
CHAPTER 4
More Object
Concepts

In this chapter, you will:

Understand blocks and scope

Overload a method

Avoid ambiguity

Create and call constructors with parameters

Use the this reference

Use static fields

Use automatically imported, prewritten constants
and methods

Use composition and nest classes

Unless noted otherwise, all images are © 2014 Cengage Learning

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Understanding Blocks and Scope
Within any class or method, the code between a pair of curly braces is called a block. For
example, the method shown in Figure 4-1 contains two blocks. The first block contains
another, so it is an example of an outside block (also called an outer block). It begins
immediately after the method declaration and ends at the end of the method. The second
block is called the inside block or inner block. It is contained within the second set of
curly braces and contains two executable statements: the declaration of anotherNumber
and a println() statement. The inside block is nested, or contained entirely within, the
outside block.

A block can exist entirely within another block or entirely outside and separate from
another block, but blocks can never overlap. For example, if a method contains two
opening curly braces, indicating the start of two blocks, the next closing curly brace
always closes the inner (second) block—it cannot close the outer block because that
would make the blocks overlap. Another way to state this concept is that whenever
you encounter a closing brace that ends a block, it always closes the most recently
opened block.

When you declare a variable, you cannot refer to that variable outside its block. As
you learned in Chapter 3, the portion of a program within which you can refer to a
variable is the variable’s scope. A variable comes into existence, or comes into scope,
when you declare it. A variable ceases to exist, or goes out of scope, at the end of the
block in which it is declared. Although you can create as many variables and blocks as
you need within any program, it is not wise to do so without a reason. The use of
unnecessary variables and blocks increases the likelihood of improper use of variable
names and scope.

public static void methodWithNestedBlocks()
{
int aNumber = 10;
System.out.println

("In outer block, aNumber is " + aNumber);
{

int anotherNumber = 512;
System.out.println

("In inner block, aNumber is " +
aNumber + " and another number is " +
anotherNumber);

}
System.out.println("In outer block, aNumber is " + aNumber);

}

aNumber comes into existence

anotherNumber comes into existence

anotherNumber ceases to exist; it goes out of scope

aNumber ceases to exist; it goes out of scope

Outer block
starts with
opening brace

Inner block
starts with next
opening brace

Outer block
ends

Inner block ends

Figure 4-1 A method with nested blocks

180

C H A P T E R 4 More Object Concepts

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In the methodWithNestedBlocks() method shown in Figure 4-1, the variable aNumber
exists from the point of its declaration until the end of the method. This means
aNumber exists both in the outer block and in the inner block and can be used anywhere
in the method. The variable anotherNumber comes into existence within the inner
block; anotherNumber goes out of scope when the inner block ends and cannot be used
beyond its block. Figure 4-2 shows the output when the method in Figure 4-1 is called
from another method.

The program that produces the output shown in Figure 4-2 is stored in the CodeInFigures folder in your
downloadable student files.

You cannot use a data item that is not in scope. For example, Figure 4-3 shows a
method that contains two blocks and some shaded, invalid statements. The opening and
closing braces for each block are vertically aligned. You are not required to vertically
align the opening and closing braces for a block, but your programs are much easier to
read if you do.

Figure 4-2 Output produced by application that uses methodWithNestedBlocks()

public static void methodWithInvalidStatements()
{

aNumber = 75;
int aNumber = 22;
aNumber = 6;
anotherNumber = 489;
{
anotherNumber = 165;
int anotherNumber = 99;
anotherNumber = 2;

}
aNumber = 50;
anotherNumber = 34;}

aNumber = 29;

Illegal statement; this variable has not been declared yet

Illegal statement; this variable has not been declared yet

Illegal statement; this variable still has not been declared

Illegal statement; this variable was declared in the inner block
and has gone out of scope here

Illegal statement; this variable has gone out of scope

Figure 4-3 The methodWithInvalidStatements() method

181

Understanding Blocks and Scope

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The first assignment statement in the first, outer block in Figure 4-3, aNumber = 75;, is
invalid because aNumber has not been declared yet. Similarly, the statements that attempt to
assign 489 and 165 to anotherNumber are invalid because anotherNumber has not been
declared yet. After anotherNumber is declared, it can be used for the remainder of the inner
block, but the statement that attempts to assign 34 to it is outside the block in which
anotherNumber was declared. The last shaded statement in Figure 4-3, aNumber = 29;, does
not work because it falls outside the block in which aNumber was declared; it actually falls
outside the entire methodWithInvalidStatements() method.

Within a method, you can declare a variable with the same name multiple times, as long as
each declaration is in its own nonoverlapping block. For example, the two declarations of
variables named someVar in Figure 4-4 are valid because each variable is contained within its
own block. The first instance of someVar has gone out of scope before the second instance
comes into scope.

You cannot declare the same variable name more than once within a block, even if a
block contains other blocks. When you declare a variable more than once in a block, you are
attempting to redeclare the variable—an illegal action. For example, in Figure 4-5, the second
declaration of aValue causes an error because you cannot declare the same variable twice within
the outer block of the method. By the same reasoning, the third declaration of aValue is also
invalid, even though it appears within a new block. The block that contains the third declaration
is entirely within the outside block, so the first declaration of aValue has not gone out of scope.

public static void twoDeclarations()
{

{
int someVar = 7;
System.out.println(someVar);

}
{

int someVar = 845;
System.out.println(someVar);

}
}

This variable is totally different from the one
in the previous block even though their
identifiers are the same.

This variable will go out of scope at the next
closing curly brace.Don’t declare

blocks for no
reason. A
new block
starts here
only to
demonstrate
scope.

Figure 4-4 The twoDeclarations() method

public static void invalidRedeclarationMethod()
{

int aValue = 35;
int aValue = 44;
{
int anotherValue = 0;
int aValue = 10;

}
}

Invalid redeclaration of aValue because it is
in same block as the first declaration

Invalid redeclaration of aValue; even though this
is a new block, this block is inside the first block

Figure 4-5 The invalidRedeclarationMethod()

182

C H A P T E R 4 More Object Concepts

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Although you cannot declare a variable twice within the same block, you can declare a
variable within one method of a class and use the same variable name within another method
of the class. In this case, the variable declared inside each method resides in its own location
in computer memory. When you use the variable’s name within the method in which it is
declared, it takes precedence over, or overrides, any other variable with the same name in
another method. In other words, a locally declared variable always masks or hides another
variable with the same name elsewhere in the class.

For example, consider the class in Figure 4-6. In the main()method of the OverridingVariable
class, aNumber is declared and assigned the value 10. When the program calls firstMethod(), a
new variable is declared with the same name but with a different memory address and a new
value. The new variable exists only within firstMethod(), where it is displayed holding the
value 77. After firstMethod() executes and the logic returns to the main()method, the original
aNumber is displayed, containing 10. When aNumber is passed to secondMethod(), a copy is
made within the method. This copy has the same identifier as the original aNumber, but a
different memory address. So, within secondMethod(), when the value is changed to 862 and
displayed, it has no effect on the original variable in main(). When the logic returns to main()
after secondMethod(), the original value is displayed again. Examine the output in Figure 4-7 to
understand the sequence of events.

public class OverridingVariable
{

public static void main(String[] args)
{
int aNumber = 10;
System.out.println("In main(), aNumber is " + aNumber);
firstMethod();
System.out.println("Back in main(), aNumber is " + aNumber);
secondMethod(aNumber);
System.out.println("Back in main() again, aNumber is " + aNumber);

}
public static void firstMethod()
{
int aNumber = 77;
System.out.println("In firstMethod(), aNumber is "

+ aNumber);
}
public static void secondMethod(int aNumber)
{
System.out.println("In secondMethod(), at first " +

"aNumber is " + aNumber);
aNumber = 862;
System.out.println("In secondMethod(), after an assignment " +

"aNumber is " + aNumber);
}

}

aNumber is declared in
main().

Whenever aNumber
is used in main(), it
retains its value of 10.

This aNumber resides at a different
memory address from the one in main().
It is declared locally in this method.

This aNumber also resides at a different
memory address from the one in main().
It is declared locally in this method.

Figure 4-6 The OverridingVariable class

183

Understanding Blocks and Scope

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Object-oriented programmers also use the term override when a child class contains a field or method that
has the same name as one in the parent class. You will learn more about inheritance in the chapters
Introduction to Inheritance and Advanced Inheritance Concepts.

You are familiar with local names overriding names defined elsewhere. If someone in your household is
named Eric, and someone in the house next door is named Eric, members of your household who talk about
Eric are referring to the local version. They would add a qualifier such as Eric Johnson or Eric next door to
refer to the nonlocal version.

When they have the same name, variables within methods of a class override or hide the
class’s fields. Java calls this phenomenon shadowing; a variable that hides another shadows it.
For example, Figure 4-8 shows an Employee class that contains two instance variables and
three void methods. The setValues() method provides values for the two class instance
fields. Whenever the method named methodThatUsesInstanceAttributes() is used with an
Employee object, the instance values for empNum and empPayRate are used. However, when the
other method, methodThatUsesLocalVariables(), is used with an Employee object, the local
variable values within the method, 33333 and 555.55, shadow the class’s instance variables.
Figure 4-9 shows a short application that declares an Employee object and uses each method;
Figure 4-10 shows the output.

Figure 4-7 Output of the OverridingVariable application

184

C H A P T E R 4 More Object Concepts

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public class TestEmployeeMethods
{

public static void main(String[] args)
{

Employee aWorker = new Employee();
aWorker.setValues();
aWorker.methodThatUsesInstanceAttributes();
aWorker.methodThatUsesLocalVariables();

}
}

Figure 4-9 The TestEmployeeMethods application

public class Employee
{

private int empNum;
private double empPayRate;
public void setValues()
{

empNum = 111;
empPayRate = 22.22;

}
public void methodThatUsesInstanceAttributes()
{

System.out.println("Employee number is " + empNum);
System.out.println("Pay rate is " + empPayRate);

}
public void methodThatUsesLocalVariables()
{

int empNum = 33333;
double empPayRate = 555.55;
System.out.println("Employee number is " + empNum);
System.out.println("Pay rate is " + empPayRate);

}
}

This method uses the class fields.

This method also uses
the class fields.

This method uses the locally declared
variables that happen to have the
same names as the class fields.

Figure 4-8 The Employee class

Figure 4-10 Output of the TestEmployeeMethods application

185

Understanding Blocks and Scope

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In the methodThatUsesLocalVariables() method in Figure 4-8, the locally declared empNum
and empPayRate are assigned 33333 and 55.55, respectively. These local variables are said to
be closer in scope than the variables with the same name at the top of the class that are
shadowed. When you write programs, you might choose to avoid confusing situations that
arise when you give the same name to a class’s instance field and to a local method variable.
But, if you do use the same name, be aware that within the method, the method’s local
variable overrides the instance variable.

Programmers frequently use the same name for an instance field and a parameter to a method in the same
class simply because it is the “best name” to use; in these cases, the programmer must use the this
reference, which you will learn about later in this chapter.

It is important to understand the impact that blocks and methods have on your variables.
Variables and fields with the same names represent different memory locations when they are
declared within different scopes. After you understand the scope of variables, you can avoid
many potential errors in your programs.

