
CHAPTER 5
Making Decisions

In this chapter, you will:

Plan decision-making logic

Make decisions with the if and if…else structures

Use multiple statements in if and if…else clauses

Nest if and if…else statements

Use AND and OR operators

Make accurate and efficient decisions

Use the switch statement

Use the conditional and NOT operators

Assess operator precedence

Add decisions and constructors to instance methods

Unless noted otherwise, all images are © 2014 Cengage Learning

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Planning Decision-Making Logic
When computer programmers write programs, they rarely just sit down at a keyboard and
begin typing. Programmers must plan the complex portions of programs using paper and
pencil. Programmers often use pseudocode, a tool that helps them plan a program’s logic
by writing plain English statements. Using pseudocode requires that you write down the
steps needed to accomplish a given task. You write pseudocode in everyday language, not
the syntax used in a programming language. In fact, a task you write in pseudocode does
not have to be computer-related. If you have ever written a list of directions to your
house—for example, (1) go west on Algonquin Road, (2) turn left on Roselle Road,
(3) enter expressway heading east, and so on—you have written pseudocode. A flowchart
is similar to pseudocode, but you write the steps in diagram form, as a series of shapes
connected by arrows.

Some programmers use a variety of shapes to represent
different tasks in their flowcharts, but you can draw simple
flowcharts that express very complex situations using just
rectangles and diamonds. You use a rectangle to represent
any unconditional step and a diamond to represent any
decision. For example, Figure 5-1 shows a flowchart
describing driving directions to a friend’s house. The logic
in Figure 5-1 is an example of a logical structure called
a sequence structure—one step follows another
unconditionally. A sequence structure might contain
any number of steps, but when one task follows another
with no chance to branch away or skip a step, you are
using a sequence.

Sometimes, logical steps do not follow in an unconditional
sequence—some tasks might or might not occur based on
decisions you make. To represent a decision, flowchart
creators use a diamond shape to hold a question, and they
draw paths to alternative courses of action emerging from
the sides of the diamonds. Figure 5-2 shows a flowchart
describing directions in which the execution of some
steps depends on decisions.

Go west on
Algonquin Road

Turn left on
Roselle Road

Enter expressway
heading east

Exit south at
Arlington
Heights Road

Proceed to 688
Arlington
Heights Road

Figure 5-1 Flowchart of
a series of sequential steps

242

C H A P T E R 5 Making Decisions

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 5-2 includes a decision
structure—one that involves
choosing between alternative
courses of action based on
some value within a program.
For example, the program that
produces your paycheck can
make decisions about the proper
amount to withhold for taxes,
the program that guides a missile
can alter its course, and a
program that monitors your
blood pressure during surgery
can determine when to sound
an alarm. Making decisions is
what makes computer
programs seem “smart.”

When reduced to their most
basic form, all computer
decisions are yes-or-no
decisions. That is, the answer
to every computer question
is yes or no (or true or false,
or on or off). This is because
computer circuitry consists of
millions of tiny switches that
are either on or off, and the
result of every decision sets
one of these switches in
memory. As you learned in
Chapter 2, the values true
and false are Boolean values;
every computer decision
results in a Boolean value.
Thus, internally, a program
never asks, for example, “What number did the user enter?” Instead, the decisions might
be “Did the user enter a 1?” “If not, did the user enter a 2?” “If not, did the user enter a 3?”

Sir George Boole lived from 1815 to 1864. He developed a type of linguistic algebra, based on 0s and 1s,
the three most basic operations of which were (and still are) AND, OR, and NOT. All computer logic is based
on his discoveries.

Go west on
Algonquin Road

Turn left on
Roselle Road

Is the expressway
backed up?

Enter expressway
heading east

no yes

Exit south at
Arlington
Heights Road

Proceed to 688
Arlington
Heights Road

Continue on
Roselle to Golf
Road

Turn left on
Golf

Turn right on
Arlington
Heights Road

Figure 5-2 Flowchart including a decision

243

Planning Decision-Making Logic

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Planning Decision-Making Logic

1. Pseudocode and flowcharts are both tools that are used to check the syntax
of computer programs.

2. In a sequence structure, one step follows another unconditionally.

3. In a decision structure, alternative courses of action are chosen based on a
Boolean value.

. ci gol s’ mar gor p a nal p sr e mmar gor p
pl eht aht sl oot ht ob er a str ahcwolf dna edocoduesP. 1# si t ne met at s esl af ehT

The if and if…else Structures
In Java, the simplest statement you can use to make a decision is the if statement. For
example, suppose you have declared an integer variable named quizScore, and you want
to display a message when the value of quizScore is 10. The if statement in Figure 5-3
makes the decision whether to produce output. Note that the double equal sign (==) is
used to determine equality; it is Java’s equivalency operator.

In the example in Figure 5-3, if quizScore holds the value 10, the Boolean value of the
expression quizScore == 10 is true, and the subsequent output statement executes. If the
value of the expression quizScore == 10 is false, the output statement does not execute.

false true

if(quizScore == 10)
 System.out.println("The score is perfect");

quizScore
== 10?

output "The
score is perfect"

Figure 5-3 A Java if statement

244

C H A P T E R 5 Making Decisions

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

As the flowchart segment shows, whether the tested expression is true or false, the
program continues and executes any statements that follow the if statement.

An if statement always includes parentheses. Within the parentheses, you can place any
Boolean expression. Most often you use a comparison that includes one of the relational
operators you learned about in Chapter 2 (==, <, >, <=, >=, or !=). However, you can use any
expression that evaluates as true or false, such as a simple boolean variable or a call to a
method that returns a boolean value.

Pitfall: Misplacing a Semicolon in an if Statement
In a Java if statement, the Boolean expression, such as (quizScore == 10), must appear
within parentheses. In Figure 5-3, there is no semicolon at the end of the first line of the
if statement following the parentheses because the statement does not end there.
The statement ends after the println() call, so that is where you type the semicolon.
You could type the entire if statement on one line and it would execute correctly;
however, the two-line format for the if statement is more conventional and easier to
read, so you usually type if and the Boolean expression on one line, press Enter, and
then indent a few spaces before coding the action that occurs if the Boolean expression
evaluates as true. Be careful—if you use the two-line format and type a semicolon at
the end of the first line, as in the example shown in Figure 5-4, the results might not be
what you intended.

false true

if(quizScore == 10);
 System.out.println("The score is perfect");

quizScore
== 10?

This indentation
has no effect.

This statement executes
no matter what the
value of quizScore is.

output "The score
is perfect"

This semicolon was
unintentional.

Don’t Do It

Figure 5-4 Logic that executes when an extra semicolon is inserted in an if statement

245

The if and if…else Structures

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

When the Boolean expression in Figure 5-4 is true, an empty statement that contains only
a semicolon executes. Whether the tested expression evaluates as true or false, the decision is
over immediately, and execution continues with the next independent statement that displays a
message. In this case, because of the incorrect semicolon, the if statement accomplishes nothing.

Pitfall: Using the Assignment Operator Instead
of the Equivalency Operator
Another common programming error occurs when a programmer uses a single equal sign
rather than the double equal sign when attempting to determine equivalency. The expression
quizScore = 10 does not compare quizScore to 10; instead, it attempts to assign the
value 10 to quizScore. When the expression quizScore = 10 is used in the if statement,
the assignment is illegal because only Boolean expressions are allowed. The confusion arises
in part because the single equal sign is used within Boolean expressions in if statements
in several older programming languages, such as COBOL, Pascal, and BASIC. Adding to
the confusion, Java programmers use the word equals when speaking of equivalencies.
For example, you might say, “If quizScore equals 10…”.

The expression if(x = true) will compile only if x is a boolean variable, because it would be legal to
assign true to x. However, such a statement would be useless because the value of such an expression
could never be false.

An alternative to using a Boolean expression in an if statement, such as quizScore == 10, is
to store the Boolean expression’s value in a Boolean variable. For example, if isPerfectScore
is a Boolean variable, then the following statement compares quizScore to 10 and stores true
or false in isPerfectScore:

isPerfectScore = (quizScore == 10);

Then, you can write the if statement as:
if(isPerfectScore)

System.out.println("The score is perfect");

This adds an extra step to the program, but makes the if statement more similar to an
English-language statement.

When comparing a variable to a constant, some programmers prefer to place the constant to the left of the
comparison operator, as in 10 == quizScore. This practice is a holdover from other programming
languages, such as C++, in which an accidental assignment might be made when the programmer types the
assignment operator (a single equal sign) instead of the comparison operator (the double equal sign). In Java,
the compiler does not allow you to make a mistaken assignment in a Boolean expression.

Pitfall: Attempting to Compare Objects Using
the Relational Operators
You can use the standard relational operators (==, <, >, <=, >=, and !=) to compare the values
of primitive data types such as int and double. However, you cannot use <, >, <=, or >= to

246

C H A P T E R 5 Making Decisions

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

compare objects; a program containing such comparisons does not compile. You can use
the equals and not equals comparisons (== and !=) with objects, but when you use them,
you compare the objects’ memory addresses instead of their values. Recall that every
object name is a reference; the equivalency operators compare objects’ references. In other
words, == only yields true for two objects when they refer to the same object in memory,
not when they are different objects with the same value. To compare the values of objects,
you should write specialized methods. Remember, Strings are objects, so do not use == to
compare Strings. You will learn more about this in the chapter Characters, Strings, and
the StringBuilder.

Although object names are references, their field names are not references if they represent
simple, primitive data types. You can compare the values between objects’ fields by using
public accessor methods. For example, suppose you have created a class named Student with
a double grade point average field and a nonstatic public method named getGpa(). After
instantiating two objects named student1 and student2, you can write a statement such
as the following:

if(student1.getGpa() > student2.getGpa())
System.out.println("The first student has a higher gpa");

The values represented by student1.getGpa() and student2.getGpa() are both doubles,
so they can be compared using any of the relational operators.

The if…else Structure
Consider the following statement:

if(quizScore == 10)
System.out.println("The score is perfect");

Such a statement is sometimes called a single-alternative if because the program only
performs an action, or not, based on one alternative; in this example, a statement is displayed
when quizScore is 10. Often, you require two options for the course of action following a
decision. A dual-alternative if is the decision structure you use when you need to take one or
the other of two possible courses of action. For example, you would use a dual-alternative
if structure if you wanted to display one message when the value of quizScore is 10 and
a different message when it is not. In Java, the if…else statement provides the mechanism
to perform one action when a Boolean expression evaluates as true and to perform a
different action when a Boolean expression evaluates as false.

