; Strings are immutable,
or unchangeable. When you write someString = "Hello"; and follow it with
someString = "Goodbye";, you have neither changed the contents of computer memory
at the address represented by someString nor eliminated the characters “Hello”. Instead,
you have stored “Goodbye” at a new computer memory location and stored the new address
in the someString variable. If you want to modify someString from “Goodbye” to “Goodbye
Everybody”, you cannot add a space and “Everybody” to the someString that contains
“Goodbye”. Instead, you must create an entirely new String, “Goodbye Everybody”, and
assign it to the someString address. If you perform many such operations with Strings, you
end up creating many different String objects in memory, which takes time and resources.

To circumvent these limitations, you can use either the StringBuilder or StringBuffer
class. You use one of these classes, which are alternatives to the String class, when you know
a String will be modified; usually, you can use a StringBuilder or StringBuffer object

Figure 7-14 Typical execution of the NumberInput program

(continued)

374

C H A P T E R 7 Characters, Strings, and the StringBuilder

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

anywhere you would use a String. Like the String class, these two classes are part of the
java.lang package and are automatically imported into every program. The classes are
identical except for the following:

l StringBuilder is more efficient.

l StringBuffer is thread safe. This means you should use it in applications that run
multiple threads of execution, which are units of processing that are scheduled by an
operating system and that can be used to create multiple paths of control during program
execution. Because most programs you write (and all the programs you will write using
this book) contain a single thread, usually you should use StringBuilder.

The rest of this section discusses StringBuilder, but every statement is also true of
StringBuffer.

You can create a StringBuilder object that contains a String with a statement such as the
following:

StringBuilder message = new StringBuilder("Hello there");

When you use the nextLine() method with a Scanner object for console input or a
JOptionPane.showInputDialog() method for GUI input, user input almost always comes
into your program as a String. If you want to work with the input as a StringBuilder object,
you can convert the String using the StringBuilder constructor. For example, the following
statement gets a user’s input using a Scanner object named keyboard and then stores it in the
StringBuilder name:

StringBuilder name = new StringBuilder(keyboard.nextLine());

When you create a String, you have the option of omitting the keyword new, but when you
initialize a StringBuilder object you must use the keyword new, the constructor name, and
an initializing value between the constructor’s parentheses. You can create an empty
StringBuilder variable using a statement such as the following:

StringBuilder uninitializedString = null;

The variable does not refer to anything until you initialize it with a defined StringBuilder
object. Generally, when you create a String object, sufficient memory is allocated to
accommodate the number of Unicode characters in the string. A StringBuilder object,
however, contains a memory block called a buffer, which might or might not contain a string.
Even if it does contain a string, the string might not occupy the entire buffer. In other words,
the length of a string can be different from the length of the buffer. The actual length of the
buffer is the capacity of the StringBuilder object.

You can change the length of a string in a StringBuilder object with the
setLength() method. The length of a StringBuilder object equals the number of
characters in the String contained in the StringBuilder. When you increase a
StringBuilder object’s length to be longer than the String it holds, the extra characters
contain ‘\u0000’. If you use the setLength() method to specify a length shorter than
its String, the string is truncated.

375

Learning About the StringBuilder and StringBuffer Classes

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

To find the capacity of a StringBuilder object, you use the capacity() method. The
StringBuilderDemo application in Figure 7-15 demonstrates this method. The application
creates a nameString object containing the seven characters “Barbara”. The capacity of the
StringBuilder object is obtained and stored in an integer variable named
nameStringCapacity and displayed.

import javax.swing.JOptionPane;
public class StringBuilderDemo
{

public static void main(String[] args)
{

StringBuilder nameString = new StringBuilder("Barbara");
int nameStringCapacity = nameString.capacity();
System.out.println("Capacity of nameString is " +

nameStringCapacity);
StringBuilder addressString = null;
addressString = new

StringBuilder("6311 Hickory Nut Grove Road");
int addStringCapacity = addressString.capacity();
System.out.println("Capacity of addressString is " +

addStringCapacity);
nameString.setLength(20);
System.out.println("The name is " + nameString + "end");
addressString.setLength(20);
System.out.println("The address is " + addressString);

}
}

Figure 7-15 The StringBuilderDemo application

Figure 7-16 shows the StringBuilder capacity is 23, which is 16 characters more than the
length of the string “Barbara”. Whenever you create a StringBuilder object, its capacity is
the length of the String contained in StringBuilder, plus 16. The “extra” 16 positions allow
for reasonable modification of the StringBuilder object after creation without allocating any
new memory locations.