TWO TRUTHS & A LIE

Understanding Blocks and Scope
1. A variable ceases to exist, or goes out of scope, at the end of the block in which

it is declared.

2. You cannot declare the same variable name more than once within a block, even
if a block contains other blocks.

3. A class’s instance variables override locally declared variables with the same
names that are declared within the class’s methods.

. sel bai r av ecnat sni s’ ssal c a edi rr evo ssal c af o
sdoht e mni hti wsel bai r av, e man e mas eht evah yeht neh W. 3# si t ne met at s esl af ehT

You Do It

Demonstrating Scope

In this section, you create a method with several blocks to demonstrate block scope.

1. Start your text editor, and then open a new document, if necessary.

2. Type the first few lines for a class named DemoBlock:

(continues)

186

C H A P T E R 4 More Object Concepts

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public class DemoBlock
{

public static void main(String[] args)

3. Add a statement that displays the purpose of the program:

System.out.println("Demonstrating block scope");

4. On a new line, declare an integer named x, assign the value 1111 to it, and
display its value:

int x = 1111;
System.out.println("In first block x is " + x);

5. Begin a new block by typing an opening curly brace on the next line. Within the
new block, declare another integer named y, and display x and y. The value of x
is 1111, and the value of y is 2222:

{
int y = 2222;
System.out.println("In second block x is " + x);
System.out.println("In second block y is " + y);

}

6. On the next line, begin another new block. Within this new block, declare a
new integer with the same name as the integer declared in the previous
block; then display x and y. The value of y is 3333. Call a method named
demoMethod(), and display x and y again. Even though you will include
statements within demoMethod() that assign different values to x and y, the
x and y displayed here are still 1111 and 3333:

{
int y = 3333;
System.out.println("In third block x is " + x);
System.out.println("In third block y is " + y);
demoMethod();
System.out.println("After method x is " + x);
System.out.println("After method block y is " + y);

}

7. On a new line after the end of the block, type the following:

System.out.println("At the end x is " + x);

This last statement in the main() method displays the value of x, which is
still 1111. Type a closing curly brace.

(continued)

(continues)

187

Understanding Blocks and Scope

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8. Finally, enter the following demoMethod() that creates its own x and y variables,
assigns different values, and then displays them:

public static void demoMethod()
{

int x = 8888, y = 9999;
System.out.println("In demoMethod x is " + x);
System.out.println("In demoMethod block y is " + y);

}

9. Type the final closing curly brace, and then save the file as DemoBlock.java. At
the command prompt, compile the file by typing the command javac DemoBlock.
java. If necessary, correct any errors, and compile the program again.

10. Run the program by typing the
command java DemoBlock.
Your output should look like
Figure 4-11. Make certain you
understand how the values of
x and y are determined in each
line of output.

11. To gain a more complete
understanding of blocks and
scope, change the values of
x and y in several locations
throughout the program, and
try to predict the exact output
before resaving, recompiling,
and rerunning the program.

Overloading a Method
Overloading involves using one term to indicate diverse meanings. In Java, it more specifically
means writing multiple methods in the same scope that have the same name but different
parameter lists. The names used in the parameter lists do not matter; the lists must differ in
parameter type, number of parameters, or both.

When you use the English language, you overload words all the time. When you say “open the
door,” “open your eyes,” and “open a computer file,” you are talking about three very different
actions using very different methods and producing very different results. However, anyone
who speaks English fluently has no trouble understanding your meaning because the verb
open is understood in the context of the noun that follows it.

Figure 4-11 Output of the DemoBlock application

(continued)

188

C H A P T E R 4 More Object Concepts

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

When you overload a Java method, multiple methods share a name, and the compiler
understands which one to use based on the arguments in the method call. For example,
suppose you create a class method to apply a simple interest rate to a bank balance. The
method is named calculateInterest(); it receives two double parameters—the balance and
the interest rate—and displays the multiplied result. Figure 4-12 shows the method.

public static void calculateInterest(double bal, double rate)
{

double interest;
interest = bal * rate;
System.out.println("Simple interest on $" + bal +

" at " + rate + "% rate is " + interest);
}

Figure 4-12 The calculateInterest() method with two double parameters

When an application calls the calculateInterest() method and passes two double values,
as in calculateInterest(1000.00, 0.04), the interest is calculated correctly as 4% of
$1000.00.

Assume, however, that different users want to calculate interest using different argument
types. Some users who want to indicate an interest rate of 4% might use 0.04; others might
use 4 and assume that it means 4%. When the calculateInterest() method is called with
the arguments 1000.00 and 0.04, the interest is calculated correctly as 40.00. When the
method is called using 1000.00 and 4, the method works because the integer argument is
promoted to a double, but the interest is calculated incorrectly as 4000.00, which is 100 times
too high.

A solution for the conflicting use of numbers to represent parameter values is to overload the
calculateInterest() method. For example, in addition to the calculateInterest()
method shown in Figure 4-12, you could add the method shown in Figure 4-13.

public static void calculateInterest(double bal, int rate)
{

double interest, rateAsPercent;
rateAsPercent = rate / 100.0;
interest = bal * rateAsPercent;
System.out.println("Simple interest on $" +

bal + " at " + rate + "% rate is " +
interest);

}

Notice the data type
for rate.

Dividing by 100.0 converts rate
to its percent equivalent.

Figure 4-13 The calculateInterest()method with a double parameter and an int parameter

189

Overloading a Method

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In Figure 4-13, note that rateAsPercent is calculated by dividing by 100.0 and not by 100. If two integers
are divided, the result is a truncated integer; dividing by a double 100.0 causes the result to be a double.
Alternatively, you could use an explicit cast such as rateAsPercent = (double)rate / 100.

If an application calls the method calculateInterest() using two double arguments—for
example, calculateInterest(1000.00, 0.04)—the first version of the method, the one
shown in Figure 4-12, executes. However, if an integer is used as the second argument in a call
to calculateInterest()—as in calculateInterest(1000.00, 4)—the second version of
the method, the one shown in Figure 4-13, executes. In this second example, the whole
number rate figure is correctly divided by 100.0 before it is used to determine the interest
earned.

Of course, you could use methods with different names to solve the dilemma of producing
an accurate interest figure—for example, calculateInterestUsingDouble() and
calculateInterestUsingInt(). However, it is easier and more convenient for
programmers who use your methods to remember just one method name they can use in
the form that is most appropriate for their programs. It is convenient to be able to use one
reasonable name for tasks that are functionally identical except for the argument types that
can be passed to them. The compiler knows which method version to call based on the
passed arguments.

Automatic Type Promotion in Method Calls
In Chapter 2, you learned that Java casts variables to a unifying type when you perform
arithmetic with unlike types. For example, when you multiply an int and a double, the
result is a double. In a similar way, Java can promote one data type to another when you
pass a parameter to a method. For example, if a method has a double parameter and you
pass in an integer, the integer is promoted to a double. Recall that the order of promotion is
double, float, long, and int. Any type in this list can be promoted to any type that
precedes it.

When an application contains just one version of a method, you can call the method using a
parameter of the correct data type or one that can be promoted to the correct data type. For
example, consider the simple method shown in Figure 4-14.

public static void simpleMethod(double d)
{

System.out.println("Method receives double parameter");
}

Figure 4-14 The simpleMethod() method with a double parameter

If you write an application in which you declare doubleValue as a double variable and
intValue as an int variable (as shown in Figure 4-15), either of the two method calls,

190

C H A P T E R 4 More Object Concepts

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

simpleMethod(doubleValue); or simpleMethod(intValue);, results in the output “Method
receives double parameter”. When you call the method with the double argument, the
method works as expected, and when you call it with an integer argument, the integer is
cast as (or promoted to) a double. The output of the program in Figure 4-15 is shown in
Figure 4-16.

Note that if the method with the declaration void simpleMethod(double d) did not
exist, but the declaration void simpleMethod(int i) did exist, then the method call
simpleMethod(doubleValue); would fail. Although an int can be promoted to a double,
a double cannot become an int. This makes sense if you consider the potential loss of information
when a double value is reduced to an integer.

Suppose that you add an overloaded version of simpleMethod() to the program in
Figure 4-15. This version accepts an integer parameter, as shown in Figure 4-17. When
you properly overload a method, you can call it providing different argument lists, and

public class CallSimpleMethod
{

public static void main(String[] args)
{
double doubleValue = 45.67;
int intValue = 17;
simpleMethod(doubleValue);
simpleMethod(intValue);

}
public static void simpleMethod(double d)
{

System.out.println("Method receives double parameter");
}

}

Either a double or an
int can be sent to a
method that accepts a
double.

Figure 4-15 The CallSimpleMethod application that calls simpleMethod() with a double
and an int

Figure 4-16 Output of the CallSimpleMethod application

191

Overloading a Method

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

the appropriate version of the method executes. Now, the output changes when you call
simpleMethod(intValue);. Instead of promoting an integer argument to a double, the
compiler recognizes a more exact match for the method call that uses the integer
argument, so it calls the version of the method that produces the output “Method
receives integer parameter”. Figure 4-18 shows the output.

public class CallSimpleMethodAgain
{

public static void main(String[] args)
{
double doubleValue = 45.67;
int intValue = 17;
simpleMethod(doubleValue);
simpleMethod(intValue);

}
public static void simpleMethod(double d)
{

System.out.println("Method receives double parameter");
}
public static void simpleMethod(int d)
{

System.out.println("Method receives integer parameter");
}

}

The call with an int
argument uses the
method that is a better
match when it is
available.

Figure 4-17 The CallSimpleMethodAgain application that calls simpleMethod() with a
double and an int

Figure 4-18 Output of the CallSimpleMethodAgain application

192

C H A P T E R 4 More Object Concepts

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Overloading a Method
1. When you overload Java methods, you write multiple methods with a shared

name.

2. When you overload Java methods, the methods are called using different
arguments.

3. Instead of overloading methods, it is preferable to write methods with unique
identifiers.

. meht ot dessap
eb nact aht sepyt t ne mugr a eht r of t pecxe,l aci t nedi yll anoi t cnuf er at aht sksat

r of e man el banosaer eno esu ot sr e mmar gor pr of t nei nevnoc si ti esuaceb sr eifi t nedi
euqi nu gni su ot el bar ef er p si sdoht e mgni daol r ev O. 3# si t ne met at s esl af ehT

You Do It

Overloading Methods

In this section, you overload methods to display dates. The date-displaying methods
might be used by many different applications in an organization, such as those that
schedule jobs, appointments, and employee reviews. The methods take one, two, or
three integer arguments. If there is one argument, it is the month, and the date
becomes the first day of the given month in the year 2014. If there are two
arguments, they are the month and the day in the year 2014. Three arguments
represent the month, day, and year.

Instead of creating your own class to store dates, you can use the built-in Java class
GregorianCalendar to handle dates. This exercise illustrates how some of the built-in
GregorianCalendar class was constructed by Java’s creators.