The code in Figure 5-5 displays one of two messages. In this example, when the value of
quizScore is 10, the if clause of the statement executes, displaying the message “The score is
perfect”. When quizScore is any other value, the else clause of the statement executes and
the program displays the message “No, it’s not”. You can code an if without an else, but it is
illegal to code an else without an if that precedes it.

247

The if and if…else Structures

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The indentation shown in the example code in Figure 5-5 is not required but is standard
usage. You vertically align the keyword if with the keyword else, and then indent the
action statements that depend on the evaluation.

When you execute an if…else statement, only one of the resulting actions takes place
depending on the evaluation of the Boolean expression. Each statement, the one following the
if and the one following the else, is a complete statement, so each ends with a semicolon.

Watch the video Making Decisions.

TWO TRUTHS & A LIE

The if and if…else Structures

1. In a Java if statement, the keyword if is followed by a Boolean expression
within parentheses.

2. In a Java if statement, a semicolon follows the Boolean expression.

3. When determining equivalency in Java, you use a double equal sign.

. yt p me si
t ne met at s fi eht f o ydob eht neht , noi sser pxe nael ooB eht s woll of nol oci mes afI
. eurt si noi sser pxe nael ooB eht fi r ucco dl uohs t aht noi t ca eht gni woll of desu si tI

.t ne met at s eht sdne nol oci mes a,t ne met at s fi avaJ a nI . 2# si t ne met at s esl af ehT

false true

if(quizScore == 10)
 System.out.println("The score is perfect");
else
 System.out.println("No, it's not");

quizScore
== 10?

output "The score
is perfect"

output "No,
it's not"

Figure 5-5 An if…else structure

248

C H A P T E R 5 Making Decisions

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You Do It

Using an if…else Statement

In this section, you start writing a program for Sacks Fifth Avenue, a nonprofit thrift
shop. The program determines which volunteer to assign to price a donated item. To
begin, you prompt the user to answer a question about whether a donation is clothing
or some other type, and then the program displays the name of the volunteer who
handles such donations. Clothing donations are handled by Regina, and other dona-
tions are handled by Marco.

1. Open a new text file, and then enter the first lines of code to create a class
named AssignVolunteer. You import the Scanner class so that you can use
keyboard input. The class contains a main() method that performs all the
work of the class:

import java.util.Scanner;
public class AssignVolunteer
{

public static void main(String[] args)
{

2. On new lines, declare the variables and constants this application uses. The
user will be prompted to enter one of the values stored in the two constants.
That value will then be assigned to the integer donationType and compared to
the CLOTHING_CODE constant. Then, based on the results of that comparison,
the program will assign the value of one of the PRICER constants to the String
variable volunteer.

int donationType;
String volunteer;
final int CLOTHING_CODE = 1;
final int OTHER_CODE = 2;
final String CLOTHING_PRICER = "Regina";
final String OTHER_PRICER = "Marco";

3. Define the input device, and then add the code that prompts the user to
enter a 1 or 2 for the donation type. Accept the response, and assign it to
donationType:

Scanner input = new Scanner(System.in);
System.out.println("What type of donation is this?");
System.out.print("Enter " + CLOTHING_CODE + " for clothing, " +

OTHER_CODE + " for anything else… ");
donationType = input.nextInt();

(continues)

249

The if and if…else Structures

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4. Use an if…else statement to choose the name of the volunteer to be assigned
to the volunteer String, as follows:

if(donationType == CLOTHING_CODE)
volunteer = CLOTHING_PRICER;

else
volunteer = OTHER_PRICER;

5. Display the chosen code and corresponding volunteer’s name:

System.out.println("You entered " + donationType);
System.out.println("The volunteer who will price this item is " +

volunteer);

6. Type the two closing curly braces to end the main() method and the
AssignVolunteer class.

7. Save the program as AssignVolunteer.java, and then compile and run the
program. Confirm that the program selects the correct volunteer when you
choose 1 for a clothing donation or 2 for any other donation type. For example,
Figure 5-6 shows a typical execution of the program when the user enters 1
for a clothing donation.

Using Multiple Statements in if and if…else Clauses
Often, you want to take more than one action following the evaluation of a Boolean
expression within an if statement. For example, you might want to display several separate
lines of output or perform several mathematical calculations. To execute more than one
statement that depends on the evaluation of a Boolean expression, you use a pair of curly
braces to place the dependent statements within a block. For example, the program

(continued)

Figure 5-6 Typical execution of the AssignVolunteer application

250

C H A P T E R 5 Making Decisions

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

segment shown in Figure 5-7 determines whether an employee has worked more than the
value of a FULL_WEEK constant; if so, the program computes regular and overtime pay.

When you place a block within an if statement, it is crucial to place the curly braces
correctly. For example, in Figure 5-8, the curly braces have been omitted. Within the code
segment in Figure 5-8, when hoursWorked > FULL_WEEK is true, regularPay is calculated
and the if expression ends. The next statement that computes overtimePay executes
every time the program runs, no matter what value is stored in hoursWorked. This last
statement does not depend on the if statement; it is an independent, stand-alone statement.
The indentation might be deceiving; it looks as though two statements depend on the
if statement, but indentation does not cause statements following an if statement to
be dependent. Rather, curly braces are required if multiple statements must be treated as
a block.

When you create a block, you do not have to place multiple statements within it. It is perfectly
legal to place curly braces around a single statement. For clarity, some programmers always
use curly braces to surround the actions in an if statement, even when there is only one
statement in the block.

false true

if(hoursWorked > FULL_WEEK)
{
 regularPay = FULL_WEEK * rate;
 overtimePay = (hoursWorked – FULL_WEEK) * OT_RATE * rate;
}

hoursWorked >
FULL_WEEK?

regularPay = FULL_WEEK * rate

overtimePay = (hoursWorked –
FULL_WEEK) * OT_RATE * rate

The if structure
ends here.

Figure 5-7 An if structure that determines pay

251

Using Multiple Statements in if and if…else Clauses

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Because the curly braces are missing, regardless of whether hoursWorked is more than
FULL_WEEK, the last statement in Figure 5-8 is a new stand-alone statement that is not part
of the if, and so it always executes. If hoursWorked is 30, for example, and FULL_WEEK is 40,
then the program calculates the value of overtimePay as a negative number (because
30 minus 40 results in −10). Therefore, the output is incorrect. Correct blocking is crucial
to achieving valid output.

When you fail to block statements that should depend on an if, and you also use an else
clause, the program will not compile. For example, consider the following code:

if(hoursWorked > FULL_WEEK)
regularPay = FULL_WEEK * rate;
overtimePay = (hoursWorked – FULL_WEEK) * OT_RATE * rate;

else
regularPay = FULL_WEEK * rate;

In this case, the if statement ends after the first regularPay calculation, and the second
complete stand-alone statement performs the overtimePay calculation. The third statement
in this code starts with else, which is illegal. An error message will indicate that the program
contains “else without if”.

false true

if(hoursWorked > FULL_WEEK)
 regularPay = FULL_WEEK * rate;
 overtimePay = (hoursWorked – FULL_WEEK) * OT_RATE * rate;

hoursWorked >
FULL_WEEK?

regularPay = FULL_WEEK * rate

overtimePay = (hoursWorked –
FULL_WEEK) * OT_RATE * rate

This indentation is
ignored by the
compiler.

The if structure ends
here.

Don’t Do It

The overtime calculation
is always performed no
matter what the value of
hoursWorked is.

Don’t Do It

Figure 5-8 Erroneous overtime pay calculation with missing curly braces

These statements
should be blocked.

Don’t Do It

252

C H A P T E R 5 Making Decisions

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Just as you can block statements to depend on an if, you can also block statements to
depend on an else. Figure 5-9 shows an application that contains an if structure with
two dependent statements and an else with two dependent statements. The program
executes the final println() statement without regard to the hoursWorked variable’s
value; it is not part of the if structure. Figure 5-10 shows the output from two executions
of the program. In the first execution, the user entered 39 for the hoursWorked value and
20.00 for rate; in the second execution, the user entered 42 for hoursWorked and 20.00
for rate.

import java.util.Scanner;
public class Payroll
{

public static void main(String[] args)
{

double rate;
double hoursWorked;
double regularPay;
double overtimePay;
final int FULL_WEEK = 40;
final double OT_RATE = 1.5;
Scanner keyboard = new Scanner(System.in);
System.out.print("How many hours did you work this week? ");
hoursWorked = keyboard.nextDouble();
System.out.print("What is your regular pay rate? ");
rate = keyboard.nextDouble();
if(hoursWorked > FULL_WEEK)
{

regularPay = FULL_WEEK * rate;
overtimePay = (hoursWorked - FULL_WEEK) * OT_RATE * rate;

}
else
{

regularPay = hoursWorked * rate;
overtimePay = 0.0;

}
System.out.println("Regular pay is " +

regularPay + "\nOvertime pay is " + overtimePay);
}

}

Figure 5-9 Payroll application containing an if and else clause with blocks

253

Using Multiple Statements in if and if…else Clauses

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

...so it is not
recognized here.

The sum variable is
declared in this block...

When you block statements, you must remember that any variable you declare within a block
is local to that block. For example, the following code segment contains a variable named
sum that is local to the block following the if. The last println() statement causes an
error because the sum variable is not recognized:

if(a == b)
{

int sum = a + b;
System.out.println

("The two variables are equal");
}
System.out.println("The sum is " + sum);

TWO TRUTHS & A LIE

Using Multiple Statements in if and if…else Clauses

1. To execute more than one statement that depends on the evaluation of a
Boolean expression, you use a pair of curly braces to place the dependent
statements within a block.

2. Indentation can be used to cause statements following an if statement to
depend on the evaluation of the Boolean expression.

3. When you declare a variable within a block, it is local to that block.

. kcol b a sa det aert ebt su m
st ne met at s el pi tl u mfi deri uqer er a secar b yl r uc;t nedneped eb ot t ne met at s fi
na gni woll of st ne met at s esuact on seod noi t at nednI . 2# si t ne met at s esl af ehT

Figure 5-10 Output of the Payroll application

254

C H A P T E R 5 Making Decisions

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You Do It

Using Multiple Statements in if and else Clauses

In this section, you use a block of code to add multiple actions to an if…else
statement.

1. Open the AssignVolunteer application from the previous “You Do It” section.
Change the class name to AssignVolunteer2, and immediately save the file
as AssignVolunteer2.java.

2. Add a String to the variables. This String will be assigned a message that
displays the donation type:

String message;

3. In place of the existing if…else statement in the program, insert the following
statement that takes two blocked actions for each donation type. It assigns a
volunteer and assigns a value to the message String.

if(donationType == CLOTHING_CODE)
{

volunteer = CLOTHING_PRICER;
message = "a clothing donation";

}
else
{

volunteer = OTHER_PRICER;
message = "another donation type";

}

4. Following the output statement that displays the donation type, add the
following statement that displays the assigned message:

System.out.println("This is " + message);

(continues)

255

Using Multiple Statements in if and if…else Clauses

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5. Save the file, and compile and execute the program. Figure 5-11 shows two
executions.