376

C H A P T E R 7 Characters, Strings, and the StringBuilder

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The creators of Java chose 16 characters as the “extra” length for a StringBuilder object
because 16 characters fully occupy four bytes of memory. As you work more with computers in general
and programming in particular, you will notice that storage capacities are almost always created in
exponential values of 2—for example, 4, 8, 16, 32, 64, and so on.

In the application in Figure 7-15, the addressString variable is created as
StringBuilder addressString = null;. The variable does not refer to anything until
it is initialized with the defined StringBuilder object in the following statement:

addressString = new StringBuilder("6311 Hickory Nut Grove Road");

The capacity of this new StringBuilder object is shown in Figure 7-16 as the length of the
string plus 16, or 43.

In the application shown in Figure 7-15, the length of each of the Strings is changed to 20
using the setLength() method. The application displays the expanded nameString and
“end”, so you can see in the output that there are 13 extra spaces at the end of the String.
The application also displays the truncated addressString so that you can see the effect of
reducing its length to 20.

Using StringBuilder objects provides improved computer performance over String objects
because you can insert or append new contents into a StringBuilder. In other words, unlike
immutable Strings, the ability of StringBuilder objects to be modified makes them more
efficient when you know string contents will change.

Although the equals() method compares String object contents, when you use it with
StringBuilder objects, it compares references. You can compare the contents of two
StringBuilder objects named obj1 and obj2 by converting them to Strings with an
expression such as the following:

obj1.toString().equals(obj2.toString())

The StringBuilder class provides you with four constructors as follows:

l public StringBuilder() constructs a StringBuilder with no characters and a default
size of 16 characters.

l public StringBuilder(int capacity) constructs a StringBuilder with no characters
and a capacity specified by the parameter.

Figure 7-16 Output of the StringBuilderDemo application

377

Learning About the StringBuilder and StringBuffer Classes

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

l public StringBuilder(String s) contains the same characters as those stored in the
String object s. The capacity of the StringBuilder is the length of the String argument
you provide, plus 16 additional characters.

l The fourth StringBuilder constructor uses an argument of type CharSequence. CharSequence
is another Java class; it is an interface that holds a sequence of char values. You will
learn to create interfaces in the chapter Advanced Inheritance Concepts.

The append() method lets you add characters to the end of a StringBuilder object.
For example, the following two statements together declare phrase to hold “Happy” and
alter the phrase to hold “Happy birthday”:

StringBuilder phrase = new StringBuilder("Happy");
phrase.append(" birthday");

The insert() method lets you add characters at a specific location within a StringBuilder
object. For example, if phrase refers to “Happy birthday”, then phrase.insert(6, "30th ");
alters the StringBuilder to contain “Happy 30th birthday”. The first character in the
StringBuilder object occupies position zero.

To alter just one character in a StringBuilder, you can use the setCharAt() method,
which allows you to change a character at a specified position within a StringBuilder object.
This method requires two arguments: an integer position and a character. If phrase refers
to “Happy 30th birthday”, then phrase.setCharAt(6,'4'); changes the value into a 40th
birthday greeting.

One way you can extract a character from a StringBuilder object is to use the charAt()
method. The charAt() method accepts an argument that is the offset of the character
position from the beginning of a String and returns the character at that position. The
following statements assign the character ‘P’ to the variable letter:

StringBuilder text = new StringBuilder("Java Programming");
char letter = text.charAt(5);

If you try to use an index that is less than 0 or greater than the index of the last position in the
StringBuilder object, you cause an error known as an exception and your program
terminates.