1. Open a new file in your text editor.

2. Begin the following DemoOverload class with three integer variables to test the
method and three calls to a displayDate() method:

public class DemoOverload
{

public static void main(String[] args)

(continues)

193

Overloading a Method

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

{
int month = 6, day = 24, year = 2015;
displayDate(month);
displayDate(month, day);
displayDate(month, day, year);

}

3. Create the following displayDate() method that requires one parameter to
represent the month and uses default values for the day and year:

public static void displayDate(int mm)
{

System.out.println("Event date " + mm + "/1/2014");
}

4. Create the following displayDate() method that requires two parameters to
represent the month and day and uses a default value for the year:

public static void displayDate(int mm, int dd)
{

System.out.println("Event date " + mm + "/" + dd + "/2014");
}

5. Create the following displayDate() method that requires three parameters
used as the month, day, and year:

public static void displayDate(int mm, int dd, int yy)
{

System.out.println("Event date " + mm + "/" + dd + "/" + yy);
}

6. Type the closing curly brace for the DemoOverload class.

7. Save the file as DemoOverload.java.

8. Compile the program, correct
any errors, recompile if
necessary, and then execute
the program. Figure 4-19 shows
the output. Notice that whether
you call the displayDate()
method using one, two, or three
arguments, the date is displayed
correctly because you have
successfully overloaded the
displayDate() method.

(continued)

Figure 4-19 Output of the DemoOverload
application

194

C H A P T E R 4 More Object Concepts

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Learning About Ambiguity
When you overload methods, you risk creating an ambiguous situation—one in which the
compiler cannot determine which method to use. For example, consider the following
overloaded computeBalance() method declarations:

public static void computeBalance(double deposit)
public static void computeBalance(double withdrawal)

If you declare a double variable named myDeposit and make a method call such as
computeBalance(myDeposit);, you will have created an ambiguous situation. Both methods
are exact matches for your call. You might argue that a call using a variable named myDeposit
“seems” like it should go to the version of the method with the parameter named deposit, but
Java makes no assumptions based on variable names. Each version of computeBalance()
could accept a double, and Java does not presume which one you intended to use.

Sometimes, it is hard to recognize potentially ambiguous situations. For example, consider
the following two method declarations:

public static void calculateInterest(int bal, double rate)
public static void calculateInterest(double bal, int rate)

These calculateInterest() methods have different types in their parameter lists. A call
to calculateInterest() with an int and a double argument (in that order) executes the
first version of the method, and a call to calculateInterest() with a double and an
int argument executes the second version of the method. With each of these calls, the
compiler can find an exact match for the arguments you send. However, if you call
calculateInterest() using two integer arguments, as in calculateInterest(300, 6);, an
ambiguous situation arises because there is no exact match for the method call. Because the
two integers in the method call can be promoted to an integer and a double (thus matching
the first version of the overloaded method), or to a double and an integer (thus matching the
second version), the compiler does not know which version of the calculateInterest()
method to use, and the program does not compile.

The two versions of calculateInterest() could coexist if no ambiguous calls were ever
made. An overloaded method is not ambiguous on its own—it only becomes ambiguous if
you create an ambiguous situation. A program containing a potentially ambiguous situation
will run problem-free if you do not make any ambiguous method calls.

It is important to note that you can overload methods correctly by providing different
parameter lists for methods with the same name. Methods with identical names that
have identical parameter lists but different return types are not overloaded—they are
illegal.

For example, the following two methods are illegal in the same class:

int aMethod(int x)
void aMethod(int x)

The compiler determines which of several versions of a method to call based on the
arguments in the method call. If those two methods existed within a class, when the method

195

Learning About Ambiguity

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

call aMethod(17); was made, the compiler would not know which method to execute
because both methods take an integer parameter.

The compiler determines which version of a method to call by the method’s signature. In Chapter 3, you
learned that a method’s signature is the combination of the method name and the number, types, and order
of parameters.

If the keyword final appears in a method’s parameter list, it is ignored when determining
ambiguity. In other words, two methods with the headers void aMethod(int x) and void
aMethod(final int x) are ambiguous.

Watch the video Overloading Methods.

TWO TRUTHS & A LIE

Learning About Ambiguity

1. When it is part of the same programas void myMethod(int age, String name),
the following method would be ambiguous:
void myMethod(String name, int age)

2. When it is part of the same program as void myMethod(int age, String name),
the following method would be ambiguous:
String myMethod(int zipCode, String address)

3. When it is part of the same program as void myMethod(int age, String name),
the following method would be ambiguous:
void myMethod(int x, String y)

.r edr o esr ever
eht ni sr et e mar ap eht st peccat aht eno hti wsuougi b mat on si gnirtS a yb

dewoll of r et e mar ap tni na st peccat aht doht e mA. 1# si t ne met at s esl af ehT

Creating and Calling Constructors with Parameters
In Chapter 3, you learned that Java automatically provides a constructor when you create a
class. You also learned that you can write your own constructor, and that you often do so
when you want to ensure that fields within classes are initialized to some appropriate default
value. In Chapter 3, you learned that the automatically provided constructor is a default
constructor (one that does not require arguments), and you learned that you can also write a
custom default constructor. However, when you write your own constructors, you can also

196

C H A P T E R 4 More Object Concepts

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

write versions that receive parameters. Such parameters are often used to initialize data fields
for an object.

For example, consider the Employee class with
just one data field, shown in Figure 4-20.
Its constructor assigns 999 to the empNum of each
potentially instantiated Employee object. Anytime
an Employee object is created using a statement
such as Employee partTimeWorker = new
Employee();, even if no other data-assigning
methods are ever used, you ensure that the
partTimeWorker Employee, like all Employee
objects, will have an initial empNum of 999.

Alternatively, you might choose to create
Employee objects with initial empNum values that
differ for each Employee. To accomplish this
when the object is instantiated, you can pass an
employee number to the constructor. Figure 4-21 shows an Employee class that contains a
constructor that receives a parameter. With this constructor, an argument is passed using a
statement such as the following:

Employee partTimeWorker = new Employee(881);

When the constructor executes, the integer
within the constructor call is passed to
Employee() as the parameter num, which is
assigned to the empNum field.

When you create an Employee class with a
constructor such as the one shown in
Figure 4-21, every Employee object you create
must have an integer argument in its
constructor call. In other words, with this new
version of the class, the following statement no
longer works:

Employee partTimeWorker = new Employee();

After you write a constructor for a class, you no longer receive the automatically provided
default constructor. If a class’s only constructor requires an argument, you must provide an
argument for every object of the class that you create.

Overloading Constructors
As with any other method, you can overload constructors. Overloading constructors provides
you with a way to create objects with different initializing arguments, or none, as needed. For
example, in addition to using the provided constructor shown in Figure 4-21, you can create a

public class Employee
{

private int empNum;
Employee(int num)
{

empNum = num;
}

}

Figure 4-21 The Employee class with a
constructor that accepts a value

public class Employee
{

private int empNum;
Employee()
{

empNum = 999;
}

}

Figure 4-20 The Employee class with
a default constructor that initializes the
empNum field

197

Creating and Calling Constructors with Parameters

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

second constructor for the Employee class;
Figure 4-22 shows an Employee class that
contains two constructors. When you use this
class to create an Employee object, you have the
option of creating the object either with or
without an initial empNum value. When you create
an Employee object with the statement Employee
aWorker = new Employee();, the constructor
with no parameters is called, and the Employee
object receives an initial empNum value of 999.
When you create an Employee object
with Employee anotherWorker = new
Employee(7677);, the constructor version that
requires an integer is used, and the
anotherWorker Employee receives an initial
empNum of 7677.

You can use constructor arguments to initialize
field values, but you can also use arguments for any other purpose. For example, you could
use the presence or absence of an argument simply to determine which of two possible
constructors to call, yet not make use of the argument within the constructor. As long as the
constructor parameter lists differ, the constructors are not ambiguous.

Watch the video Overloading Constructors.

TWO TRUTHS & A LIE

Creating and Calling Constructors with Parameters

1. A default constructor is one that is automatically created.

2. When you write a constructor, it can be written to receive parameters or not.

3. If a class’s only constructor requires an argument, you must provide an
argument for every object of the class that you create.

. st ne mugr a on ekat ot eti r wuoy t aht eno si os t ub,r ot curt snoctl uaf ed a si noi sr ev
n wor uoy eti r wt on od uoy nehw det aer c yll aci t a mot ua si t aht r ot curt snoc ehT

. st ne mugr a on sekat t aht eno si r ot curt snoctl uaf ed A. 1# si t ne met at s esl af ehT
public class Employee
{

private int empNum;
Employee(int num)
{

empNum = num;
}
Employee()
{

empNum = 999;
}

}

Figure 4-22 The Employee class that
contains two constructors

198

C H A P T E R 4 More Object Concepts

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You Do It

Creating Overloaded Constructors

In this section, you create a class with overloaded constructors and demonstrate how
they work.

1. Open a new file in your text editor, and start the CarInsurancePolicy class as
follows. The class contains three fields that hold a policy number, the number
of payments the policy holder will make annually, and the policy holder’s city
of residence.

public class CarInsurancePolicy
{

private int policyNumber;
private int numPayments;
private String residentCity;

2. Create a constructor that requires parameters for all three data fields.

public CarInsurancePolicy(int num, int payments, String city)
{

policyNumber = num;
numPayments = payments;
residentCity = city;

}

3. Suppose the agency that sells car insurance policies is in the city of Mayfield.
Create a two-parameter constructor that requires only a policy number and
number of payments. This constructor assigns Mayfield to residentCity.

public CarInsurancePolicy(int num, int payments)
{

policyNumber = num;
numPayments = payments;
residentCity = "Mayfield";

}

4. Add a third constructor that requires only a policy number parameter.
This constructor uses the default values of two annual payments and Mayfield
as the resident city. (Later in this chapter, you will learn how to eliminate the
duplicated assignments in these constructors.)

public CarInsurancePolicy(int num)
{

policyNumber = num;
numPayments = 2;
residentCity = "Mayfield";

}
(continues)

199

Creating and Calling Constructors with Parameters

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5. Add a display() method that outputs all the insurance policy data:

public void display()
{

System.out.println("Policy #" + policyNumber + ". " +
numPayments + " payments annually. Driver resides in " +
residentCity + ".");

}

6. Add a closing curly brace for the class. Save the file as
CarInsurancePolicy.java.

7. Open a new text file to create a short application that demonstrates the
constructors at work. The application declares three CarInsurancePolicy
objects using a different constructor version each time. Type the following code:

public class CreatePolicies
{

public static void main(String[] args)
{

CarInsurancePolicy first = new CarInsurancePolicy(123);
CarInsurancePolicy second = new CarInsurancePolicy(456, 4);
CarInsurancePolicy third = new CarInsurancePolicy

(789, 12, "Newcastle");

8. Display each object, and add closing curly braces for the method and the class:

first.display();
second.display();
third.display();

}
}

9. Save the file as CreatePolicies.java, and then compile and test the program.
The output appears in Figure 4-23.

(continued)

Figure 4-23 Output of the CreatePolicies program

(continues)

200

C H A P T E R 4 More Object Concepts

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10. Add a fourth declaration to the CreatePolicies class that attempts to create
a CarInsurancePolicy object using a default constructor:

CarInsurancePolicy fourth = new CarInsurancePolicy();

11. Save and compile the revised CreatePolicies program. The class does not
compile because the CarInsurancePolicy class does not contain a default
constructor. Change the newly added declaration to a comment, compile the
class again, and observe that the class now compiles correctly.