Nesting if and if…else Statements
Within an if or an else clause, you can code as many dependent statements as you need,
including other if and else structures. Statements in which an if structure is contained
inside another if structure are commonly called nested if statements. Nested if statements
are particularly useful when two conditions must be met before some action is taken.

For example, suppose you want to pay a $50 bonus to a salesperson only if the salesperson
sells at least three items that total at least $1,000 in value during a specified time. Figure 5-12
shows the logic and the code to solve the problem.

(continued)

Figure 5-11 Two executions of the AssignVolunteer2 program

256

C H A P T E R 5 Making Decisions

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Notice there are no semicolons in the if statement code shown in Figure 5-12 until after the
bonus = SALES_BONUS; statement. The expression itemsSold >= MIN_ITEMS is evaluated
first. Only if this expression is true does the program evaluate the second Boolean expression,
totalValue >= MIN_VALUE. If that expression is also true, the bonus assignment statement
executes, and the if structure ends.

When you use nested if statements, you must pay careful attention to placement of any
else clauses. For example, suppose you want to distribute bonuses on a revised schedule.
If the salesperson does not sell at least three items, you want to give a $10 bonus. If the
salesperson sells at least three items whose combined value is less than $1,000, the bonus
is $25. If the salesperson sells at least three items whose combined value is at least $1,000,
the bonus is $50. Figure 5-13 shows the logic.

The Boolean expression in each
if statement must be true for
the bonus assignment to be
made.

truefalse

false trueitemsSold >=
MIN_ITEMS?

totalValue >=
MIN_VALUE?

bonus =
SALES_BONUS

final int MIN_ITEMS = 3;
final int MIN_VALUE = 1000;
final int SALES_BONUS = 50;
int bonus = 0;

if(itemsSold >= MIN_ITEMS)
 if(totalValue >= MIN_VALUE)
 bonus = SALES_BONUS;

Figure 5-12 Determining whether to assign a bonus using nested if statements

257

Nesting if and if…else Statements

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

As Figure 5-13 shows, when one if statement follows another, the first else clause
encountered is paired with the most recent if encountered. In this figure, the complete
nested if…else structure fits entirely within the if portion of the outer if…else statement.
No matter how many levels of if…else statements are needed to produce a solution, the else
statements are always associated with their ifs on a “first in-last out” basis. In Figure 5-13,
the indentation of the lines of code helps to show which else statement is paired with which
if statement. Remember, the compiler does not take indentation into account, but consistent
indentation can help readers understand a program’s logic.

TWO TRUTHS & A LIE

Nesting if and if…else Statements

1. Statements in which an if structure is contained inside another if structure
commonly are called nested if statements.

2. When one if statement follows another, the first else clause encountered is
paired with the first if that occurred before it.

3. A complete nested if…else structure always fits entirely within either the if
portion or the else portion of its outer if…else statement.

. der et nuocne fi t necer t so meht hti w deri ap si der et nuocne esual c
esle t srif eht ,r eht ona s woll of t ne met at s fi eno neh W. 2# si t ne met at s esl af ehT

final int MIN_ITEMS = 3;
final int MIN_VALUE = 1000;
final int LARGE_BONUS= 50;
final int MEDIUM_BONUS = 25;
final int SMALL_BONUS = 10;

int bonus = 0;

if(itemsSold >= MIN_ITEMS)
 if(totalValue >= MIN_VALUE)
 bonus = LARGE_BONUS;
 else
 bonus = MEDIUM_BONUS;
else
 bonus = SMALL_BONUS;

false true

false trueitemsSold >=
MIN_ITEMS?

bonus =
LARGE_BONUS

totalValue >=
MIN_VALUE?

bonus =
MEDIUM_BONUS

bonus =
SMALL_BONUS

The last else goes
with the first if.

Figure 5-13 Determining one of three bonuses using nested if statements

258

C H A P T E R 5 Making Decisions

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You Do It

Using a Nested if Statement

In this section, you add a nested if statement to the AssignVolunteer2 application.

1. Rerun the AssignVolunteer2 program, and enter an invalid code, such as 3.
The selected volunteer is Marco because the program tests only for an
entered value of 1 or not 1. Modify the program to display the entered code,
volunteer, and donation type message only when the entered value is 1 or 2,
and to display the entered code and an error message otherwise. Rename the
class AssignVolunteer3, and save the file as AssignVolunteer3.java.
Figure 5-14 shows two typical executions of the program.

Using Logical AND and OR Operators
In Java, you can combine two Boolean tests into a single expression using the logical
AND and OR operators.

The AND Operator
For an alternative to some nested if statements, you can use the logical AND operator
between two Boolean expressions to determine whether both are true. In Java, the AND

Figure 5-14 Two executions of the AssignVolunteer3 program

259

Using Logical AND and OR Operators

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

operator is written as two ampersands (&&). For example, the two statements shown
in Figure 5-15 work exactly the same way. In each case, both the itemsSold variable must
be at least the minimum number of items required for a bonus and the totalValue variable
must be at least the minimum required value for the bonus to be set to SALES_BONUS.

It is important to note that when you use the && operator, you must include a complete
Boolean expression on each side. In other words, like many arithmetic operators, the &&
operator is a binary operator, meaning it requires an operand on each side. If you want to
set a bonus to $400 when a saleAmount is both over $1,000 and under $5,000, the correct
statement is:

if(saleAmount > 1000 && saleAmount < 5000)
bonus = 400;

Even though the saleAmount variable is intended to be used in both parts of the AND
expression, the following statement is incorrect and does not compile because there is not
a complete expression on both sides of the binary && operator:

if(saleAmount > 1000 && < 5000)
bonus = 400;

For clarity, many programmers prefer to surround each Boolean expression that is part of a
compound Boolean expression with its own set of parentheses, as in the following example:

if(itemsSold > MIN_ITEMS)
 if(totalValue >= MIN_VALUE)
 bonus = SALES_BONUS;

if(itemsSold > MIN_ITEMS && totalValue >= MIN_VALUE)
 bonus = SALES_BONUS;

false

false

true

true

itemsSold >
MIN_ITEMS?

bonus =
SALES_BONUS

totalValue >=
MIN_VALUE?

Figure 5-15 Code for bonus-determining decision using nested ifs and using the && operator

This statement will not compile
because it does not have a Boolean
expression on each side of the
&& operator.

Don’t Do It

260

C H A P T E R 5 Making Decisions

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

if((saleAmount > 1000) && (saleAmount < 5000))
bonus = 400;

Use the extra parentheses if doing so makes the compound expression clearer to you.

You are never required to use the && operator because using nested if statements always
achieves the same result, but using the && operator often makes your code more concise,
less error-prone, and easier to understand.

The OR Operator
When you want some action to occur even if only one of two conditions is true, you can
use nested if statements, or you can use the logical OR operator, which is written as ||.

For example, if you want to give a discount to any customer who satisfies at least one of two
conditions—buying a minimum number of items or buying any number of items that total
a minimum value—you can write the code using either of the ways shown in Figure 5-16.

The two vertical lines used in the OR operator are sometimes called “pipes.” The pipe appears on the same
key as the backslash on your keyboard.

As with the && operator, you are never required to use the || operator because using nested
if statements always achieves the same result. However, using the || operator often makes
your code more concise, less error-prone, and easier to understand.

if(itemsBought >= MIN_ITEMS)
 discountRate = DISCOUNT;
else
 if(itemsValue >= MIN_VALUE)
 discountRate = DISCOUNT;

if(itemsBought >= MIN_ITEMS || itemsValue >= MIN_VALUE)
 discountRate = DISCOUNT;

truefalse

false true

itemsValue >=
MIN_VALUE?

itemsBought >=
MIN_ITEMS?

discountRate =
DISCOUNT

discountRate =
DISCOUNT

Figure 5-16 Determining customer discount when customer needs to meet only one of two criteria

261

Using Logical AND and OR Operators

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Short-Circuit Evaluation
The expressions on each side of the && and || operators are evaluated only as far as
necessary to determine whether the entire expression is true or false. This feature is called
short-circuit evaluation. With the && operator, both Boolean expression operands must
be true before the action in the result statement can occur. (The same is true for nested ifs,
as you can see in Figure 5-15.) When you use the && operator, if the first tested expression
is false, the second expression is never evaluated because its value does not matter.

The || operator also uses short-circuit evaluation. In other words, because only one of the
Boolean expressions in an || expression must be true to cause the dependent statements
to execute, if the expression to the left of the || is true, then there is no need to evaluate
the expression to the right of the ||. (The same is true for nested ifs, as you can see in
Figure 5-16.) When you use the || operator, if the first tested expression is true, the second
expression is never evaluated because its value does not matter.

If you are using simple comparisons as the operands for the && or || operators, as in the
examples in Figures 5-15 and 5-16, you won’t notice that short-circuit evaluation is occurring.
However, suppose that you have created two methods that return Boolean values and you
use calls to those methods in an if statement, as in the following:

if(method1() && method2())
System.out.println("OK");

Depending on the actions performed within the methods, it might be important to
understand that in this case, if method1() is false, then method2() will not execute.

Watch the video Using && and ||.

TWO TRUTHS & A LIE

Using Logical AND and OR Operators

1. The AND operator is written as two ampersands (&&), and the OR operator is
written as two pipes (||).

2. When you use the && and || operators, you must include a complete Boolean
expression on each side.

3. When you use an && or || operator, each Boolean expression that surrounds the
operator is always tested in order from left to right.

. noi t aul aveti ucri c- tr ohs
dell ac si er ut aef si hT. det set t on si noi sser pxe dnoces eht , eurt si eul av

nael ooBt sri f eht fi , noi sser pxe ROna nI . det set t on si noi sser pxe dnoces eht , esl af
si eul av nael ooBt sri f eht fi , noi sser pxe DNA na ni , el p maxe r oF. eslaf r o eurt si

noi sser pxe eri t ne eht r eht ehweni mr et ed ot yr assecen sa hcu msa yl no det aul ave er a
noi sser pxe ROr o DNA naf otr ap hcae ni snoi sser pxe ehT. 3# si t ne met at s esl af ehT

262

C H A P T E R 5 Making Decisions

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You Do It

Using the && Operator

This section helps you create a program that demonstrates how short-circuiting
works with the && operator.