When you can approximate the eventual size needed for a StringBuilder object, assigning
sufficient capacity can improve program performance. For example, the program in Figure 7-17
compares the time needed to append “Java” 20,000 times to two StringBuilder objects—
one that has the initial default size of 16 characters and another that has an initial size
of 80,000 characters. Figure 7-18 shows the execution. The extra time needed for the
loop that uses the shorter StringBuilder is the result of repeatedly assigning new
memory as the object grows in size.

378

C H A P T E R 7 Characters, Strings, and the StringBuilder

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public class CompareConcatenationTimes
{

public static void main(String[] args)
{

long startTime1, startTime2,
endTime1, endTime2;

final int TIMES = 20000;
int x;
StringBuilder string1 = new StringBuilder("");
StringBuilder string2 = new StringBuilder(TIMES * 4);
startTime1 = System.currentTimeMillis();
for(x = 0; x < TIMES; ++x)

string1.append("Java");
endTime1 = System.currentTimeMillis();
System.out.println("Time for empty StringBuilder : "

+ (endTime1 - startTime1)+ " milliseconds");
startTime2 = System.currentTimeMillis();
for(x = 0; x < TIMES; ++x)

string2.append("Java");
endTime2 = System.currentTimeMillis();
System.out.println("Time for large StringBuilder : "

+ (endTime2 - startTime2)+ " milliseconds");
}

}

Figure 7-17 The CompareConcatenationTimes application

You saw a demonstration of the currentTimeMillis() method in Chapter 6.

Figure 7-18 Output of the CompareConcatenationTimes program

379

Learning About the StringBuilder and StringBuffer Classes

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Watch the video StringBuilder.

TWO TRUTHS & A LIE

Learning About the StringBuilder and StringBuffer Classes

1. When you create a String, you have the option of omitting the keyword new, but
when you initialize a StringBuilder object, you must use the keyword new, the
constructor name, and an initializing value between the constructor’s
parentheses.

2. When you create a StringBuilder object with an initial value of “Juan”, its
capacity is 16.

3. If a StringBuilder named myAddress contains “817”, then
myAddress.append(" Maple Lane"); alters myAddress to contain
“817 Maple Lane”.

. 02f ol at ot a r of , er o m61 sul p, 4, redliuBgnirtS ni
deni at noc gnirtS eht f o ht gnel eht si yti capac sti ,”nauJ“ f o eul avl ai ti ni

na hti wt cej bo redliuBgnirtS a et aer c uoy neh W. 2# si t ne met at s esl af ehT

You Do It

Using StringBuilder Methods

In these steps, you write a program that demonstrates the StringBuilder class.

1. Open a new text file, and type the following first lines of a DemoStringBuilder
class:

public class DemoStringBuilder
{

public static void main(String[] args)
{

2. Use the following code to create a StringBuilder object, and then call a
print() method (that you will create in Step 7) to display the StringBuilder:

(continues)

380

C H A P T E R 7 Characters, Strings, and the StringBuilder

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

StringBuilder str = new StringBuilder("singing");
print(str);

3. Enter the following append() method to add characters to the existing
StringBuilder and display it again:

str.append(" in the dead of ");
print(str);

4. Enter the following insert() method to insert characters. Then display the
StringBuilder, insert additional characters, and display it again:

str.insert(0, "Black");
print(str);
str.insert(5, "bird ");
print(str);

5. Add one more append() and print() combination:

str.append("night");
print(str);

6. Add a closing curly brace for the main() method.

7. Enter the following print() method that displays StringBuilder objects:

public static void print(StringBuilder s)
{

System.out.println(s);
}

8. Type the closing curly brace for the class, and then save the file as
DemoStringBuilder.java. Compile and execute, and then compare your
output to Figure 7-19.

(continued)

Figure 7-19 Output of the DemoStringBuilder application

381

Learning About the StringBuilder and StringBuffer Classes

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Don’t Do It
l Don’t attempt to compare String objects using the standard comparison operators.