Examining Prewritten Overloaded Methods

In this section, you examine some built-in classes and recognize their correctly
overloaded methods.

1. Using a Web browser, go to the Java Web site at www.oracle.com/
technetwork/java/index.html, and select Java APIs and Java SE 7.

2. Using the alphabetical list of classes, find the PrintStream class, and select it.

3. Examine the list of constructors for the class, and notice that each version has a
unique parameter list.

4. Examine the list of methods named print() and println(). Notice that each
overloaded version has a unique parameter list.

5. Using the alphabetical list of classes, find the JOptionPane class, and select it.

6. Examine the list of constructors for the class, and notice that each version has a
unique parameter list.

7. Examine the list of methods named showConfirmDialog() and showInputDialog().
Notice that each overloaded version has a unique parameter list.

Learning About the this Reference
When you start creating classes, they can become large very quickly. Besides data fields, each
class can have many methods, including several overloaded versions. On paper, a single class
might require several pages of coded statements.

When you instantiate an object from a class, memory is reserved for each instance field in the
class. For example, if a class contains 20 data fields, when you create one object from that
class, enough memory is reserved to hold the 20 field values for that object. When you create
200 objects of the same class, the computer reserves enough memory for 4,000 data fields—20
fields for each of the 200 objects. In many applications, the computer memory requirements
can become substantial. Fortunately, it is not necessary to store a separate copy of each
variable and method for each instantiation of a class.

(continued)

201

Learning About the this Reference

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.oracle.com/

Usually, you want each instantiation of a class to have its own data fields. If an Employee class
contains fields for employee number, name, and salary, every individual Employee object
needs a unique number, name, and salary value. (When you want each object to share a value,
you define the field as static; a field is not static when the value in each object can be
unique.) However, when you create a method for a class, any object can use the same method.
Whether the method performs a calculation, sets a field value, or constructs an object, the
instructions are the same for each instantiated object. Not only would it take an enormous
amount of memory to store a separate copy of each method for every object created from
a class, but memory would also be wasted because you would be storing identical copies
of methods—that is, each object’s copy of the method would have the same contents.
Luckily, in Java just one copy of each method in a class is stored, and all instantiated objects
can use that copy.

When you use a nonstatic method, you use the object name, a dot, and the method name—
for example, aWorker.getEmpNum() or anotherWorker.getEmpNum(). When you execute the
getEmpNum() method, you are running the only copy of the method. However, within the
getEmpNum() method, when you access the empNum field, you access a different field
depending on the object. The compiler must determine whose copy of the empNum value
should be returned by the single getEmpNum() method.

The compiler accesses the correct object’s field because every time you call a nonstatic
method, you implicitly pass a reference to the named object attached to the method call.
A reference is an object’s memory address. The reference is implicit because it is understood
automatically without actually being written. The reference to an object that is passed to any
object’s nonstatic method is called the this reference; this is a reserved word in Java. Only
nonstatic, instance methods have a this reference. For example, the two getEmpNum()
methods for the Employee class shown in Figure 4-24 perform identically. The first
method simply uses the this reference without your being aware of it; the second method
uses the this reference explicitly. Both methods return the empNum of the object used to
call the method.

public int getEmpNum()
{

return empNum;
}
public int getEmpNum()
{

return this.empNum;
}

The this reference is sent into this
nonstatic method as a parameter
automatically; you do not (and
cannot) write code for it. You do not
need to use this with empNum.

However, you can explicitly use
the this reference with
empNum. The two methods in
this figure operate identically.

Figure 4-24 Two versions of the getEmpNum()method, with and without an explicit this reference

202

C H A P T E R 4 More Object Concepts

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Frequently, you neither want nor need to refer to the this reference within the instance
methods that you write, but the this reference is always there, working behind the scenes, so
that the data field for the correct object can be accessed.

On a few occasions, you must use the this reference to make your classes work correctly; one
example is shown in the Student class in Figure 4-25. Within the constructor for this class,
the parameter names stuNum and gpa are identical to the class field names. Within the
constructor, stuNum and gpa refer to the locally declared names, not the class field names.
The statement stuNum = stuNum accomplishes nothing—it assigns the local variable value to
itself. The client application in Figure 4-26 attempts to create a Student object with an ID
number of 111 and a grade point average of 3.5, but Figure 4-27 shows the incorrect output.
The values are not assigned to the fields; instead, they are just zeroes.

public class TestStudent
{

public static void main(String[] args)
{

Student aPsychMajor =
new Student(111, 3.5);

aPsychMajor.showStudent();
}

}

Figure 4-26 The TestStudent class that instantiates a Student object

public class Student
{

private int stuNum;
private double gpa;
public Student (int stuNum, double gpa)
{ stuNum = stuNum;
gpa = gpa;

}
public void showStudent()
{
System.out.println("Student #" + stuNum +

" gpa is " + gpa);
}

}

Don’t Do It
All four variables used in these
two statements are the local versions declared
in the method’s parameter list. The fields are
never accessed because the local variables
shadow the fields. These two assignment
statements accomplish nothing.

Figure 4-25 A Student class whose constructor does not work

203

Learning About the this Reference

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

One way to fix the problem with the Student class is to use different identifiers for the class’s
fields and the parameters to the constructor. However, sometimes the identifiers you have
chosen are the best and simplest identifiers for a value. If you choose to use the same
identifiers, you can use the this reference explicitly to identify the fields. Figure 4-28 shows a
modified Student class. The only difference between this class and the one in Figure 4-25 is
the explicit use of the this reference within the constructor. When the this reference is used
with a field name in a class method, the reference is to the class field instead of to the local
variable declared within the method. When the TestStudent application uses this new
version of the Student class, the output appears as expected, as shown in Figure 4-29.

public class Student
{

private int stuNum;
private double gpa;
public Student(int stuNum, double gpa)
{

this.stuNum = stuNum;
this.gpa = gpa;

}
public void showStudent()
{

System.out.println("Student #" +
stuNum + " gpa is " + gpa);

}
}

Figure 4-28 The Student class using the explicit this
reference within the constructor

Figure 4-27 Output of the TestStudent application using the incorrect Student class in Figure 4-25

Figure 4-29 Output of the TestStudent
application using the new version of the
Student class

204

C H A P T E R 4 More Object Concepts

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using the this Reference to Make Overloaded Constructors
More Efficient
Suppose you create a Student class with data fields for a student number and a grade point
average. Further suppose you want four overloaded constructors as follows:

l A constructor that accepts an int and a double and assigns them the student number and
grade point average, respectively

l A constructor that accepts a double and assigns it to the grade point average, but
initializes every student number to 999

l A constructor that accepts an int and assigns it to the student number, but initializes
every grade point average to 0.0

l A default constructor that assigns 999 to every student number and 0.0 to every grade
point average

Figure 4-30 shows the class. Although this class works, and allows Students to be constructed
in four different ways, there is a lot of repetition within the constructors.

public class Student
{

private int stuNum;
private double gpa;
Student(int num, double avg)
{

stuNum = num;
gpa = avg;

}
Student(double avg)
{

stuNum = 999;
gpa = avg;

}
Student(int num)
{

stuNum = num;
gpa = 0.0;

}
Student()
{

stuNum = 999;
gpa = 0.0;

}
}

Figure 4-30 Student class with four constructors

205

Learning About the this Reference

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You can reduce the amount of repeated code in Figure 4-30 and make the code less error-
prone by calling one constructor version from the others. To do so, you use the this
reference from one constructor version to call another version. Figure 4-31 shows how the
Student class can be rewritten.

public class Student
{

private int stuNum;
private double gpa;
Student(int num, double avg)
{

stuNum = num;
gpa = avg;

}
Student(double avg)
{

this(999, avg);
}
Student(int num)
{

this(num, 0.0);
}
Student()
{

this(999, 0.0);
}

}

Figure 4-31 The Student class using this in three of four constructors

By writing each constructor to call one master constructor, you save coding and reduce the
chance for errors. For example, if code is added later to ensure that all student ID numbers
are three digits, or that no grade point average is greater than 4.0, the new code will be written
only in the two-parameter version of the constructor, and all the other versions will use it.
(Testing a variable to ensure it falls within the proper range of values requires decision
making. The next chapter covers this topic.)

Although you can use the this reference with field names in any method within a class, you
cannot call this() from other methods in a class; you can only call it from constructors.
Additionally, if you call this() from a constructor, it must be the first statement within the
constructor.

Watch the video The this Reference.

206

C H A P T E R 4 More Object Concepts

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Learning About the this Reference

1. Usually, you want each instantiation of a class to have its own nonstatic data
fields, but each object does not need its own copy of most methods.

2. When you use a nonstatic method, the compiler accesses the correct object’s
field because you implicitly pass an object reference to the method.

3. The this reference is supplied automatically in classes; you cannot use it
explicitly.

. sel bai r avl acol dna sdl eif r of sr eifi t nedi neewt eb st cil f noc er a er eht neh w
, el p maxe r of —ti esu nac uoy t ub, eti r wuoy sdoht e meht ni hti w ecner ef er siht eht

ot r ef er ot deen r ont nawr ehti en uoy , yll ausU. 3# si t ne met at s esl af ehT

You Do It

Using the this Reference to Make Constructors More Efficient

In this section, you modify the CarInsurancePolicy class so that its constructors are
more efficient.

1. Open the CarInsurancePolicy.java file. Change the class name to
CarInsurancePolicy2, and immediately save the file as
CarInsurancePolicy2.java.

2. Change the name of the three-parameter constructor from
CarInsurancePolicy() to CarInsurancePolicy2().

3. Replace the constructor that accepts a single parameter for the policy
number with the following constructor. The name of the constructor is
changed from the earlier version, and this one passes the policy number and
two constant values to the three-parameter constructor:

public CarInsurancePolicy2(int num)
{

this(num, 2, "Mayfield");
}

(continues)

207

Learning About the this Reference

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4. Replace the constructor that accepts two parameters (for the policy number
and number of payments) with the following constructor. This constructor has a
new name and passes the two parameters and one constant value to the
three-parameter constructor:

public CarInsurancePolicy2(int num, int payments)
{

this(num, payments, "Mayfield");
}

5. Save the file, and compile it.

6. Open the CreatePolicies.java file that demonstrates the use of the different
constructor versions. Change the class name to CreatePolicies2, and save the
file as CreatePolicies2.java.

7. Add the digit 2 in six places—three times to change the class name
CarInsurancePolicy to CarInsurancePolicy2 when the name is used as a
data type, and in the three constructor calls.

8. Save the file, and then compile and execute it. The output is identical to that
shown in Figure 4-23 in the previous “You Do It” section, but the repetitious
constructor code has been eliminated.

9. You can further reduce the code in the CarInsurancePolicy class by changing
the single-parameter constructor to the following, which removes the constant
"Mayfield" from the constructor call:

public CarInsurancePolicy2(int num)
{

this(num, 2);
}

Now, the single-parameter version calls the two-parameter version and passes
the policy number and the constant 2. In turn, the two-parameter version calls
the three-parameter version, adding "Mayfield" as the city.