1. Open a new file in your text editor, and type the header and curly braces for a
class named ShortCircuitTestAnd:

public class ShortCircuitTestAnd
{
}

2. Between the curly braces for the class, type the header and braces for a
main() method:

public static void main(String[] args)
{
}

3. Within the main() method, insert an if…else statement that tests the return
values of two method calls. If both methods are true, then “Both are true” is
displayed. Otherwise, “Both are not true” is displayed.

if(trueMethod() && falseMethod())
System.out.println("Both are true");

else
System.out.println("Both are not true");

4. Following the closing curly brace for the main() method, but before the
closing curly brace for the class, insert a method named trueMethod(). The
method displays the message “True method” and returns a true value.

public static boolean trueMethod()
{

System.out.println("True method");
return true;

}

5. Following the closing curly brace of trueMethod(), insert a method named
falseMethod() that displays the message “False method” and returns a
false value.

public static boolean falseMethod()
{

System.out.println("False method");
return false;

}

(continues)

263

Using Logical AND and OR Operators

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6. Save the file as ShortCircuitTestAnd.java, and then compile and execute it.
Figure 5-17 shows the output. First, “True method” is displayed because
trueMethod()was executed as the first half of the Boolean expression in the
program’s if statement. Then, the second half of the Boolean expression calls
falseMethod(). Finally, “Both are not true” is displayed because both halves of
the tested expression were not true.

7. Change the position of the method calls in the if statement so that the
statement becomes the following:

if(falseMethod() && trueMethod())
System.out.println("Both are true");

else
System.out.println("Both are not true");

8. Save the file, compile it, and execute it. Now the output looks like Figure 5-18.
The if statement makes a call to falseMethod(), and its output is displayed.
Because the first half of the Boolean expression is false, there is no need to test
the second half, so trueMethod() never executes, and the program proceeds
directly to the statement that displays “Both are not true.”

(continued)

(continues)

Figure 5-17 Execution of ShortCircuitTestAnd program

264

C H A P T E R 5 Making Decisions

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

9. Change the class name to ShortCircuitTestOr, and immediately save the file
as ShortCircuitTestOr.java. Replace the && operator with the || operator.
Compile and execute the program with trueMethod()to the right of the ||
operator and falseMethod()to its left. Then, reverse the positions of the
methods, and compile and execute the program again. Make sure that you
understand the output each way.

Making Accurate and Efficient Decisions
When new programmers must make a range check, they often introduce incorrect or
inefficient code into their programs. In this section, you learn how to make accurate
and efficient range checks, and you also learn how to use the && and || operators
appropriately.

Making Accurate Range Checks
A range check is a series of statements that determine to which of several consecutive series
of values another value falls. Consider a situation in which salespeople can receive one of
three possible commission rates based on their sales. For example, a sale totaling $1,000 or
more earns the salesperson an 8% commission, a sale totaling $500 through $999 earns 6%
of the sale amount, and any sale totaling $499.99 or less earns 5%. Using three separate
if statements to test single Boolean expressions might result in some incorrect commission
assignments. For example, examine the code shown in Figure 5-19.

(continued)

Figure 5-18 Output of ShortCircuitTestAnd after reversing Boolean expressions

265

Making Accurate and Efficient Decisions

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using the code shown in Figure 5-19, when a saleAmount is $5,000, for example, the
first if statement executes, and the Boolean expression (saleAmount >= HIGH_LIM)
evaluates as true, so HIGH_RATE is correctly assigned to commissionRate. However,
the next if expression, (saleAmount >= MED_LIM), also evaluates as true, so the
commissionRate, which was just set to HIGH_RATE, is incorrectly reset to MED_RATE.

A partial solution to this problem is to use an else statement following the first evaluation,
as shown in Figure 5-20.

A high saleAmount
will result in a medium
rate commission.

Don’t Do It

final double HIGH_LIM = 1000.00;
final double HIGH_RATE = 0.08;
final double MED_LIM = 500.00;
final double MED_RATE = 0.06;
final double LOW_LIM = 499.99;
final double LOW_RATE = 0.05;

if(saleAmount >= HIGH_LIM)
 commissionRate = HIGH_RATE;
if(saleAmount >= MED_LIM)
 commissionRate = MED_RATE;
if(saleAmount <= LOW_LIM)
 commissionRate = LOW_RATE;

true

false

false

false

true

true

saleAmount <=
LOW_LIM?

saleAmount
>= MED_LIM?

saleAmount >=
HIGH_LIM?

commissionRate =
HIGH_RATE

commissionRate =
MED_RATE

commissionRate =
LOW_RATE

Figure 5-19 Incorrect commission-determining code

266

C H A P T E R 5 Making Decisions

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

With the new code in Figure 5-20, when the saleAmount is $5,000, the expression
(saleAmount >= HIGH_LIM) is true and the commissionRate becomes HIGH_RATE; then
the entire if structure ends. When the saleAmount is not greater than or equal to $1,000
(for example, $800), the first if expression is false, and the else statement executes and
correctly sets the commissionRate to MED_RATE.

The code shown in Figure 5-20 works, but it is somewhat inefficient. When the saleAmount is
any amount over LOW_RATE, either the first if sets commissionRate to HIGH_RATE for amounts
that are at least $1,000, or its else sets commissionRate to MED_RATE for amounts that are
at least $500. In either of these two cases, the Boolean value tested in the next statement,
if(saleAmount <= LOW_LIM), is always false, so commissionRate retains its correct value.
However, it was unnecessary to ask the LOW_LIM question.

After you know that saleAmount is not at least MED_LIM, rather than asking if(saleAmount
<= LOW_LIM), it’s easier, more efficient, and less error-prone to use an else. If the saleAmount
is not at least HIGH_LIM and is also not at least MED_LIM, it must by default be less than or
equal to LOW_LIM. Figure 5-21 shows this improved logic. Notice that the LOW_LIM constant
is no longer declared because it is not needed anymore—if a saleAmount is not greater than
or equal to MED_LIMIT, the commissionRate must receive the LOW_RATE.

final double HIGH_LIM = 1000.00;
final double HIGH_RATE = 0.08;
final double MED_LIM = 500.00;
final double MED_RATE = 0.06;
final double LOW_LIM = 499.99;
final double LOW_RATE = 0.05;

if(saleAmount >= HIGH_LIM)
 commissionRate = HIGH_RATE;
else
 if(saleAmount >= MED_LIM)
 commissionRate = MED_RATE;
if(saleAmount <= LOW_LIM)
 commissionRate = LOW_RATE;

true

false

false

false

true

true

saleAmount <=
LOW_LIM?

saleAmount
>= MED_LIM?

saleAmount >=
HIGH_LIM?

commissionRate =
HIGH_RATE

commissionRate =
MED_RATE

commissionRate =
LOW_RATE

This question has
already been answered.

Don’t Do It

Figure 5-20 Improved, but inefficient, commission-determining code

267

Making Accurate and Efficient Decisions

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Making Efficient Range Checks
Within a nested if…else, like the one shown in Figure 5-21, it is most efficient to ask the
question that is most likely to be true first. In other words, if you know that most saleAmount
values are high, compare saleAmount to HIGH_LIM first. That way, you most frequently avoid
asking multiple questions. If, however, you know that most saleAmounts are small, you
should ask if(saleAmount < LOW_LIM) first. The code shown in Figure 5-22 results in the
same commission value for any given saleAmount, but this sequence of decisions is more
efficient when most saleAmount values are small.

final double HIGH_LIM = 1000.00;
final double HIGH_RATE = 0.08;
final double MED_LIM = 500.00;
final double MED_RATE = 0.06;
final double LOW_RATE = 0.05;

if(saleAmount >= HIGH_LIM)
 commissionRate = HIGH_RATE;
else
 if(saleAmount >= MED_LIM)
 commissionRate = MED_RATE;
 else
 commissionRate = LOW_RATE;

truefalse

false true

saleAmount >=
MED_LIM?

saleAmount >=
HIGH_LIM?

commissionRate =
HIGH_RATE

commissionRate =
LOW_RATE

commissionRate =
MED_RATE

Figure 5-21 Improved and efficient commission-determining logic

final double HIGH_RATE = 0.08;
final double MED_LIM = 1000.00;
final double MED_RATE = 0.06;
final double LOW_LIM = 500.00;
final double LOW_RATE = 0.05;

if(saleAmount < LOW_LIM)
 commissionRate = LOW_RATE;
else
 if(saleAmount < MED_LIM)
 commissionRate = MED_RATE;
 else
 commissionRate = HIGH_RATE;

truefalse

false true

saleAmount <
MED_LIM?

saleAmount <
LOW_LIM?

commissionRate =
LOW_RATE

commissionRate =
HIGH_RATE

commissionRate =
MED_RATE

Figure 5-22 Commission-determining code asking about smallest saleAmount first

268

C H A P T E R 5 Making Decisions

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In Figure 5-22, notice that the comparisons use the < operator instead of <=. That’s because
a saleAmount of $1,000.00 should result in a HIGH_RATE, and a saleAmount of $500.00
should result in a MED_RATE. If you wanted to use <= comparisons, then you could change
the MED_LIM and LOW_LIM cutoff values to 999.99 and 499.99, respectively.

Using && and || Appropriately
Beginning programmers often use the && operator when they mean to use ||, and often
use || when they should use &&. Part of the problem lies in the way we use the English
language. For example, your boss might request, “Display an error message when an
employee’s hourly pay rate is under $5.85 and when an employee’s hourly pay rate is
over $60.” You define $5.85 as a named constant LOW and $60 as HIGH. However, because
your boss used the word and in the request, you might be tempted to write a program
statement like the following:

if(payRate < LOW && payRate > HIGH)
System.out.println("Error in pay rate");

However, as a single variable, no payRate value can ever be both below 5.85 and over 60 at
the same time, so the output statement can never execute, no matter what value the payRate
has. In this case, you must write the following code that uses the || operator to display the
error message under the correct circumstances:

if(payRate < LOW || payRate > HIGH)
System.out.println("Error in pay rate");

Similarly, your boss might request, “Display the names of those employees in departments 1
and 2.” Because the boss used the word and in the request, you might be tempted to write the
following:

if(department == 1 && department == 2)
System.out.println("Name is: " + name);

However, the variable department can never contain both a 1 and a 2 at the same time, so no
employee name will ever be output, no matter what the value of department is. The correct
statement chooses employees whose department is 1 or 2, as follows:

if(department == 1 || department == 2)
System.out.println("Name is: " + name);

Another type of mistake occurs if you use a single ampersand or pipe when you try to indicate
a logical AND or OR. Both & and | are valid Java operators, but they have two different
functions. When you use a single & or | with integer operands, it operates on bits. When you
use a single & or | with Boolean expressions, it always evaluates both expressions instead of
using short-circuitry.

This message can never be output because
the Boolean expression can never be true.