The == operator will compare only the addresses of Strings, and the < and > operators
will not work.

l Don’t forget that startsWith(), endsWith(), and replace() are case sensitive, so you
might want to convert participating Strings to the same case before using them.

l Don’t forget to use the new operator and the constructor when declaring initialized
StringBuilder or StringBuffer objects.

Key Terms
A reference is a variable that holds a memory address.

The Character class is one whose instances can hold a single character value. This class also
defines methods that can manipulate or inspect single-character data.

The String class is for working with fixed-string data—that is, unchanging data composed of
multiple characters.

A String variable is a named object of the String class.

An anonymous object is an unnamed object.

Immutable objects cannot be changed.

The String class equals()method evaluates the contents of two String objects to determine
if they are equivalent.

A lexicographical comparison is based on the integer Unicode values of characters.

The String class equalsIgnoreCase() method is similar to the equals() method. As its
name implies, it ignores case when determining if two Strings are equivalent.

The String class compareTo() method is used to compare two Strings; the method returns
zero only if the two Strings refer to the same value. If there is any difference between the
Strings, a negative number is returned if the calling object is “less than” the argument, and a
positive number is returned if the calling object is “more than” the argument.

A null String does not hold a memory address.

The String class toUpperCase() method converts any String to its uppercase equivalent.

The String class toLowerCase() method converts any String to its lowercase equivalent.

The String class length() method returns the length of a String.

382

C H A P T E R 7 Characters, Strings, and the StringBuilder

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The String class indexOf() method determines whether a specific character occurs
within a String. If it does, the method returns the position of the character; the first
position of a String begins with zero. The return value is –1 if the character does not
exist in the String.

The String class charAt()method requires an integer argument that indicates the position of
the character that the method returns.

The String class endsWith()method takes a String argument and returns true or false if a
String object does or does not end with the specified argument.

The String class startsWith()method takes a String argument and returns true or false if
a String object does or does not start with the specified argument.

The String class replace() method replaces all occurrences of some character within
a String.

The toString() method converts any object to a String.

Concatenation is the process of joining a variable to a string to create a longer string.

The substring() method extracts part of a String.

The regionMatches() method tests whether two String regions are the same.

The Integer class is a wrapper class that contains a simple integer and useful methods to
manipulate it.

A wrapper is a class or object that is “wrapped around” a simpler element.

The Integer class parseInt() method takes a String argument and returns its
integer value.

The Double class is a wrapper class that contains a simple double and useful methods to
manipulate it.

The Double class parseDouble() method takes a String argument and returns its
double value.

The StringBuilder class is used as an alternative to the String class because it is more
efficient if a String’s contents will change.

The StringBuffer class is an alternative to the String and StringBuilder classes because it
is efficient and thread safe.

Threads of execution are units of processing that are scheduled by an operating system and
that can be used to create multiple paths of control during program execution.

A buffer is a block of memory.

The capacity of a StringBuilder object is the actual length of the buffer, as opposed to that
of the string contained in the buffer.

383

Key Terms

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The StringBuilder class setLength() method changes the length of the string in a
StringBuilder object.

The StringBuilder class capacity() method returns the actual length, or capacity, of the
StringBuilder object.

The StringBuilder class append() method lets you add characters to the end of a
StringBuilder object.

The StringBuilder class insert() method lets you add characters at a specific location
within a StringBuilder object.

The StringBuilder class setCharAt()method allows you to change a character at a specified
position within a StringBuilder object.

The StringBuilder class charAt() method accepts an argument that is the offset of
the character position from the beginning of a String and returns the character at
that position.