10. Save this version of the CarInsurancePolicy2 class, and compile it. Then recompile
the CreatePolicies2.java file, and execute it. The output remains the same.

Using static Fields
In Chapter 3, you learned that methods you create to use without objects are static. For
example, the main() method in a program and the methods that main() calls without an
object reference are static. You also learned that most methods you create within a class from
which objects will be instantiated are nonstatic. Static methods do not have a this reference
because they have no object associated with them; therefore, they are called class methods.

(continued)

208

C H A P T E R 4 More Object Concepts

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You can also create class variables, which are variables that are shared by every
instantiation of a class. Whereas instance variables in a class exist separately for every
object you create, there is only one copy of each static class variable per class. For
example, consider the BaseballPlayer class in Figure 4-32. The BaseballPlayer class
contains a shaded static field named count, and two nonstatic fields named number
and battingAverage. The BaseballPlayer constructor sets values for number and
battingAverage and increases the count by one. In other words, every time a
BaseballPlayer object is constructed, it contains individual values for number and
battingAverage, and the count field contains a count of the number of existing objects
and is shared by all BaseballPlayer objects.

public class BaseballPlayer
{

private static int count = 0;
private int number;
private double battingAverage;
public BaseballPlayer(int id, double avg)
{

number = id;
battingAverage = avg;
count = count + 1;

}
public void showPlayer()
{

System.out.println("Player #" + number +
" batting average is " + battingAverage +
" There are " + count + " players");

}
}

Figure 4-32 The BaseballPlayer class

The showPlayer() method in the BaseballPlayer class displays a BaseballPlayer’s
number, batting average, and a count of all current players. This method is not static—it
accesses an individual object’s data. Methods declared as static cannot access instance
variables, but instance methods can access both static and instance variables.

The TestPlayer class in Figure 4-33 is an application that declares two BaseballPlayer
objects, displays them, and then creates a third BaseballPlayer object and displays it. When
you examine the output in Figure 4-34, you can see that by the time the first two objects are
declared, the count value that they share is 2. Whether count is accessed using the aCatcher
object or the aShortstop object, the count is the same. After the third object is declared, its
count value is 3, as is the value of count associated with the previously declared aCatcher
object. In other words, because the static count variable is incremented within the class
constructor, each object has access to the total number of objects that currently exist. No
matter how many BaseballPlayer objects are eventually instantiated, each refers to the
single count field.

209

Using static Fields

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public class TestPlayer
{

public static void main(String[] args)
{

BaseballPlayer aCatcher = new BaseballPlayer(12, .218);
BaseballPlayer aShortstop = new BaseballPlayer(31, .385);
aCatcher.showPlayer();
aShortstop.showPlayer();
BaseballPlayer anOutfielder = new BaseballPlayer(44, .505);
anOutfielder.showPlayer();
aCatcher.showPlayer();

}
}

Figure 4-33 The TestPlayer class

Using Constant Fields
In Chapter 2, you learned to create named constants by using the keyword final.
Sometimes a data field in a class should be constant. For example, you might want to
store a school ID value that is the same for every Student object you create, so you
declare it to be static. In addition, if you want the value for the school ID to be fixed so
that all Student objects use the same ID value—for example, when applying to
scholarship-granting organizations or when registering for standardized tests—you might
want to make the school ID unalterable. As with ordinary variables, you use the keyword
final with a field to make its value unalterable after construction. For example, the class
in Figure 4-35 contains the symbolic constant SCHOOL_ID. Because it is static, all objects
share a single memory location for the field, and because it is final, it cannot change
during program execution.

Figure 4-34 Output of the TestPlayer application

210

C H A P T E R 4 More Object Concepts

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public class Student
{

private static final int SCHOOL_ID = 12345;
private int stuNum;
private double gpa;
public Student(int stuNum, double gpa)
{

this.stuNum = stuNum;
this.gpa = gpa;

}
public void showStudent()
{

System.out.println("Student #" + stuNum +
" gpa is " + gpa);

}
}

Figure 4-35 The Student class containing a symbolic constant

A nonstatic final field’s value can be set in the class constructor. For example, you can set it
using a constant, or you can set it using a parameter passed into the constructor. However,
a static final field’s value must be set at declaration, as in the Student class example in
Figure 4-35. This makes sense because there is only one static field stored for every object
instantiated.

You can use the keyword final with methods or classes as well as with fields. When used in this manner,
final indicates limitations placed on inheritance. You will learn more about inheritance in the chapters
Introduction to Inheritance and Advanced Inheritance Concepts.

Fields that are final also can be initialized in a static initialization block. For more details about this
technique, see the Java Web site.

Fields declared to be static are not always final. Conversely, final fields are not always
static. In summary:

l If you want to create a field that all instantiations of the class can access but the field value
can change, then it is static but not final. For example, in the last section you saw a
nonfinal static field in the BaseballPlayer class that held a changing count of all
instantiated objects.

l If you want each object created from a class to contain its own final value, you would
declare the field to be final but not static. For example, you might want each
BaseballPlayer object to have its own, nonchanging date of joining the team.

l If you want all objects to share a single nonchanging value, then the field is static and
final.

211

Using static Fields

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Using static Fields

1. Methods declared as static receive a this reference that contains a reference
to the object associated with them.

2. Methods declared as static are called class methods.

3. A final static field’s value is shared by every object of a class.

. meht hti w det ai cossat cej bo on evah yeht
esuaceb ecner ef er siht a evaht on od sdoht e mci t at S. 1# si t ne met at s esl af ehT

You Do It

Using Static and Nonstatic final Fields

In this section, you create a class for the Riverdale Kennel Club to demonstrate the use
of static and nonstatic final fields. The club enters its dogs in an annual triathlon event
in which each dog receives three scores in agility, conformation, and obedience.

1. Open a new file in your text editor, and enter the first few lines for a
DogTriathlonParticipant class. The class contains a final field that holds
the number of events in which the dog participated. Once a final field is set,
it never should change. The field is not static because it is different for each
dog. The class also contains a static field that holds the total cumulative
score for all the participating dogs. The field is not final because its value
increases as each dog participates in the triathlon, but it is static because at
any moment in time, it is the same for all participants.

public class DogTriathlonParticipant
{

private final int NUM_EVENTS;
private static int totalCumulativeScore = 0;

2. Add six private fields that hold the participating dog’s name, the dog’s score in
three events, the total score, and the average score:

private String name;
private int obedienceScore;
private int conformationScore;
private int agilityScore;
private int total;
private double avg;

(continues)

212

C H A P T E R 4 More Object Concepts

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. The constructor for the class requires five parameters—the dog’s name, the
number of events in which the dog participated, and the dog’s scores in the
three events. (After you read the chapter on decision making, you will be able
to ensure that the number of nonzero scores entered matches the number of
events, but for now no such checks will be made.) The constructor assigns
each value to the appropriate field.

public DogTriathlonParticipant(String name,
int numEvents, int score1, int score2, int score3)

{
this.name = name;
NUM_EVENTS = numEvents;
obedienceScore = score1;
conformationScore = score2;
agilityScore = score3;

4. After the assignments, the constructor calculates the total score for the
participant and the participant’s average score. Notice the result of the division
is cast to a double so that any fractional part of the calculated average is not
lost. Also, add the participant’s total score to the cumulative score for all
participants. Recall that this field is static because it should be the same for all
participants at any point in time. After these statements, add a closing curly
brace for the constructor.

total = obedienceScore +
conformationScore + agilityScore;

avg = (double) total / NUM_EVENTS;
totalCumulativeScore = totalCumulativeScore +

total;
}

5. Start a method that displays the data for each triathlon participant.

public void display()
{

System.out.println(name + " participated in " +
NUM_EVENTS +
" events and has an average score of " + avg);

System.out.println(" " + name +
" has a total score of " + total +
" bringing the total cumulative score to " +
totalCumulativeScore);

}

6. Add a closing curly brace for the class. Then, save the file as
DogTriathlonParticipant.java. Compile the class, and correct any errors.

(continued)

(continues)

213

Using static Fields

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

7. Open a new file in your text editor, and then enter the header and
opening and closing curly braces for a class you can use to test the
DogTriathlonParticipant class. Also include a main() method header and
its opening and closing braces.

public class TestDogs
{

public static void main(String[] args)
{
}

}

8. Between the braces of the main() method, declare a DogTriathlonParticipant
object. Provide values for the participant’s name, number of events, and three
scores, and then display the object.

DogTriathlonParticipant dog1 =
new DogTriathlonParticipant("Bowser", 2, 85, 89, 0);

dog1.display();

9. Create and display two more objects within the main() method.

DogTriathlonParticipant dog2 =
new DogTriathlonParticipant("Rush", 3, 78, 72, 80);

dog2.display();
DogTriathlonParticipant dog3 =

new DogTriathlonParticipant("Ginger", 3, 90, 86, 72);
dog3.display();

10. Save the file as TestDogs.java. Compile and execute the program. The output
looks like Figure 4-36. Visually confirm that each total, average, and cumulative
total is correct.

(continued)

(continues)

Figure 4-36 Output of the TestDogs program

214

C H A P T E R 4 More Object Concepts

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

11. Experiment with the DogTriathlonParticipant class and its test class. For
example, try the following:

l Add a new statement at the end of the TestDogs class that again displays the
data for any one of the participants. Note that as long as no new objects are
created, the cumulative score for all participants remains the same no
matter which participant uses it.

l Try to assign a value to the NUM_EVENTS constant from the display()
method, and then compile the class and read the error message generated.

l Remove the keyword static from the definition of totalCumulativeScore in
the DogTriathlonParticipant class, and then recompile the classes and run
the program. Notice in the output that the nonstatic cumulative score no
longer reflects the cumulative score for all objects but only the score for the
current object using the display() method.

l Use 0 as the number of events for an object. When the participant’s average
is calculated, the result is not numeric, and NaN is displayed. NaN is an
acronym for Not a Number. In the next chapter, you will learn to make
decisions, and then you can prevent the NaN output.

Using Automatically Imported, Prewritten
Constants and Methods
Often, you need to create classes from which you will instantiate objects. You can create
an Employee class with fields appropriate for describing employees in your organization and
their functions, and an Inventory class with fields appropriate for whatever type of item you
manufacture. However, many classes are commonly used by a wide variety of programmers.
Rather than have each Java programmer “reinvent the wheel,” the creators of Java have
produced hundreds of classes for you to use in your programs.

You have already used several of these prewritten classes; for example, you have used the
System and JOptionPane classes to produce output. Each of these classes is stored in a
package, or a library of classes, which is simply a folder that provides a convenient grouping
for classes. Many Java packages are available only if you explicitly name them within your
program; for example, when you use JOptionPane, you must import the javax.swing
package into your program. However, the group that contains classes such as System is used
so frequently that it is available automatically to every program you write. The package that is
implicitly imported into every Java program is named java.lang. The classes it contains are
fundamental classes, or basic classes, as opposed to the optional classes that must be named
explicitly. Some references list a few other Java classes as also being “fundamental,” but the
java.lang package is the only automatically imported, named package.