269

Making Accurate and Efficient Decisions

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Making Accurate and Efficient Decisions
1. A range check is a series of statements that determine within which of a set of

ranges a value falls.

2. When you must make a series of decisions in a program, it is most efficient to
first ask the question that is most likely to be true.

3. The statement if(payRate < 6.00 && payRate > 50.00) can be used to
select payRate values that are higher or lower than the specified limits.

. e mit e mas eht t a 00. 05 evoba dna 00. 6
wol eb ht ob eb nac etaRyapr of eul av on esuaceb noi t cel es a eka mot desu ebt onnac
)00.05 > etaRyap && 00.6 < etaRyap(fi t ne met at s ehT. 3# si t ne met at s esl af ehT

Using the switch Statement
By nesting a series of if and else statements, you can choose from any number of
alternatives. For example, suppose you want to display a student’s class year based on a
stored number. Figure 5-23 shows one possible implementation of the program.

if(year == 1)
System.out.println("Freshman");

else
if(year == 2)

System.out.println("Sophomore");
else

if(year == 3)
System.out.println("Junior");

else
if(year == 4)

System.out.println("Senior");
else

System.out.println("Invalid year");

Figure 5-23 Determining class status using nested if statements

In program segments like the one in Figure 5-23, many programmers (particularly those familiar with the
Visual Basic programming language) would code each else and the if clause that follows it on the same
line, and refer to the format as an else…if clause. Because Java ignores whitespace, the logic is the same
whether each else and the subsequent if are on the same line or different lines.

270

C H A P T E R 5 Making Decisions

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

An alternative to using the series of nested if statements shown in Figure 5-23 is to use the
switch statement. The switch statement is useful when you need to test a single variable
against a series of exact integer (including int, byte, and short types), character, or string
values. The ability to use strings as the tested values in a switch statement is a new feature
in Java 7.

The switch statement uses four keywords:

l switch starts the structure and is followed immediately by a test expression enclosed
in parentheses.

l case is followed by one of the possible values for the test expression and a colon.

l break optionally terminates a switch statement at the end of each case.

l default optionally is used prior to any action that should occur if the test variable
does not match any case.

Figure 5-24 shows the switch statement used to display the four school years based on an
integer named year.

switch(year)
{

case 1:
System.out.println("Freshman");
break;

case 2:
System.out.println("Sophomore");
break;

case 3:
System.out.println("Junior");
break;

case 4:
System.out.println("Senior");
break;

default:
System.out.println("Invalid year");

}

Figure 5-24 Determining class status using a switch statement

You are not required to list the case values in ascending order, as shown in Figure 5-24,
although doing so often makes a statement easier to understand. For efficiency, you might
want to list the most likely case first.

The switch statement shown in Figure 5-24 begins by evaluating the year variable shown
in the first line. If year is equal to the first case value, which is 1, the statement that displays
“Freshman” executes. The break statement bypasses the rest of the switch structure, and
execution continues with any statement after the closing curly brace of the switch structure.

271

Using the switch Statement

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

If the year variable is not equivalent to the first case value of 1, the next case value is
compared, and so on. If the year variable does not contain the same value as any of the
case statements, the default statement or statements execute.

You can leave out the break statements in a switch structure. However, if you omit the break
and the program finds a match for the test variable, all the statements within the switch
statement execute from that point forward. For example, if you omit each break statement
in the code shown in Figure 5-24, when the year is 3, the first two cases are bypassed, but
Junior, Senior, and Invalid year all are output. You should intentionally omit the break
statements if you want all subsequent cases to execute after the test variable is matched.

You do not need to write code for each case in a switch statement. For example, suppose that
the supervisor for departments 1, 2, and 3 is Jones, but other departments have different
supervisors. In that case, you might use the code in Figure 5-25.

int department;
String supervisor;
// Statements to get department go here
switch(department)
{

case 1:
case 2:
case 3:

supervisor = "Jones";
break;

case 4:
supervisor = "Staples";
break;

case 5:
supervisor = "Tejano";
break:

default:
System.out.println("Invalid department code");

}

Figure 5-25 Using empty case statements so the same result occurs in multiple cases

On the other hand, you might use strings in a switch structure to determine whether a
supervisor name is valid, as shown in the method in Figure 5-26.

272

C H A P T E R 5 Making Decisions

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public static boolean isValidSupervisor(String name)
{

boolean isValid;
switch(name)
{

case "Jones":
case "Staples":
case "Tejano":

isValid = true;
break;
default:

isValid = false;
}
return isValid;

}

Figure 5-26 A method that uses a switch structure with string values

When several char variables must be checked and you want to ignore whether they are
uppercase or lowercase, one frequently used technique employs empty case statements, as in
Figure 5-27.

switch(departmentCode)
{

case 'a':
case 'A':

departmentName = "Accounting";
break;

case 'm':
case 'M':

departmentName = "Marketing";
break;

// and so on
}

Figure 5-27 Using a switch structure to ignore character case

You are never required to use a switch structure; you can always achieve the same results
with nested if statements. The switch structure is simply convenient to use when there are
several alternative courses of action that depend on a single integer, character, or string value.
In addition, it makes sense to use switch only when a reasonable number of specific matching
values need to be tested.

Watch the video Using the switch Statement.

273

Using the switch Statement

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Using the switch Statement

1. When you must make more decisions than Java can support, you use a switch
statement instead of nested if…else statements.

2. The switch statement is useful when you need to test a single variable against a
series of exact integer or character values.

3. A break statement bypasses the rest of its switch structure, and execution
continues with any statement after the closing curly brace of the switch
structure.

.r et car ahc r or eget ni na
si eul av det set eht nehwst ne met at s esle…fi det sen gni sser pxef o yawt nei nevnoc

er o mat suj si t ne met at s hctiws ehT. sevi t anr etl af or eb mun yna morf esoohc
nac uoy , st ne met at s esle dna fif o sei r es a gni t sen yB. 1# si t ne met at s esl af ehT

You Do It

Using the switch Statement

In this section, you alter the AssignVolunteer3 program to add more options for
donation types, and then use a switch statement to assign the appropriate volunteer.

1. Open the AssignVolunteer3.java file that you created in a “You Do It” section
earlier in this chapter. Change the class name to AssignVolunteer4, and
immediately save the file as AssignVolunteer4.java.

2. Keep the declaration CLOTHING_CODE, but replace the OTHER_CODE declaration
with three new ones:

final int FURNITURE_CODE = 2;
final int ELECTRONICS_CODE = 3;
final int OTHER_CODE = 4;

3. Retain the two pricing volunteer declarations, but add two new ones:

final String FURNITURE_PRICER = "Walter";
final String ELECTRONICS_PRICER = "Lydia";

(continues)

274

C H A P T E R 5 Making Decisions

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4. Replace the output statement that asks the user to enter 1 or 2 with the
following simpler statement:

System.out.print("Enter an integer… ");

In a professional program, you might want to present the user with details
about all the options, but this example keeps the prompt simple to save you
from excessive typing.

5. Replace the existing if…else structure with the following switch
structure:

switch(donationType)
{

case(CLOTHING_CODE):
volunteer = CLOTHING_PRICER;
message = "a clothing donation";
break;

case(FURNITURE_CODE):
volunteer = FURNITURE_PRICER;
message = "a furniture donation";
break;

case(ELECTRONICS_CODE):
volunteer = ELECTRONICS_PRICER;
message = "an electronics donation";
break;

case(OTHER_CODE):
volunteer = OTHER_PRICER;
message = "another donation type";
break;

default:
volunteer = "invalid";
message = "an invalid donation type";

}

6. Save the file, and then compile and execute it. Figure 5-28 shows a typical
execution.

(continued)

(continues)

275

Using the switch Statement

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using the Conditional and NOT Operators
Besides using if statements and switch structures, Java provides one more way to make
decisions. The conditional operator requires three expressions separated with a question
mark and a colon and is used as an abbreviated version of the if…else structure. As with
the switch structure, you are never required to use the conditional operator; it is simply a
convenient shortcut. The syntax of the conditional operator is:

testExpression ? trueResult : falseResult;

The first expression, testExpression, is a Boolean expression that is evaluated as true or
false. If it is true, the entire conditional expression takes on the value of the expression
following the question mark (trueResult). If the value of the testExpression is false,
the entire expression takes on the value of falseResult.

You have seen many examples of binary operators such as == and &&. The conditional operator is a
ternary operator—one that needs three operands. Through Java 6, the conditional operator is the only
ternary operator in Java, so it is sometimes referred to as “the” ternary operator. Java 7 introduces a
collapsed version of the ternary operator that checks for null values assigned to objects. The new
operator is called the Elvis operator because it uses a question mark and colon together (?:); if you view
it sideways, it reminds you of Elvis Presley.

For example, suppose you want to assign the smallest price to a sale item. Let the variable a be
the advertised price and the variable b be the discounted price on the sale tag. The expression
for assigning the smallest cost is:

smallerNum = (a < b) ? a : b;

(continued)

Figure 5-28 Typical execution of the AssignVolunteer4 program

276

C H A P T E R 5 Making Decisions

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

When evaluating the expression a < b, where a is less than b, the entire conditional
expression takes the value to the left of the colon, a, which then is assigned to smallerNum.
If a is not less than b, the expression assumes the value to the right of the colon, b, and b
is assigned to smallerNum.

You could achieve the same results with the following if…else structure:

if(a < b)
smallerNum = a;

else
smallerNum = b;

The advantage of using the conditional operator is the conciseness of the statement.

Using the NOT Operator
You use the NOT operator, which is written as the exclamation point (!), to negate the result
of any Boolean expression. Any expression that evaluates as true becomes false when
preceded by the NOT operator, and accordingly, any false expression preceded by the NOT
operator becomes true.

For example, suppose a monthly car insurance premium is $200 if the driver is age 25
or younger and $125 if the driver is age 26 or older. Each of the if…else statements in
Figure 5-29 correctly assigns the premium values.

In Figure 5-29, the statements with the ! operator are somewhat harder to read, particularly
because they require the double set of parentheses, but the result of the decision-making
process is the same in each case. Using the ! operator is clearer when the value of a Boolean
variable is tested. For example, a variable initialized as boolean oldEnough = (age >= 25);
can become part of the relatively easy-to-read expression if(!oldEnough)….

if(!(age >= 26))
 premium = 200;
else
 premium = 125;

if(age <= 25)
 premium = 200;
else
 premium = 125;

if(!(age <= 25))
 premium = 125;
else
 premium = 200;

if(age >= 26)
 premium = 125;
else
 premium = 200;

Figure 5-29 Four if…else statements that all do the same thing

277

Using the Conditional and NOT Operators

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Using the Conditional and NOT Operators

1. The conditional operator is used as an abbreviated version of the if…else
structure and requires two expressions separated with an exclamation point.