Chapter Summary
l String variables are references, so they require special techniques for making

comparisons.

l The Character class is one whose instances can hold a single character value. This class
also defines methods that can manipulate or inspect single-character data.

l A sequence of characters enclosed within double quotation marks is a literal string. You
can create a String object by using the keyword new and the String constructor. Unlike
other classes, you also can create a String object without using the keyword new or
explicitly calling the class constructor. Strings are immutable. Useful String class
methods include equals(), equalsIgnoreCase(), and compareTo().

l Additional useful String methods include toUpperCase(), toLowerCase(), length(),
indexOf(), charAt(), endsWith(), startsWith(), and replace(). The toString()
method converts any object to a String. You can join Strings with other Strings or
values by using a plus sign (+); this process is called concatenation. You can extract part
of a String with the substring() method.

l If a String contains appropriate characters, you can convert it to a number with the help
of the following methods: Integer.parseInt(), Integer.valueOf(), intValue(),
Double.parseDouble(), Double.valueOf(), and doubleValue().

l You can use the StringBuilder or StringBuffer class to improve performance when a
string’s contents must change.

384

C H A P T E R 7 Characters, Strings, and the StringBuilder

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Review Questions

1. A sequence of characters enclosed within double quotation marks is a .

a. symbolic string
b. literal string

c. prompt
d. command

2. To create a String object, you can use the keyword before
the constructor call, but you are not required to use this format.

a. object

b. create

c. char

d. new

3. A String variable name is a .

a. reference
b. value

c. constant
d. literal

4. The term that programmers use to describe objects that cannot be
changed is .

a. irrevocable
b. nonvolatile

c. immutable
d. stable

5. Suppose that you declare two String objects as:

String word1 = new String("happy");
String word2;

When you ask a user to enter a value for word2, if the user types “happy”, the value
of word1 == word2 is .

a. true

b. false

c. illegal
d. unknown

6. If you declare two String objects as:

String word1 = new String("happy");
String word2 = new String("happy");

the value of word1.equals(word2) is .

a. true

b. false

c. illegal
d. unknown

7. The method that determines whether two String objects are equivalent,
regardless of case, is .

a. equalsNoCase()

b. toUpperCase()

c. equalsIgnoreCase()

d. equals()

385

Review Questions

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8. If a String is declared as:

String aStr = new String("lima bean");

then aStr.equals("Lima Bean") is .

a. true

b. false

c. illegal
d. unknown

9. If you create two String objects:

String name1 = new String("Jordan");
String name2 = new String("Jore");

then name1.compareTo(name2) has a value of .

a. true

b. false

c. –1
d. 1

10. If String myFriend = new String("Ginny");, which of the following has the
value 1?

a. myFriend.compareTo("Gabby");

b. myFriend.compareTo("Gabriella");

c. myFriend.compareTo("Ghazala");

d. myFriend.compareTo("Hammie");

11. If String movie = new String("West Side Story");, the value of
movie.indexOf('s') is .

a. true

b. false

c. 2
d. 3

12. The String class replace() method replaces .

a. a String with a character
b. one String with another String

c. one character in a String with another character
d. every occurrence of a character in a String with another character

13. The toString() method converts a(n) to a String.

a. char

b. int

c. float

d. all of the above

14. Joining Strings with a plus sign is called .

a. chaining
b. concatenation

c. parsing
d. linking

386

C H A P T E R 7 Characters, Strings, and the StringBuilder

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

15. The first position in a String .

a. must be alphabetic
b. must be uppercase
c. is position zero
d. is ignored by the compareTo() method

16. The method that extracts a string from within another string is .

a. extract()

b. parseString()

c. substring()

d. append()

17. The method parseInt() converts a(n) .

a. integer to a String

b. integer to a Double

c. Double to a String

d. String to an integer

18. The difference between int and Integer is .

a. int is a primitive type; Integer is a class
b. int is a class; Integer is a primitive type
c. nonexistent; both are primitive types
d. nonexistent; both are classes

19. For an alternative to the String class, and so that you can change a String’s
contents, you can use .

a. char

b. StringHolder

c. StringBuilder

d. StringMerger

20. Unlike when you create a String, when you create a StringBuilder, you must use
the keyword .

a. buffer

b. new

c. null

d. class

Exercises

Programming Exercises
1. Write an application that prompts the user for three first names and concatenates

them in every possible two-name combination so that new parents can
easily compare them to find the most pleasing baby name. Save the file as
BabyNameComparison.java.