(continued)

215

Using Automatically Imported, Prewritten Constants and Methods

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The class java.lang.Math contains constants and methods that you can use to perform
common mathematical functions. All of the constants and methods in the Math class are
static—they are class variables and class methods. For example, a commonly used constant
is PI. In geometry, pi is an approximation of a circle’s radius based on the ratio of the
circumference of the circle to its diameter. Within the Math class, the declaration for PI is as
follows:

public final static double PI = 3.14159265358979323846;

Notice that PI is:

l public, so any program can access it directly

l final, so it cannot be changed

l static, so only one copy exists and you can access it without declaring a Math object

l double, so it holds a floating-point value

You can use the value of PI within any program you write by referencing the full package path
in which PI is defined; for example, you can calculate the area of a circle using the following
statement:

areaOfCircle = java.lang.Math.PI * radius * radius;

However, the java.lang package is imported automatically into your programs, so if you
simply reference Math.PI, Java recognizes this code as a shortcut to the full package path.
Therefore, the preferred (and simpler) statement is the following:

areaOfCircle = Math.PI * radius * radius;

In addition to constants, many useful methods are available within the Math class.
For example, the Math.max() method returns the larger of two values, and the method
Math.abs() returns the absolute value of a number. Table 4-1 lists some common
Math class methods.

Method Value That the Method Returns
abs(x) Absolute value of x

acos(x) Arc cosine of x

asin(x) Arc sine of x

atan(x) Arc tangent of x

atan2(x, y) Theta component of the polar coordinate (r, theta) that corresponds to the
Cartesian coordinate x, y

ceil(x) Smallest integral value not less than x (ceiling)

cos(x) Cosine of x

Table 4-1 Common Math class methods (continues)

216

C H A P T E R 4 More Object Concepts

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Because all constants and methods in the Math class are classwide (that is, static), there is no
need to create an instance of the Math class. You cannot instantiate objects of type Math
because the constructor for the Math class is private, and your programs cannot access the
constructor.

Unless you are a mathematician, you won’t use many of these Math class methods, and it is unwise to do so
unless you understand their purposes. For example, because the square root of a negative number is
undefined, if you display the result after the method call imaginaryNumber = Math.sqrt(-12);,
you see NaN.

Importing Classes That Are Not Imported Automatically
Java contains hundreds of classes, only a few of which—those in the java.lang package—are
included automatically in the programs you write. To use any of the other prewritten classes,
you must use one of three methods:

l Use the entire path with the class name.

l Import the class.

l Import the package that contains the class you are using.

Method Value That the Method Returns
exp(x) Exponent, where x is the base of the natural logarithms

floor(x) Largest integral value not greater than x

log(x) Natural logarithm of x

max(x, y) Larger of x and y

min(x, y) Smaller of x and y

pow(x, y) x raised to the y power

random() Random double number between 0.0 and 1.0

rint(x) Closest integer to x (x is a double, and the return value is expressed as a
double)

round(x) Closest integer to x (where x is a float or double, and the return value is
an int or long)

sin(x) Sine of x

sqrt(x) Square root of x

tan(x) Tangent of x

Table 4-1 Common Math class methods

(continued)

217

Using Automatically Imported, Prewritten Constants and Methods

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In its java.util package, Java includes a GregorianCalendar class that is useful when
working with dates and time. The Gregorian calendar is used in most of the world; it
was instituted on October 15, 1582, and is named for Pope Gregory XIII, who was
instrumental in the calendar’s adoption. (For dates that fall before the Gregorian cutover
date, the GregorianCalendar class uses the Julian calendar, which simply uses a different
leap-year rule.)

You have seen examples in this book in which the JOptionPane and Scanner classes were
imported so you could use their methods. Similarly, you can import the java.util class
package, which includes the GregorianCalendar class.

You can instantiate an object of type GregorianCalendar from this class by using the full
class path, as in the following:

java.util.GregorianCalendar myAnniversary = new java.util.GregorianCalendar();

Alternatively, when you include import java.util.GregorianCalendar; as the first line in
your program, you can shorten the declaration of myAnniversary to this:

GregorianCalendar myAnniversary = new GregorianCalendar();

An alternative to importing a class is to import an entire package of classes. You can use the
asterisk (*) as a wildcard symbol, which indicates that it can be replaced by any set of
characters. In a Java import statement, you use a wildcard symbol to represent all the classes
in a package. Therefore, the following statement imports the GregorianCalendar class and
any other java.util classes as well:

import java.util.*;

The import statement does not move the entire imported class or package into your program,
as its name implies. Rather, it simply notifies the program that you will use the data and
method names that are part of the imported class or package. There is no disadvantage to
importing an entire package instead of just the classes you need, and you will commonly see
the wildcard method in professionally written Java programs. However, you have the
alternative of importing each class you need individually. Importing each class by name,
without wildcards, can be a form of documentation; this technique specifically shows which
parts of the package are being used.

You cannot use the Java-language wildcard exactly like a DOS or UNIX wildcard because you
cannot import all the Java classes with import java.*;. The Java wildcard works only with
specific packages such as import java.util.*; or import java.lang.*;. Also, note that the
asterisk in an import statement imports all of the classes in a package, but not other packages
that are within the imported package.

Your own classes are included in applications without import statements because of your classpath
settings. See Appendix A for more information on classpath.

218

C H A P T E R 4 More Object Concepts

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using the GregorianCalendar Class
Seven constructors are available for GregorianCalendar objects. These constructors are
overloaded, requiring different argument lists when they are called. The default constructor
for the GregorianCalendar class creates a calendar object containing the current date and
time in the default locale (time zone) that has been set for your computer. You can use other
constructors to specify:

l year, month, date

l year, month, date, hour, minute

l year, month, date, hour, minute, second

l Locale

l TimeZone

l TimeZone, Locale

You can create a default GregorianCalendar object with a statement such as the following:

GregorianCalendar today = new
GregorianCalendar();

Alternatively, you can create a GregorianCalendar object using one of the overloaded
constructors—for example:

GregorianCalendar myGraduationDate = new
GregorianCalendar(2014,5,24);

Specific data field values, such as the day, month, and year, can be retrieved from a
GregorianCalendar object by using the get() method and specifying what you want as an
argument. You could retrieve the day of the year (for example, February 1 is the 32nd day of
the year) with the following statement:

int dayOfYear = today.get(GregorianCalendar.DAY_OF_YEAR);

The GregorianCalendar get() method always returns an integer. Some of the possible
arguments to the get() method are shown in Table 4-2. In particular, notice that the month
values in the GregorianCalendar class range from 0 through 11. Thus, January is month 0,
February is month 1, and so on.

As an example of how to use a GregorianCalendar object, Figure 4-37 shows an
AgeCalculator application. In this class, a default GregorianCalendar object named now is
created. The user is prompted for a birth year, the current year is extracted from the now
object using the get() method, and the user’s age this year is calculated by subtracting the
birth year from the current year. Figure 4-38 shows the output when a user born in 1986 runs
the application in 2014.

219

Using Automatically Imported, Prewritten Constants and Methods

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

import java.util.*;
import javax.swing.*;
public class AgeCalculator
{

public static void main(String[] args)
{

GregorianCalendar now = new GregorianCalendar();
int nowYear;
int birthYear;
int yearsOld;
birthYear = Integer.parseInt

(JOptionPane.showInputDialog(null,
"In what year were you born?"));

nowYear = now.get(GregorianCalendar.YEAR);
yearsOld = nowYear - birthYear;
JOptionPane.showMessageDialog(null,

"This is the year you become " + yearsOld +
" years old");

}
}

Figure 4-37 The AgeCalculator application

The parseInt() method is used in the application in Figure 4-37 to convert the user’s input string to an
integer. You learned about the parseInt() method in Chapter 2.

Arguments Values Returned by get()

DAY_OF_YEAR A value from 1 to 366

DAY_OF_MONTH A value from 1 to 31

DAY_OF_WEEK SUNDAY, MONDAY, … SATURDAY, corresponding to values from 1 to 7

YEAR The current year; for example, 2012

MONTH JANUARY, FEBRUARY, … DECEMBER, corresponding to values from 0 to 11

HOUR A value from 1 to 12; the current hour in the A.M. or P.M.

AM_PM A.M. or P.M., which correspond to values from 0 to 1

HOUR_OF_DAY A value from 0 to 23 based on a 24-hour clock

MINUTE The minute in the hour, a value from 0 to 59

SECOND The second in the minute, a value from 0 to 59

MILLISECOND The millisecond in the second, a value from 0 to 999

Table 4-2 Some possible arguments to and returns from the GregorianCalendar get()method

220

C H A P T E R 4 More Object Concepts

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Using Automatically Imported, Prewritten Constants and Methods

1. The creators of Java have produced hundreds of classes for you to use in your
programs.

2. Java packages are available only if you explicitly name them within your program.

3. The implicitly imported java.lang package contains fundamental Java classes.

. detr op mi yll aci t a mot ua er a sr eht ot ub, mar gor p r uoy ni hti w meht e man
yl ti cil pxe uoy fi yl no el bali ava er a segakcap avaJ yna M. 2# si t ne met at s esl af ehT

You Do It

In this section, you learn more about using the GregorianCalendar class.

Using the Java Web Site

1. Using a Web browser, go to the Java Web site, and select Java APIs and
Java SE 7. Using the alphabetical list of classes, find the GregorianCalendar
class and select it.

2. Notice that java.util is cited at the top of the description, indicating that it is
the containing package.

3. Read the history and background of the GregorianCalendar class to get an idea
of how many issues are involved in determining values like the first day of the
week and a week’s number in a year. Then read the rest of the documentation to
get a feel for the fields and methods that are available with the class.

Figure 4-38 Execution of the AgeCalculator application

(continues)

221

Using Automatically Imported, Prewritten Constants and Methods

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using an Explicitly Imported, Prewritten Class

Next, you construct a program using the GregorianCalendar class and some of the
arguments to the GregorianCalendar get() method.

1. Open a new file in your text editor. For the first line in the file, type the following:

import java.util.*;

2. On the next lines, begin the class by typing the class header, the opening brace,
the main() method header, and its opening brace, as follows:

public class CalendarDemo
{

public static void main(String[] args)
{

3. Declare a GregorianCalendar object named now that holds information about
the current date and time. Then create a series of output statements that display
a variety of GregorianCalendar fields containing information about the date:

GregorianCalendar now = new GregorianCalendar();
System.out.println("YEAR: " + now.get(Calendar.YEAR));
System.out.println("MONTH: " + now.get(Calendar.MONTH));
System.out.println("WEEK_OF_YEAR: " +

now.get(Calendar.WEEK_OF_YEAR));
System.out.println("WEEK_OF_MONTH: " +

now.get(Calendar.WEEK_OF_MONTH));
System.out.println("DATE: " + now.get(Calendar.DATE));
System.out.println("DAY_OF_MONTH: " +

now.get(Calendar.DAY_OF_MONTH));
System.out.println("DAY_OF_YEAR: " +

now.get(Calendar.DAY_OF_YEAR));
System.out.println("DAY_OF_WEEK: " +

now.get(Calendar.DAY_OF_WEEK));

4. Add more statements that display information about the current time, as follows:

System.out.println("AM_PM: " +
now.get(Calendar.AM_PM));

System.out.println("HOUR: " + now.get(Calendar.HOUR));
System.out.println("HOUR_OF_DAY: " +

now.get(Calendar.HOUR_OF_DAY));
System.out.println("MINUTE: " +

now.get(Calendar.MINUTE));
System.out.println("SECOND: " +

now.get(Calendar.SECOND));
System.out.println("MILLISECOND: " +

now.get(Calendar.MILLISECOND));

5. Add the closing curly brace for the main() method and the closing curly brace
for the class.

(continues)

(continued)

222

C H A P T E R 4 More Object Concepts

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6. Save the file as
CalendarDemo.java. Compile
and execute the program.
Figure 4-39 shows the output
from the program when it is
executed a little before 10 a.m.
on Thursday, April 3, 2014.
Notice that although people
usually think of April as
month 4, the month in the
output is 3—the month values
in the GregorianCalendar are
0 through 11. When you display
month values in your own
programs, you might choose
to add 1 to a value before
displaying it, so that users see
month numbers to which they are accustomed.