2. The NOT operator is written as the exclamation point (!).

3. The value of any false expression becomes true when preceded by the NOT
operator.

. nol oc a dna kr a mnoi t seuq a hti w det ar apes
snoi sser pxe eer ht seri uqer r ot ar epol anoi ti dnoc ehT. 1# si t ne met at s esl af ehT

Understanding Operator Precedence
You can combine as many && or || operators as you need to make a decision. For example,
if you want to award bonus points (defined as BONUS) to any student who receives a perfect
score on any of four quizzes, you might write a statement like the following:

if(score1 == PERFECT || score2 == PERFECT ||
score3 == PERFECT || score4 == PERFECT)

bonus = BONUS;
else

bonus = 0;

In this case, if at least one of the score variables is equal to the PERFECT constant, the student
receives the bonus points.

Although you can combine any number of && or || operations in an expression, special care
must be taken when you mix them. You learned in Chapter 2 that arithmetic operations
have higher and lower precedences, and an operator’s precedence makes a difference in how
an expression is evaluated. For example, within an arithmetic expression, multiplication and
division are always performed prior to addition or subtraction. Table 5-1 shows the
precedence of the operators you have used so far.

278

C H A P T E R 5 Making Decisions

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In general, the order of precedence agrees with common algebraic usage. For example, in any
mathematical expression, such as x = a + b, the arithmetic is done first and the assignment is
done last, as you would expect. The relationship of && and || might not be as obvious. The &&
operator has higher precedence than the || operator. For example, consider the program
segments shown in Figure 5-30. These code segments are intended to be part of an insurance
company program that determines whether an additional premium should be charged to a
driver who meets both of the following criteria:

l Has more than two traffic tickets or is under 25 years old

l Is male

One way to remember the precedence of the AND and OR operators is to remember that they are evaluated
in alphabetical order.

Precedence Operator(s) Symbol(s)

Highest Logical NOT !

Intermediate Multiplication, division, modulus * / %

Addition, subtraction + -

Relational > < >= <=

Equality == !=

Logical AND &&

Logical OR ||

Conditional ?:

Lowest Assignment =

Table 5-1 Operator precedence for operators used so far

// Assigns extra premiums correctly
if((trafficTickets > 2 || age < 25) && gender == 'M')
extraPremium = 200;

// Assigns extra premiums incorrectly
if(trafficTickets > 2 || age < 25 && gender == 'M')
 extraPremium = 200;

The expression within
the inner parentheses
is evaluated first.

The && operator
is evaluated first.

Figure 5-30 Two comparisons using && and ||

279

Understanding Operator Precedence

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Consider a 30-year-old female driver with three traffic tickets; according to the stated criteria,
she should not be assigned the extra premium because she is not male. With the first if
statement in Figure 5-30, the && operator takes precedence, so age < 25 && gender == 'M' is
evaluated first. The value is false because age is not less than 25, so the expression is reduced
to trafficTickets > 2 or false. Because the value of the tickets variable is greater than 2,
the entire expression is true, and $200 is assigned to extraPremium, even though it should
not be.

In the second if statement shown in Figure 5-30, parentheses have been added so the ||
operator is evaluated first. The expression trafficTickets > 2 || age < 25 is true because
the value of trafficTickets is 3. So the expression evolves to true && gender == 'M'.
Because gender is not ‘M’, the value of the entire expression is false, and the extraPremium
value is not assigned 200, which is correct. Even when an expression would be evaluated
as you intend without adding extra parentheses, you can always add them to help others
more easily understand your programs.

The following two conventions are important to keep in mind:

l The order in which you use operators makes a difference.

l You can always use parentheses to change precedence or make your intentions clearer.

TWO TRUTHS & A LIE

Understanding Operator Precedence

1. Assume p, q, and r are all Boolean variables that have been assigned the value
true. After the following statement executes, the value of p is still true.
p = !q || r;

2. Assume p, q, and r are all Boolean variables that have been assigned the value
true. After the following statement executes, the value of p is still true.
p = !(!q && !r);

3. Assume p, q, and r are all Boolean variables that have been assigned the value
true. After the following statement executes, the value of p is still true.
p = !(q || !r);

. p ot ti sngi ssa dna eslaf ot tl user t aht sesr ever r ot ar epo TON gni dael ehT. eurt si
seseht ner ap eht ni hti wnoi sser pxe eri t ne eht os, eurt sa det aul ave si q t sri F . eslaf

si pf o eul av eht , set ucexe ;)r! || q(! = p r etf a neht , eurt eul av eht dengi ssa
neeb evaht aht sel bai r av nael ooBll a er a r dna, q, pfI . 3# si t ne met at s esl af ehT

280

C H A P T E R 5 Making Decisions

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Adding Decisions and Constructors to Instance Methods
You frequently will want to use what you have learned about decision making to control
the allowed values in objects’ fields. Whether values are assigned to objects by constructors
or by mutator methods, you often will need to use decisions to control values.

For example, suppose that you create an Employee class as shown in Figure 5-31. The class
contains two fields that hold an employee ID number and pay rate. The constructor accepts
values for these fields as parameters, but instead of simply assigning the parameters to the
fields, the code determines whether each value is within the allowed limits for the field.
Similar logic could be used in any set methods created for the class. Using decisions helps
you ensure that fields have acceptable values.

public class Employee
{

private int empNum;
private double payRate;
public int MAX_EMP_NUM = 9999;
public double MAX_RATE = 60.00;
Employee(int num, double rate)
{

if(num <= MAX_EMP_NUM)
empNum = num;

else
empNum = MAX_EMP_NUM;

if(payRate <= MAX_RATE)
payRate = rate;

else
payRate = 0;

}
public int getEmpNum()
{

return empNum;
}
public double getPayRate()
{

return payRate;
}

}

Figure 5-31 The Employee class that contains a constructor that makes decisions

281

Adding Decisions and Constructors to Instance Methods

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You Do It

Adding Decisions to Constructors and Instance Methods

In this section, you modify the DogTriathlonParticipant class you created in
Chapter 4. Because some points are awarded for participation in each event, a
score of 0 is not possible unless a dog did not participate. In the existing class,
the constructor accepts the number of events in which a dog participated and
the participant’s score in each event. Currently, there is no way to check
whether these values are in agreement. Now, you can modify the class so that
the number of events matches the number of valid scores supplied to the con-
structor.

1. Open the DogTriathlonParticipant.java file that you created in Chapter 4.
Change the class name to DogTriathlonParticipant2, and immediately save
the file as DogTriathlonParticipant2.java.

2. Change the constructor name to DogTriathlonParticipant2.

3. If 0 is assigned to the number of events in the existing program, computing
the average score produces a nonnumeric result. Now that you know how to
use decisions, you can fix this problem. In place of the arithmetic statement
that produces the average score using division, use the following if…else
structure:

if(NUM_EVENTS == 0)
avg = 0;

else
avg = (double) total / NUM_EVENTS;

4. Add a Boolean field to the list of class fields. This field holds true if the
number of events reported matches the number of nonzero scores. Other-
wise, the field holds false:

private boolean scoresAgree;

5. There are several ways to ensure that the number of events passed to the
constructor matches the number of nonzero scores passed. One way is to
add 1 to a total for each nonzero score and then determine whether that total
equals the passed number of events. To accomplish this, first add the
following code to the constructor immediately after the statements that
assign values to the name and number of events. These statements declare a
variable that holds the number of nonzero scores passed to the constructor,
and then add 1 to the variable for each nonzero event score:

(continues)

282

C H A P T E R 5 Making Decisions

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

int totalNot0 = 0;
if(score1 != 0)

totalNot0 = totalNot0 + 1;
if(score2 != 0)

totalNot0 = totalNot0 + 1;
if(score3 != 0)

totalNot0 = totalNot0 + 1;

6. Compare the number of events to the total of nonzero scores, and set the
Boolean variable scores Agree:

if(numEvents == totalNot0)
scoresAgree = true;

else
scoresAgree = false;

7. Replace the statements that unconditionally assigned values to obedienceScore,
conformationScore, and agilityScore with the following if…else structure,
which assigns the constructor’s parameters to the three scores only when
scoresAgree is true.

if(scoresAgree)
{

obedienceScore = score1;
conformationScore = score2;
agilityScore = score3;

}
else
{

obedienceScore = 0;
conformationScore = 0;
agilityScore = 0;

}

8. In the display() method for the DogTriathlonParticipant2 class, add the
following statement that displays a special notice if an error occurred in the
number of events value.

if(!scoresAgree)
System.out.println("Notice! Number of events for " +

name + " does not agree with scores reported.");

9. Save the file and compile it.

10. Open the TestDogs.java file that you created in a “You Do It” section in
Chapter 4. Rename the class TestDogs2, and immediately save the file as
TestDogs2.java.

(continued)

(continues)

283

Adding Decisions and Constructors to Instance Methods

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

11. Change DogTriathlonParticipant to DogTriathlonParticipant2 in the six
places it occurs in the three object declarations.

12. Change the object declarations so that the number of events and the number
of nonzero scores used as constructor arguments agree for some objects
but not for others.

13. Save the file, and then compile and execute it. Figure 5-32 shows a typical
execution in which one participant’s entries are valid but the other two
contain errors.

14. Change the values in the TestDogs2 program. Recompile and reexecute the
program several times to ensure that using various combinations of number
of events and event scores produces appropriate results.

15. On your own, modify the DogTriathlonParticipant2 class and rename it
DogTriathlon3. In this version, do not use a count of the nonzero score
parameters to determine whether the number of events matches the number
of valid scores used as arguments. Instead, use only decisions to ensure that
the parameters are in agreement. Save the file as DogTriathlon3.java, and
create a file named TestDogs3.java that you can use to test the class.
Be sure to test every possible combination of constructor parameters in the
TestDogs3 class—for example, when the events parameter is 2, it is correct
whether the nonzero scores are the first and second, the first and third, or
the second and third.

(continued)

Figure 5-32 Execution of TestDogs2 program

284

C H A P T E R 5 Making Decisions

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Don’t Do It
l Don’t ignore subtleties in boundaries used in decision making. For example, selecting

employees who make less than $20 an hour is different from selecting employees who
make $20 an hour or less.

l Don’t use the assignment operator instead of the comparison operator when testing
for equality.

l Don’t insert a semicolon after the Boolean expression in an if statement; insert the
semicolon after the entire statement is completed.

l Don’t forget to block a set of statements with curly braces when several statements
depend on the if or the else statement.

l Don’t forget to include a complete Boolean expression on each side of an && or ||
operator.

l Don’t try to use a switch structure to test anything other than an integer, character,
or string value.

l Don’t forget a break statement if one is required by the logic of your switch
structure.

l Don’t use the standard relational operators to compare objects; use them only with the
built-in Java types. In the chapter Characters, Strings, and the StringBuilder, you will
learn how to compare Strings correctly, and in the chapter Advanced Inheritance
Concepts you will learn to compare other objects.