387

Exercises

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. a. Write an application that counts the total number of spaces contained in the
String “The person who says something is impossible should not interrupt the
person who is doing it.” Save the file as CountSpaces.java.

b. Write an application that counts the total number of spaces contained in a String
entered by the user. Save the file as CountSpaces2.java.

3. Write an application that prompts the user for a String that contains at least five
letters and at least five digits. Continuously reprompt the user until a valid String is
entered. Display a message indicating whether the user was successful or did not enter
enough digits, letters, or both. Save the file as FiveLettersAndFiveDigits.java.

4. Write an application that allows a user to enter two Strings. Output the number
of characters in the first String that also appear in the second String, and
output those characters. Figure 7-20 shows two typical executions. Save the file as
CountMatches.java.

5. Write an application that counts the words in a String entered by a user. Words are
separated by any combination of spaces, periods, commas, semicolons, question
marks, exclamation points, or dashes. Figure 7-21 shows two typical executions. Save
the file as CountWords.java.

Figure 7-20 Two typical executions of the CountMatches application

388

C H A P T E R 7 Characters, Strings, and the StringBuilder

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6. a. Write an application that accepts three Strings from the user and displays one of
two messages depending on whether the user entered the Strings in alphabetical
order without regard to case. Save the file as Alphabetize.java.

b. Write an application that accepts three Strings from the user and displays them
in alphabetical order without regard to case. Save the file as Alphabetize2.java.

7. Write an application that demonstrates each of the following methods based on the
following quote:

"You can never cross the ocean until you have the courage to lose sight
of the shore." – Christopher Columbus

l indexOf('v')

l indexOf('x')

l charAt(16)

l endsWith("bus")

l endsWith("car")

l replace('c', 'C')

Save the file as DemonstratingStringMethods.java.

8. Three-letter acronyms are common in the business world. For example, in Java you
use the IDE (Integrated Development Environment) in the JDK (Java Development
Kit) to write programs used by the JVM (Java Virtual Machine) that you might send
over a LAN (local area network). Programmers even use the acronym TLA to stand
for three-letter acronym. Write a program that allows a user to enter three words, and
display the appropriate three-letter acronym in all uppercase letters. If the user enters
more than three words, ignore the extra words. Figure 7-22 shows a typical execution.
Save the file as ThreeLetterAcronym.java.

Figure 7-21 Two typical executions of the CountWords application

389

Exercises

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

9. Prompt a user to enter a series of integers separated by spaces and accept the
input as a String. Display the list of integers and their sum. Save the file as
SumIntegersInString.java.

10. Write an application that determines whether a phrase entered by the user is a
palindrome. A palindrome is a phrase that reads the same backward and forward
without regarding capitalization or punctuation. For example, “Dot saw I was Tod”,
“Was it a car or a cat I saw?”, and “Madam, I’m Adam” are palindromes. Save the
file as Palindrome.java.

11. Write an application that prompts a user for a full name and street address and
constructs an ID from the user’s initials and numeric part of the address. For example,
the user William Henry Harrison who lives at 34 Elm would have an ID of WHH34,
whereas user Addison Mitchell who lives at 1778 Monroe would have an ID of
AM1778. Save the file as ConstructID.java.

12. Write an application that accepts a user’s password from the keyboard. When the
entered password has fewer than six characters, more than 10 characters, or does not
contain at least one letter and one digit, prompt the user again. When the user’s entry
meets all the password requirements, prompt the user to reenter the password, and
do not let the user continue until the second password matches the first one. Save the
file as Password.java.

13. Create a TaxReturn class with fields that hold a taxpayer’s Social Security number, last
name, first name, street address, city, state, zip code, annual income, marital status,
and tax liability. Include a constructor that requires arguments that provide values for
all the fields other than the tax liability. The constructor calculates the tax liability
based on annual income and the percentages in the following table.

Figure 7-22 Typical execution of the ThreeLetterAcronym program

Marital status

Income ($) Single Married

0–20,000 15% 14%

20,001–50,000 22% 20%

50,001 and over 30% 28%

390

C H A P T E R 7 Characters, Strings, and the StringBuilder

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In the TaxReturn class, also include a display method that displays all the TaxReturn
data. Save the file as TaxReturn.java.