Creating an Interactive Application with a Timer

Next, you use the GregorianCalendar class to create an application that outputs a
user’s response time to a question.

1. Open a new file in your text editor, and type the following two import statements.
You need the JOptionPane class to use the showConfirmDialog() method, and
you need the java.util package to use the GregorianCalendar class:

import javax.swing.JOptionPane;
import java.util.*;

2. Begin the DialogTimer application as follows. Declare variables named milli1,
milli2, sec1, and sec2. These are used to compute time1 and time2 from
calendar objects created at the beginning and end of the program. You then use
time1 and time2 to compute a timeDifference. Also declare a constant to hold
the number of milliseconds in a second.

public class DialogTimer
{

public static void main(String[] args)
{

int time1, time2, milli1, milli2, sec1,
sec2, timeDifference;

final int MILLISECS_IN_SECOND = 1000;

(continued)

Figure 4-39 Output of the CalendarDemo
application

(continues)

223

Using Automatically Imported, Prewritten Constants and Methods

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. Instantiate a GregorianCalendar object, and retrieve its MILLISECOND and
SECOND values. Compute a time1 value by multiplying the current sec1 value by
1000 and adding it to the current milli1 value:

GregorianCalendar before = new GregorianCalendar();
milli1 = before.get(GregorianCalendar.MILLISECOND);
sec1 = before.get(GregorianCalendar.SECOND);
time1 = MILLISECS_IN_SECOND * sec1 + milli1;

4. Display a dialog box that asks the user to make a difficult choice:

JOptionPane.showConfirmDialog
(null, "Is stealing ever justified? ");

5. Next, create a new GregorianCalendar object. This statement does not execute
until the user provides a response for the dialog box, so the time variables
contain different values from the first GregorianCalendar object created:

GregorianCalendar after = new GregorianCalendar();
milli2 = after.get(GregorianCalendar.MILLISECOND);
sec2 = after.get(GregorianCalendar.SECOND);
time2 = MILLISECS_IN_SECOND * sec2 + milli2;

6. Compute the difference between the times, and display the result in a dialog box.

timeDifference = time2 - time1;
JOptionPane.showMessageDialog(null, "It took " +

timeDifference + " milliseconds for you to answer");

7. Add two closing curly braces—one for the method and the other for the
class—and then save the file as DialogTimer.java.

8. Compile and execute the
program. When the question
appears, choose a response.
The second output looks like
Figure 4-40; the actual time
displayed varies depending
on how long you wait before
selecting an answer.

9. The output in the DialogTimer
application is accurate only when
the first and second GregorianCalendar objects are created during the
same minute. For example, if the first object is created a few seconds before
a new minute starts, and the second object is created a few seconds after the
new minute starts, the second SECOND value appears to be much lower than
the first one. On your own, modify the DialogTimer application to rectify this
discrepancy. Save the file as DialogTimer2.java.

(continued)

Figure 4-40 Output of the DialogTimer
application

224

C H A P T E R 4 More Object Concepts

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Understanding Composition and Nested Classes
Two of the ways that you can group classes are by using composition and by nesting classes.
This section takes a brief look at both concepts.

Composition
The fields in a class can be simple data types like int and double, but they can also be class
types. Composition describes the relationship between classes when an object of one class is a
data field within another class. You have already studied many classes that contain String
object fields. These classes employ composition.

When you use an object as a data member of another object, you must remember to supply
values for the contained object if it has no default constructor. For example, you might
create a class named NameAndAddress that stores name and address information. Such a
class could be used for employees, customers, students, or anyone else who has a name and
address. Figure 4-41 shows a NameAndAddress class. The class contains three fields, all of
which are set by the constructor. A display() method displays the name and address
information on three lines.

public class NameAndAddress
{

private String name;
private String address;
private int zipCode;
public NameAndAddress(String nm, String add, int zip)
{

name = nm;
address = add;
zipCode = zip;

}
public void display()
{

System.out.println(name);
System.out.println(address);
System.out.println(zipCode);

}
}

Figure 4-41 The NameAndAddress class

Suppose you want to create a School class that holds information about a school. Instead of
declaring fields for the School’s name and address, you could use the NameAndAddress class.
The relationship created is sometimes called a has-a relationship because one class “has an”
instance of another. Figure 4-42 shows a School class that declares and uses a
NameAndAddress object.

225

Understanding Composition and Nested Classes

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

As Figure 4-42 shows, the School constructor requires four parameters. Within
the constructor, three of the items—the name, address, and zip code—are passed to
the NameAndAddress constructor to provide values for the appropriate fields. The fourth
constructor parameter (the school’s enrollment) is assigned to the School class
enrollment field.

In the School class display method, the NameAndAddress object’s display() method is
called to display the school’s name and address. The enrollment value is displayed
afterward. Figure 4-43 shows a simple program that instantiates one School object.
Figure 4-44 shows the execution.

public class SchoolDemo
{

public static void main(String[] args)
{

School mySchool = new School
("Audubon Elementary",
"3500 Hoyne", 60618, 350);

mySchool.display();
}

}

Figure 4-43 The SchoolDemo program

public class School
{

private NameAndAddress nameAdd;
private int enrollment;
public School(String name, String add, int zip, int enrolled)
{

nameAdd = new NameAndAddress(name, add, zip);
enrollment = enrolled;

}
public void display()
{

System.out.println("The school information:");
nameAdd.display();
System.out.println("Enrollment is " + enrollment);

}
}

This statement calls the
display() method in
the NameAndAddress
class.

This statement calls the
constructor in the
NameAndAddress
class.

This statement
declares a
NameAndAddress
object.

Figure 4-42 The School class

226

C H A P T E R 4 More Object Concepts

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Nested Classes
Every class you have studied so far has been stored in its own file, and the filename has always
matched the class name. In Java, you can create a class within another class and store them
together; such classes are nested classes. The containing class is the top-level class. There
are four types of nested classes:

l static member classes: A static member class has access to all static methods of the
top-level class.

l Nonstatic member classes, also known as inner classes: This type of class
requires an instance; it has access to all data and methods of the top-level class.

l Local classes: These are local to a block of code.

l Anonymous classes: These are local classes that have no identifier.

The most common reason to nest a class inside another is because the inner class is used only
by the top-level class; in other words, it is a “helper class” to the top-level class. Being able to
package the classes together makes their connection easier to understand and their code
easier to maintain.

For example, consider a RealEstateListing class used by a real estate company to
describe houses that are available for sale. The class might contain separate fields for a
listing number, the price, the street address, and the house’s living area. As an alternative,
you might decide that although the listing number and price “go with” the real estate
listing, the street address and living area really “go with” the house. So you might create
an inner class like the one in Figure 4-45.

Figure 4-44 Output of the SchoolDemo program

227

Understanding Composition and Nested Classes

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public class RealEstateListing
{

private int listingNumber;
private double price;
private HouseData houseData;
public RealEstateListing(int num, double price, String address,

int sqFt)
{

listingNumber = num;
this.price = price;
houseData = new HouseData(address, sqFt);

}
public void display()
{

System.out.println("Listing number #" + listingNumber +
" Selling for $" + price);

System.out.println("Address: " + houseData.streetAddress);
System.out.println(houseData.squareFeet + " square feet");

}
private class HouseData
{

private String streetAddress;
private int squareFeet;
public HouseData(String address, int sqFt)
{

streetAddress = address;
squareFeet = sqFt;

}
}

}

Figure 4-45 The RealEstateListing class

Notice that the inner HouseData class in Figure 4-45 is a private class. You don’t have to
make an inner class private, but doing so keeps its members hidden from outside classes. If
you wanted a class’s members to be accessible, you would not make it an inner class. An inner
class can access its top-level class’s fields and methods, even if they are private, and an outer
class can access its inner class’s members.

You usually will not want to create inner classes. For example, if you made the HouseData
class a regular class (as opposed to an inner class) and stored it in its own file, you could
use it with composition in other classes—perhaps a MortgageLoan class or an Appraisal
class. As it stands, it is usable only in the class in which it now resides. You probably will
not create nested classes frequently, but you will see them implemented in some built-in
Java classes.

228

C H A P T E R 4 More Object Concepts

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Understanding Composition and Nested Classes

1. Exposition describes the relationship between classes when an object of one
class is a data field within another class.

2. When you use an object as a data member of another object, you must remember
to supply values for the contained object if it has no default constructor.

3. A nested class resides within another class.

. ssal c r eht ona ni hti w dl eif at ad a si ssal c enof ot cej bo na nehw
sessal c neewt eb pi hsnoi t al er eht sebi r csed noi ti sop moC. 1# si t ne met at s esl af ehT

Don’t Do It
l Don’t try to use a variable that is out of scope.

l Don’t assume that a constant is still a constant when passed to a method’s parameter.
If you want a parameter to be constant within a method, you must use final in the
parameter list.

l Don’t try to overload methods by giving them different return types. If their identifiers
and parameter lists are the same, then two methods are ambiguous no matter what their
return types are.

l Don’t think that default constructor means only the automatically supplied version.
A constructor with no parameters is a default constructor, whether it is the one that is
automatically supplied or one you write.

l Don’t forget to write a default constructor for a class that has other constructors if you
want to be able to instantiate objects without using arguments.

Key Terms
A block is the code between a pair of curly braces.

An outside block, or outer block, contains another block.

An inside block, or inner block, is contained within another block.

Nested describes the state of an inner block.

229

Key Terms

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Comes into scope describes what happens to a variable when it becomes usable.

Goes out of scope describes what happens to a variable when it ceases to exist at the end of
the block in which it is declared.

To redeclare a variable is to attempt to declare it twice—an illegal action.

A variable overrides another with the same name when it takes precedence over the other
variable.

Shadowing is the action that occurs when a local variable hides a variable with the same name
that is further away in scope.

Closer in scope describes the status of a local variable over others that it shadows.

Overloading involves using one term to indicate diverse meanings, or writing multiple
methods with the same name but with different arguments.

An ambiguous situation is one in which the compiler cannot determine which method to use.

A reference is an object’s memory address.

The this reference is a reference to an object that is passed to any object’s nonstatic
class method.

Class methods are static methods that do not have a this reference (because they have no
object associated with them).

Class variables are static variables that are shared by every instantiation of a class.