Key Terms
Pseudocode is a tool that helps programmers plan a program’s logic by writing plain English
statements.

A flowchart is a tool that helps programmers plan a program’s logic by writing the steps
in diagram form, as a series of shapes connected by arrows.

A sequence structure is a logical structure in which one step follows another
unconditionally.

A decision structure is a logical structure that involves choosing between alternative courses
of action based on some value within a program.

True or false values are Boolean values; every computer decision results in a
Boolean value.

285

Key Terms

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In Java, the simplest statement you can use to make a decision is the if statement; you use it
to write a single-alternative decision.

The equivalency operator (==) compares values and returns true if they are equal.

An empty statement contains only a semicolon.

A single-alternative if is a decision structure that performs an action, or not, based on
one alternative.

A dual-alternative if is a decision structure that takes one of two possible courses of
action.

In Java, the if…else statement provides the mechanism to perform one action when a
Boolean expression evaluates as true and to perform a different action when a Boolean
expression evaluates as false.

The if clause of an if…else statement is the part that executes when the evaluated
Boolean expression is true.

The else clause of an if…else statement is the part that executes when the evaluated
Boolean expression is false.

A nested if statement contains an if structure within another if structure.

The logical AND operator uses two Boolean expressions as operands and evaluates to true
if both operands are true. The AND operator is written as two ampersands (&&).

The logical OR operator uses two Boolean expressions as operands and evaluates to true
if either operand is true. The OR operator is written as two pipes (||).

Short-circuit evaluation describes the feature of the AND and OR operators in which
evaluation is performed only as far as necessary to make a final decision.

A range check is a series of statements that determine within which of a set of ranges a value
falls.

An else…if clause is a format used in nested if statements in which each instance of
else and its subsequent if are placed on the same line.

The switch statement uses up to four keywords to test a single variable against a series
of exact integer or character values. The keywords are switch, case, break, and default.

The conditional operator requires three expressions separated with a question mark and a
colon and is used as an abbreviated version of the if…else structure.

A ternary operator is one that needs three operands.

You use the NOT operator, which is written as the exclamation point (!), to negate the result
of any Boolean expression.

286

C H A P T E R 5 Making Decisions

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter Summary

l Making a decision involves choosing between two alternative courses of action based on
some value within a program.

l You can use the if statement to make a decision based on a Boolean expression that
evaluates as true or false. If the Boolean expression enclosed in parentheses within an if
statement is true, the subsequent statement or block executes. A single-alternative if
performs an action based on one alternative; a dual-alternative if, or if…else, provides
the mechanism for performing one action when a Boolean expression is true and a
different action when the expression is false.

l To execute more than one statement that depends on the evaluation of a Boolean
expression, you use a pair of curly braces to place the dependent statements within a
block. Within an if or an else statement, you can code as many dependent statements as
you need, including other if and else statements.

l Nested if statements are particularly useful when two conditions must be met before
some action occurs.

l You can use the AND operator (&&) within a Boolean expression to determine whether
two expressions are both true. You use the OR operator (||) when you want to carry out
some action even if only one of two conditions is true.

l New programmers frequently cause errors in their if statements when they perform a
range check incorrectly or inefficiently, or when they use the wrong operator while trying
to make an AND or OR decision.

l You use the switch statement to test a single variable against a series of exact integer,
character, or string values.

l The conditional operator requires three expressions, a question mark, and a colon and is
used as an abbreviated version of the if…else statement. The NOT operator (!) negates
the result of any Boolean expression.

l Operator precedence makes a difference in how expressions are evaluated. You can always
use parentheses to change precedence or make your intentions clearer.

l Decisions are frequently used to control field values in constructors and mutator
methods.

Review Questions

1. The logical structure in which one instruction occurs after another with no
branching is a .

a. sequence
b. selection

c. loop
d. case

287

Review Questions

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. Which of the following is typically used in a flowchart to indicate a decision?

a. square
b. rectangle

c. diamond
d. oval

3. Which of the following is not a type of if statement?

a. single-alternative if

b. dual-alternative if

c. reverse if

d. nested if

4. A decision is based on a(n) value.

a. Boolean
b. absolute

c. definitive
d. convoluted

5. In Java, the value of (4 > 7) is .

a. 4
b. 7

c. true

d. false

6. Assuming the variable q has been assigned the value 3, which of the following
statements displays XXX?

a. if(q > 0) System.out.println("XXX");

b. if(q > 7); System.out.println("XXX");

c. Both of the above statements display XXX.
d. Neither of the above statements displays XXX.

7. What is the output of the following code segment?

t = 10;
if(t > 7)
{

System.out.print("AAA");
System.out.print("BBB");

}

a. AAA
b. BBB

c. AAABBB
d. nothing

8. What is the output of the following code segment?

t = 10;
if(t > 7)

System.out.print("AAA");
System.out.print("BBB");

a. AAA
b. BBB

c. AAABBB
d. nothing

288

C H A P T E R 5 Making Decisions

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

9. What is the output of the following code segment?

t = 7;
if(t > 7)

System.out.print("AAA");
System.out.print("BBB");

a. AAA
b. BBB

c. AAABBB
d. nothing

10. When you code an if statement within another if statement, as in the following,
then the if statements are .

if(a > b)
if(c > d)x = 0;

a. notched
b. nestled

c. nested
d. sheltered

11. The operator that combines two conditions into a single Boolean value that is
true only when both of the conditions are true, but is false otherwise,
is .

a. $$

b. !!

c. ||

d. &&

12. The operator that combines two conditions into a single Boolean value that is true
when at least one of the conditions is true is .

a. $$

b. !!

c. ||

d. &&

13. Assuming a variable f has been initialized to 5, which of the following statements
sets g to 0?

a. if(f > 6 || f == 5) g = 0;

b. if(f < 3 || f > 4) g = 0;

c. if(f >= 0 || f < 2) g = 0;

d. All of the above statements set g to 0.

14. Which of the following groups has the lowest operator precedence?

a. relational
b. equality

c. addition
d. logical OR

289

Review Questions

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

15. Which of the following statements correctly outputs the names of voters who live
in district 6 and all voters who live in district 7?

a. if(district == 6 || 7)
System.out.println("Name is " + name);

b. if(district == 6 || district == 7)
System.out.println("Name is " + name);

c. if(district = 6 && district == 7)
System.out.println("Name is " + name);

d. two of these

16. Which of the following displays “Error” when a student ID is less than 1000 or
more than 9999?

a. if(stuId < 1000) if(stuId > 9999)
System.out.println("Error");

b. if(stuId < 1000 && stuId > 9999)
System.out.println("Error");

c. if(stuId < 1000)
System.out.println("Error");

else
if(stuId > 9999)

System.out.println("Error");

d. Two of these are correct.

17. You can use the statement to terminate a switch structure.

a. switch

b. end

c. case

d. break

18. The argument tested in a switch structure can be any of the following except
a(n) .

a. int

b. char

c. double

d. String

19. Assuming a variable w has been assigned the value 15, what does the following
statement do?

w == 15 ? x = 2 : x = 0;

a. assigns 15 to w

b. assigns 2 to x

c. assigns 0 to x

d. nothing

290

C H A P T E R 5 Making Decisions

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

20. Assuming a variable y has been assigned the value 6, the value of !(y < 7)
is .

a. 6
b. 7

c. true

d. false

Exercises

Programming Exercises

1. Write an application that asks a user to enter an integer. Display a statement that
indicates whether the integer is even or odd. Save the file as EvenOdd.java.

2. Write an application that prompts the user for the day’s high and low temperatures. If
the high is greater than or equal to 90 degrees, display the message, “Heat warning.” If
the low is less than 32 degrees, display the message “Freeze warning.” If the difference
between the high and low temperatures is more than 40 degrees, display the message,
“Large temperature swing.” Save the file as Temperatures.java.

3. a. Write an application for the Summerdale Condo Sales office; the program
determines the price of a condominium. Ask the user to choose 1 for park view,
2 for golf course view, or 3 for lake view. The output is the name of the chosen
view as well as the price of the condo. Park view condos are $150,000, condos with
golf course views are $170,000, and condos with lake views are $210,000. If the
user enters an invalid code, set the price to 0. Save the file as CondoSales.java.

b. Add a prompt to the CondoSales application to ask the user to specify a (1) garage
or a (2) parking space, but only if the condo view selection is valid. Add $5,000 to
the price of any condo with a garage. If the parking value is invalid, display an
appropriate message and assume that the price is for a condo with no garage. Save
the file as CondoSales2.java.

4. a. The Williamsburg Women’s Club offers scholarships to local high school students
who meet any of several criteria. Write an application that prompts the user for a
student’s numeric high school grade point average (for example, 3.2), the student’s
number of extracurricular activities, and the student’s number of service activities.
Display the message “Scholarship candidate” if the student has any of the
following:

l A grade point average of 3.8 or above and at least one extracurricular activity
and one service activity

l A grade point average below 3.8 but at least 3.4 and a total of at least three
extracurricular and service activities

l A grade point average below 3.4 but at least 3.0 and at least two extracurricular
activities and three service activities

291

Exercises

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

If the student does not meet any of the qualification criteria, display “Not a
candidate.” Save the file as Scholarship.java.

b. Modify the Scholarship application so that if a user enters a grade point average
under 0 or over 4.0, or a negative value for either of the activities, an error message
appears. Save the file as Scholarship2.java.

5. Write an application that displays a menu of three items for the Jivin’ Java Coffee
Shop as follows:

Prompt the user to choose an item using the number (1, 2, or 3) that corresponds to
the item, or to enter 0 to quit the application. After the user makes the first selection,
if the choice is 0, display a total bill of $0. Otherwise, display the menu again. The user
should respond to this prompt with another item number to order or 0 to quit. If the
user types 0, display the cost of the single requested item. If the user types 1, 2, or 3,
add the cost of the second item to the first, and then display the menu a third time. If
the user types 0 to quit, display the total cost of the two items; otherwise, display the
total for all three selections. Save the file as Coffee.java.

6. Barnhill Fastener Company runs a small factory. The company employs workers who
are paid one of three hourly rates depending on skill level:

Each factory worker might work any number of hours per week; any hours over 40 are
paid at one and one-half times the usual rate.