Create an application that prompts a user for the data needed to create a TaxReturn.
Continue to prompt the user for data as long as any of the following are true:

l The Social Security number is not in the correct format, with digits and dashes
in the appropriate positions; for example, 999-99-9999.

l The zip code is not five digits.

l The marital status does not begin with one of the following: “S”, “s”, “M”, or “m”.

l The annual income is negative.

After all the input data is correct, create a TaxReturn object and then display its
values. Save the file as PrepareTax.java.

1. Each of the following files in the Chapter07 folder of your downloadable
student files has syntax and/or logic errors. In each case, determine the problem
and fix the program. After you correct the errors, save each file using the same
filename preceded with Fix. For example, DebugSeven1.java will become
FixDebugSeven1.java.

a. DebugSeven1.java
b. DebugSeven2.java

c. DebugSeven3.java
d. DebugSeven4.java

Game Zone

1. a. In Chapter 3, you designed a Card class. The class holds fields that contain a
Card’s value and suit. Currently, the suit is represented by a single character
(s, h, d, or c). Modify the class so that the suit is a string (“Spades”, “Hearts”,
“Diamonds”, or “Clubs”). Also, add a new field to the class to hold the string
representation of a Card’s rank based on its value. Within the Card class
setValue() method, besides setting the numeric value, also set the string rank
value as follows.

Debugging Exercises

391

Exercises

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

b. In Chapter 5, you created a War Card game that randomly selects two cards (one
for the player and one for the computer) and declares a winner (or a tie). Modify
the game to set each Card’s suit as the appropriate string, then execute the game
using the newly modified Card class. Figure 7-23 shows four typical executions.
Recall that in this version of War, you assume that the Ace is the lowest-valued
card. Save the game as War2.java.

2. In Chapter 5, you created a Rock Paper Scissors game. In the game, a player entered a
number to represent one of the three choices. Make the following improvements to
the game:

l Allow the user to enter a string (“rock”, “paper”, or “scissors”) instead of a digit.

l Make sure the game works correctly whether the player enters a choice in
uppercase or lowercase letters or a combination of the two.

Numeric value String value for rank

1 “Ace”

2 through 10 “2” through “10”

11 “Jack”

12 “Queen”

13 “King”

Figure 7-23 Four typical executions of the War2 game

392

C H A P T E R 7 Characters, Strings, and the StringBuilder

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

l To allow for player misspellings, accept the player’s entry as long as the first two
letters are correct. (In other words, if a player types “scixxrs”, you will accept it as
“scissors” because at least the first two letters are correct.)

l When the player does not type at least the first two letters of the choice correctly,
reprompt the player and continue to do so until the player’s entry contains at least
the first two letters of one of the options.

l Allow 10 complete rounds of the game. At the end, display counts of the number
of times the player won, the number of times the computer won, and the number
of tie games.

Save the file as RockPaperScissors2.java.

3. Create a simple guessing game, similar to Hangman, in which the user guesses letters
and then attempts to guess a partially hidden phrase. Display a phrase in which some
of the letters are replaced by asterisks; for example, “G* T***” (for “Go Team”). Each
time the user guesses a letter, either place the letter in the correct spot (or spots) in
the phrase and display it again, or tell the user the guessed letter is not in the phrase.
Display a congratulatory message when the entire correct phrase has been deduced.
Save the game as SecretPhrase.java. In the next chapter, you will modify this
program so that instead of presenting the user with the same phrase every time the
game is played, the program randomly selects the phrase from a list of phrases.

4. Eliza is a famous 1966 computer program written by Joseph Weizenbaum. It imitates
a psychologist (more specifically, a Rogerian therapist) by rephrasing many of a
patient’s statements as questions and posing them to the patient. This type of therapy
(sometimes called nondirectional) is often parodied in movies and television shows, in
which the therapist does not even have to listen to the patient, but gives “canned”
responses that lead the patient from statement to statement. For example, when the
patient says, “I am having trouble with my brother,” the therapist might say, “Tell me
more about your brother.” If the patient says, “I dislike school,” the therapist might
say, “Why do you say you dislike school?” Eliza became a milestone in the history of
computers because it was the first time a computer programmer attempted to create
the illusion of human-to-human interaction.

Create a simple version of Eliza by allowing the user to enter statements continually
until the user quits by typing “Goodbye”. After each statement, have the computer
make one of the following responses:

l If the user entered the word “my” (for example, “I am having trouble with my
brother”), respond with “Tell me more about your” and insert the noun in
question—for example, “Tell me more about your brother”. When you search for
a word in the user’s entry, make sure it is the entire word and not just letters
within another word. For example, when searching formy, make sure it is not part
of another word such as dummy or mystic.

l If the user entered a strong word, such as “love” or “hate”, respond with, “You
seem to have strong feelings about that”.

393

Exercises

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

l Add a few other appropriate responses of your choosing.

l In the absence of any of the preceding inputs, respond with a random phrase
from the following: “Please go on”, “Tell me more”, or “Continue”.

Save the file as Eliza.java.

1. Carly’s Catering provides meals for parties and special events. In previous chapters,
you have developed a class that holds catering event information and an
application that tests the methods using four objects of the class. Now modify the
Event and EventDemo classes as follows:

l Modify the method that sets the event number in the Event class so that if the
argument passed to the method is not a four-character String that starts with
a letter followed by three digits, then the event number is forced to “A000”. If
the initial letter in the event number is not uppercase, force it to be so.

l Add a contact phone number field to the Event class.

l Add a set method for the contact phone number field in the Event class.
Whether the user enters all digits or any combination of digits, spaces, dashes,
dots, or parentheses for a phone number, store it as all digits. For example, if
the user enters (920) 872-9182, store the phone number as 9208729182. If the
user enters a number with fewer or more than 10 digits, store the number as
0000000000.

l Add a get method for the phone number field. The get method returns the
phone number as a String constructed as follows: parentheses surround a
three-digit area code, followed by a space, followed by the three-digit phone
exchange, followed by a hyphen, followed by the last four digits of the phone
number.

l Modify the EventDemo program so that besides the event number and guests,
the program also prompts the user for and retrieves a contact phone number
for each of the sample objects. Display the phone number along with the other
Event details. Test the EventDemo application to make sure it works correctly
with valid and invalid event and phone numbers.

Save the files as Event.java and EventDemo.java.

2. Sammy’s Seashore Supplies rents beach equipment to tourists. In previous
chapters, you have developed a class that holds equipment rental information and
an application that tests the methods using four objects of the class. Now modify
the Rental and RentalDemo classes as follows:

l Modify the method that sets the contract number in the Rental class so that if
the argument passed to the method is not a four-character String that starts

Case Problems
394

C H A P T E R 7 Characters, Strings, and the StringBuilder

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

with a letter followed by three digits, then the contract number is forced to
“A000”. If the initial letter in the contract number is not uppercase, force it
to be so.

l Add a contact phone number field to the Rental class.

l Add a set method for the contact phone number field in the Rental class.
Whether the user enters all digits or any combination of digits, spaces, dashes,
dots, or parentheses for a phone number, store it as all digits. For example, if the
user enters (920) 872-9182, store the phone number as 9208729182. If the user
enters a number with fewer or more than 10 digits, store the number as
0000000000.

l Add a get method for the phone number field. The get method returns the phone
number as a String constructed as follows: parentheses surround a three-digit
area code, followed by a space, followed by the three-digit phone exchange,
followed by a hyphen, followed by the last four digits of the phone number.

l Modify the RentalDemo program so that besides the contract number and
minutes, the program also prompts the user for and retrieves a contact phone
number for each of the sample objects. Display the phone number along with the
other Rental details. Test the RentalDemo application to make sure it works
correctly with valid and invalid contract and phone numbers.

Save the files as Rental.java and RentalDemo.java.

395

Exercises

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