In addition, workers in skill levels 2 and 3 can elect the following insurance
options:

(1) American 1.99

(2) Espresso 2.50

(3) Latte 2.15

Skill Level Hourly Pay Rate ($)

1 17.00

2 20.00

3 22.00

292

C H A P T E R 5 Making Decisions

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Also, workers in skill level 3 can elect to participate in the retirement plan at 3% of
their gross pay.

Write an interactive Java payroll application that calculates the net pay for a factory
worker. The program prompts the user for skill level and hours worked, as well as
appropriate insurance and retirement options for the employee’s skill level category.
The application displays: (1) the hours worked, (2) the hourly pay rate, (3) the regular
pay for 40 hours, (4) the overtime pay, (5) the total of regular and overtime pay, and
(6) the total itemized deductions. If the deductions exceed the gross pay, display an
error message; otherwise, calculate and display (7) the net pay after all the deductions
have been subtracted from the gross. Save the file as Pay.java.

7. Create a class for Shutterbug’s Camera Store, which is having a digital camera
sale. The class is named DigitalCamera, and it contains data fields for a brand,
the number of megapixels in the resolution, and price. Include a constructor that
takes arguments for the brand and megapixels. If the megapixel parameter is
greater than 10, the constructor sets it to 10. The sale price is set based on the
resolution; any camera with 6 megapixels or fewer is $99, and all other cameras
are $129. Also include a method that displays DigitalCamera details. Write an
application named TestDigitalCamera in which you instantiate at least four
objects, prompt the user for values for the camera brand and number of
megapixels, and display all the values. Save the files as DigitalCamera.java and
TestDigitalCamera.java.

8. Create a class for the Parks Department in Cloverdale. The class is named Park,
and it contains a String field for the name of the park, an integer field for the
size in acres, and four Boolean fields that hold whether the park has each of
these features: picnic facilities, a tennis court, a playground, and a swimming
pool. Include get and set methods for each field. Include code in the method
that sets the number of acres and does not allow a negative number or a
number over 400. Save the file as Park.java.

Then, create a program with methods that do the following:

l Accepts a Park parameter and returns a Boolean value that indicates whether the
Park has both picnic facilities and a playground.

l Accepts a Park parameter and four Boolean parameters that represent requests
for the previously mentioned Park features. The method returns true if the Park
has all the requested features.

Option Explanation Weekly Cost to Employee ($)

1 Medical insurance 32.50

2 Dental insurance 20.00

3 Long-term disability insurance 10.00 293

Exercises

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

l Accepts a Park parameter and four Boolean parameters that represent requests
for the previously mentioned Park features. The method returns true if the Park
has exactly all the requested features and no others.

l Accepts a Park parameter and returns the number of facilities that the Park
features.

l Accepts two Park parameters and returns the larger Park.

Declare at least three Park objects, and demonstrate that all the methods work
correctly. Save the program as TestPark.java.

9. a. Create a class named Invoice that holds an invoice number, balance due, and
three fields representing the month, day, and year when the balance is due.
Create a constructor that accepts values for all five data fields. Within the
constructor, assign each argument to the appropriate field with the following
exceptions:

l If an invoice number is less than 1000, force the invoice number to 0.

l If the month field is less than 1 or greater than 12, force the month field to 0.

l If the day field is less than 1 or greater than 31, force the day field to 0.

l If the year field is less than 2011 or greater than 2017, force the year field to 0.

In the Invoice class, include a display method that displays all the fields on an
Invoice object. Save the file as Invoice.java.

b. Write an application containing a main() method that declares several Invoice
objects, proving that all the statements in the constructor operate as specified.
Save the file as TestInvoice.java.

c. Modify the constructor in the Invoice class so that the day is not greater than 31,
30, or 28, depending on the month. For example, if a user tries to create an
invoice for April 31, force it to April 30. Also, if the month is invalid, and
thus forced to 0, also force the day to 0. Save the modified Invoice class as
Invoice2.java. Then modify the TestInvoice class to create Invoice2 objects.
Create enough objects to test every decision in the constructor. Save this file
as TestInvoice2.java.

10. Use the Web to locate the lyrics to the traditional song “The Twelve Days of
Christmas.” The song contains a list of gifts received for the holiday. The list is
cumulative so that as each “day” passes, a new verse contains all the words of the
previous verse, plus a new item. Write an application that displays the words to
the song starting with any day the user enters. (Hint: Use a switch statement
with cases in descending day order and without any break statements so that
the lyrics for any day repeat all the lyrics for previous days.) Save the file as
TwelveDays.java.

294

C H A P T E R 5 Making Decisions

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

1. Each of the following files in the Chapter05 folder of your downloadable student
files has syntax and/or logic errors. In each case, determine the problem and fix
the program. After you correct the errors, save each file using the same filename
preceded with Fix. For example, save DebugFive1.java as FixDebugFive1.java.

a. DebugFive1.java
b. DebugFive2.java

c. DebugFive3.java
d. DebugFive4.java

Game Zone

1. In Chapter 1, you created a class called RandomGuess. In this game, players guess a
number, the application generates a random number, and players determine
whether they were correct. Now that you can make decisions, modify the application
so it allows a player to enter a guess before the random number is displayed and
then displays a message indicating whether the player’s guess was correct, too
high, or too low. Save the file as RandomGuess2.java. (After you finish the next
chapter, you will be able to modify the application so that the user can continue to
guess until the correct answer is entered.)

2. Create a lottery game application. Generate three random numbers (see Appendix D
for help in doing so), each between 0 and 9. Allow the user to guess three numbers.
Compare each of the user’s guesses to the three random numbers and display a
message that includes the user’s guess, the randomly determined three-digit number,
and the amount of money the user has won as follows:

Make certain that your application accommodates repeating digits. For example, if a
user guesses 1, 2, and 3, and the randomly generated digits are 1, 1, and 1, do not
give the user credit for three correct guesses—just one. Save the file as Lottery.java.

Debugging Exercises

Matching Numbers Award ($)

Any one matching 10

Two matching 100

Three matching, not in order 1,000

Three matching in exact order 1,000,000

No matches 0

295

Exercises

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. In Chapter 3, you created a Card class. Modify the Card class so the setValue()
method does not allow a Card’s value to be less than 1 or higher than 13. If the
argument to setValue() is out of range, assign 1 to the Card’s value.

In Chapter 3, you also created a PickTwoCards application that randomly selects
two playing cards and displays their values. In that application, all Card objects
arbitrarily were assigned a suit represented by a single character, but they could
have different values, and the player observed which of two Card objects had the
higher value. Now, modify the application so the suit and the value both are chosen
randomly. Using two Card objects, play a very simple version of the card game War.
Deal two Cards—one for the computer and one for the player—and determine the
higher card, then display a message indicating whether the cards are equal, the
computer won, or the player won. (Playing cards are considered equal when they
have the same value, no matter what their suit is.) For this game, assume the Ace
(value 1) is low. Make sure that the two Cards dealt are not the same Card. For
example, a deck cannot contain more than one Card representing the 2 of spades.
If two cards are chosen to have the same value, change the suit for one of them.
Save the application as War.java. (After you study the chapter Arrays, you will be
able to create a more sophisticated War game in which you use an entire deck
without repeating cards.)

4. In Chapter 4, you created a Die class from which you could instantiate an object
containing a random value from 1 through 6. You also wrote an application that
randomly “throws” two dice and displays their values. Modify the application so it
determines whether the two dice are the same, the first has a higher value, or the
second has a higher value. Save the application as TwoDice2.java.

5. In the game Rock Paper Scissors, two players simultaneously choose one of three
options: rock, paper, or scissors. If both players choose the same option, then the
result is a tie. However, if they choose differently, the winner is determined as
follows:

l Rock beats scissors, because a rock can break a pair of scissors.

l Scissors beats paper, because scissors can cut paper.

l Paper beats rock, because a piece of paper can cover a rock.

Create a game in which the computer randomly chooses rock, paper, or scissors.
Let the user enter a number 1, 2, or 3, each representing one of the three choices.
Then, determine the winner. Save the application as RockPaperScissors.java.
(In the chapter Characters, Strings, and the StringBuilder, you will modify the
game so that the user enters a string for rock, paper, and scissors, rather than just
entering a number.)

296

C H A P T E R 5 Making Decisions

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Case Problems

1. a. Carly’s Catering provides meals for parties and special events. In Chapters 3
and 4, you created an Event class for the company. Now, make the following
changes to the class:

l Currently, the class contains a field that holds the price for an Event. Now
add another field that holds the price per guest, and add a public method
to return its value.

l Currently, the class contains a constant for the price per guest. Replace that
field with two fields—a lower price per guest that is $32, and a higher price
per guest that is $35.

l Add a new method named isLargeEvent() that returns true if the number
of guests is 50 or greater and otherwise returns false.

l Modify the method that sets the number of guests so that a large
Event (over 50 guests) uses the lower price per guest to set the new
pricePerGuest field and calculate the total Event price. A small Event
uses the higher price.

Save the file as Event.java.

b. In Chapter 4, you modified the EventDemo class to demonstrate two Event
objects. Now, modify that class again as follows:

l Instantiate three Event objects, and prompt the user for values for each
object.

l Change the method that displays Event details to use the new
isLargeEvent() method and the new price per guest value. Use the
display method with all three objects.

l Create a method that accepts two Event objects and returns the larger one
based on number of guests. (If the Events have the same number of guests,
you can return either object.) Call this method three times—once with
each pair of instantiated Events—and display the event number and
number of guests for each argument as well as the event number and
number of guests for the larger Event.

Save the file as EventDemo.java.

297

Exercises

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. a. Sammy’s Seashore Supplies rents beach equipment such as kayaks, canoes,
beach chairs, and umbrellas to tourists. In Chapters 3 and 4, you created a
Rental class for the company.

Now, make the following change to the class:

l Currently, a rental price is calculated as $40 per hour plus $1 for each
minute over a full hour. This means that a customer who rents equipment
for 41 or more minutes past an hour pays more than a customer who waits
until the next hour to return the equipment. Change the price calculation so
that a customer pays $40 for each full hour and $1 for each extra minute up
to and including 40 minutes.

Save the file as Rental.java.

b. In Chapter 4, you modified the RentalDemo class to demonstrate a Rental
object. Now, modify that class again as follows:

l Instantiate three Rental objects, and prompt the user for values for each
object. Display the details for each object to verify that the new price
calculation works correctly.

l Create a method that accepts two Rental objects and returns the one with
the longer rental time. (If the Rentals have the same time, you can return
either object.) Call this method three times—once with each pair of
instantiated Rentals—and display the contract number and time in hours
and minutes for each argument as well as the contract number of the
longer Rental.

Save the file as RentalDemo.java.

298

C H A P T E R 5 Making Decisions

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