NaN is an acronym for Not a Number.

A package is a library of classes.

A library of classes is a folder that provides a convenient grouping for classes.

The java.lang package is implicitly imported into every Java program.

The fundamental classes are basic classes contained in the java.lang package that are
automatically imported into every program you write.

The optional classes reside in packages that must be explicitly imported into your programs.

A wildcard symbol is an asterisk—a symbol used to indicate that it can be replaced by any set
of characters. In a Java import statement, you use a wildcard symbol to represent all the
classes in a package.

Composition describes the relationship between classes when an object of one class is a data
field within another class.

A has-a relationship is a relationship based on composition.

Nested classes are classes contained in other classes.

The top-level class is the containing class in nested classes.

230

C H A P T E R 4 More Object Concepts

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A static member class is a type of nested class that has access to all static methods of its
top-level class.

Nonstatic member classes, also known as inner classes, are nested classes that require an
instance.

Local classes are a type of nested class that are local to a block of code.

Anonymous classes are nested, local classes that have no identifier.

Chapter Summary
l A variable’s scope is the portion of a program within which you can reference that

variable. A block is the code between a pair of curly braces. Within a method, you can
declare a variable with the same name multiple times, as long as each declaration is in its
own nonoverlapping block. If you declare a variable within a class and use the same
variable name within a method of the class, the variable used inside the method takes
precedence over (or overrides, or masks) the first variable.

l Overloading involves writing multiple methods with the same name but different
parameter lists. Methods that have identical parameter lists but different return types are
not overloaded; they are illegal.

l When you overload methods, you risk creating an ambiguous situation—one in which the
compiler cannot determine which method to use.

l When you write your own constructors, they can receive parameters. Such parameters
are often used to initialize data fields for an object. After you write a constructor for a
class, you no longer receive the automatically provided default constructor. If a class’s
only constructor requires an argument, you must provide an argument for every object
of the class that you create. You can overload constructors just as you can other
methods.

l Within nonstatic methods, data fields for the correct object are accessed because a this
reference is implicitly passed to nonstatic methods. Static methods do not have a this
reference because they have no object associated with them; static methods are also called
class methods.

l Static class fields and methods are shared by every instantiation of a class. When a field in
a class is final, it cannot change after it is assigned its initial value.

l Java contains hundreds of prewritten classes that are stored in packages, which are folders
that provide convenient groupings for classes. The package that is implicitly imported into
every Java program is named java.lang. The classes it contains are the fundamental
classes, as opposed to the optional classes, which must be explicitly named. The class
java.lang.Math contains constants and methods that can be used to perform common
mathematical functions. The GregorianCalendar class allows you to define and
manipulate dates and time.

231

Chapter Summary

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

l Composition describes the relationship between classes when an object of one class is a data
field within another class. You can create nested classes that are stored in the same file.
The most common reason to nest a class inside another is because the inner class is used only
by the outer or top-level class; in other words, it is a “helper class” to the top-level class.

Review Questions

1. The code between a pair of curly braces in a method is a .

a. function
b. block

c. brick
d. sector

2. When a block exists within another block, the blocks are .

a. structured
b. nested

c. sheltered
d. illegal

3. The portion of a program within which you can reference a variable is the
variable’s .

a. range
b. space

c. domain
d. scope

4. You can declare variables with the same name multiple times .

a. within a statement
b. within a block
c. within a method
d. You never can declare multiple variables with the same name.

5. If you declare a variable as an instance variable within a class, and you declare and
use the same variable name within a method of the class, then within the
method, .

a. the variable used inside the method takes precedence
b. the class instance variable takes precedence
c. the two variables refer to a single memory address
d. an error will occur

6. A method variable a class variable with the same name.

a. acquiesces to
b. destroys

c. overrides
d. alters

232

C H A P T E R 4 More Object Concepts

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

7. Nonambiguous, overloaded methods must have the same .

a. name
b. number of parameters

c. parameter names
d. types of parameters

8. If a method is written to receive a double parameter, and you pass an integer to the
method, then the method will .

a. work correctly; the integer will be promoted to a double

b. work correctly; the integer will remain an integer
c. execute, but any output will be incorrect
d. not work; an error message will be issued

9. A constructor parameters.

a. can receive
b. cannot receive

c. must receive
d. can receive a maximum of 10

10. A constructor overloaded.

a. can be
b. cannot be

c. must be
d. is always automatically

11. Usually, you want each instantiation of a class to have its own copy
of .

a. the data fields
b. the class methods

c. both of the above
d. none of the above

12. If you create a class that contains one method and instantiate two objects, you
usually store for use with the objects.

a. one copy of the method
b. two copies of the method
c. two different methods containing two different this references
d. data only (the methods are not stored)

13. The this reference .

a. can be used implicitly
b. must be used implicitly

c. must not be used implicitly
d. must not be used

14. Methods that you reference with individual objects are .

a. private

b. public

c. static

d. nonstatic

233

Review Questions

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

15. Variables that are shared by every instantiation of a class are .

a. class variables
b. private variables

c. public variables
d. illegal

16. The keyword final used with a variable declaration indicates .

a. the end of the program
b. a static field
c. a symbolic constant
d. that no more variables will be declared in the program

17. Java classes are stored in a folder or .

a. packet
b. package

c. bundle
d. gaggle

18. Which of the following statements determines the square root of a number and
assigns it to the variable s?

a. s = sqrt(number);

b. s = Math.sqrt(number);

c. number = sqrt(s);

d. number = Math.sqrt(s);

19. A GregorianCalendar object can be created with one of seven constructors. This
means that the constructors .

a. override each other
b. are ambiguous

c. are overloaded
d. all of the above

20. The GregorianCalendar class get() method always returns a(n) .

a. day of the week
b. date

c. integer
d. GregorianCalendar object

Exercises

Programming Exercises

1. Create a class named FormLetterWriter that includes two overloaded methods
named displaySalutation(). The first method takes one String parameter that
represents a customer’s last name, and it displays the salutation “Dear Mr. or Ms.”
followed by the last name. The second method accepts two String parameters that
represent a first and last name, and it displays the greeting “Dear” followed by the first
name, a space, and the last name. After each salutation, display the rest of a short
business letter: “Thank you for your recent order.” Write a main() method that tests
each overloaded method. Save the file as FormLetterWriter.java.

234

C H A P T E R 4 More Object Concepts

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. Create a class named Billing that includes three overloaded computeBill()
methods for a photo book store.

l When computeBill() receives a single parameter, it represents the price of one
photo book ordered. Add 8% tax, and return the total due.

l When computeBill() receives two parameters, they represent the price of a
photo book and the quantity ordered. Multiply the two values, add 8% tax, and
return the total due.

l When computeBill() receives three parameters, they represent the price of a photo
book, the quantity ordered, and a coupon value. Multiply the quantity and price,
reduce the result by the coupon value, and then add 8% tax and return the total due.

Write a main() method that tests all three overloaded methods. Save the application
as Billing.java.

3. a. Create a BirdSighting class for the Birmingham Birdwatcher’s Club that includes
data fields for a bird species sighted, the number seen, and the day of the year. For
example, April 1 is the 91st day of the year, assuming it is not a leap year. The class
also includes methods to get each field. In addition, create a default constructor that
automatically sets the species to “robin” and the number and day to 1. Save the file as
BirdSighting.java. Create an application named TestBirdSighting that demonstrates
that each method works correctly. Save the file as TestBirdSighting.java.

b. Create an additional overloaded constructor for the BirdSighting class you
created in Exercise 3a. This constructor receives parameters for each of the
data fields and assigns them appropriately. Add any needed statements to the
TestBirdSighting application to ensure that the overloaded constructor works
correctly, save it, and then test it.

c. Create a class with the same functionality as the BirdSighting class, but create
the default constructor to call the three-parameter constructor. Save the class as
BirdSighting2.java. Create an application to test the new version of the class,
and name it TestBirdSighting2.java.

4. a. Create a class named BloodData that includes fields that hold a blood type (the
four blood types are O, A, B, and AB) and an Rh factor (the factors are + and –).
Create a default constructor that sets the fields to “O” and “+”, and an overloaded
constructor that requires values for both fields. Include get and set methods for
each field. Save this file as BloodData.java. Create an application named
TestBloodData that demonstrates that each method works correctly. Save the
application as TestBloodData.java.

b. Create a class named Patient that includes an ID number, age, and BloodData.
Provide a default constructor that sets the ID number to “0”, the age to 0, and the
BloodData to “O” and “+”. Create an overloaded constructor that provides
values for each field. Also provide get methods for each field. Save the file as
Patient.java. Create an application named TestPatient that demonstrates that
each method works correctly, and save it as TestPatient.java.

235

Exercises

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5. a. Create a class for the Tip Top Bakery named Bread with data fields for bread
type (such as “rye”) and calories per slice. Include a constructor that takes
parameters for each field, and include get methods that return the values of
the fields. Also include a public final static String named MOTTO and
initialize it to The staff of life. Write an application named TestBread to
instantiate three Bread objects with different values, and then display all the
data, including the motto, for each object. Save both the Bread.java and
TestBread.java files.

b. Create a class named SandwichFilling. Include a field for the filling type (such as
“egg salad”) and another for the calories in a serving. Include a constructor that
takes parameters for each field, and include get methods that return the values of
the fields. Write an application named TestSandwichFilling to instantiate three
SandwichFilling objects with different values, and then display all the data for
each object. Save both the SandwichFilling.java and TestSandwichFilling.java
files.

c. Create a class named Sandwich. Include a Bread field and a SandwichFilling
field. Include a constructor that takes parameters for each field needed in the two
objects and assigns them to each object’s constructor. Write an application
named TestSandwich to instantiate three Sandwich objects with different values,
and then display all the data for each object, including the total calories in a
Sandwich, assuming that each Sandwich is made using two slices of Bread. Save
both the Sandwich.java and TestSandwich.java files.

6. a. Create a class named Circle with fields named radius, diameter, and area.
Include a constructor that sets the radius to 1 and calculates the other two values.
Also include methods named setRadius()and getRadius(). The setRadius()
method not only sets the radius but also calculates the other two values. (The
diameter of a circle is twice the radius, and the area of a circle is pi multiplied by
the square of the radius. Use the Math class PI constant for this calculation.) Save
the class as Circle.java.

b. Create a class named TestCircle whose main() method declares several
Circle objects. Using the setRadius() method, assign one Circle a small
radius value, and assign another a larger radius value. Do not assign a value to
the radius of the third circle; instead, retain the value assigned at construction.
Display all the values for all the Circle objects. Save the application as
TestCircle.java.

7. Write a Java application that uses the Math class to determine the answers for each of
the following:

a. The square root of 37

b. The sine and cosine of 300

c. The value of the floor, ceiling, and round of 22.8

236

C H A P T E R 4 More Object Concepts

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

d. The larger and the smaller of the character “D” and the integer 71

e. A random number between 0 and 20 (Hint: The random() method returns a
value between 0 and 1; you want a number that is 20 times larger.)

Save the application as MathTest.java.

8. Write an application that uses methods in the GregorianCalendar class to
calculate how many days are left until the first day of next month. Save the file as
NextMonth.java.

9. Write an application that uses methods in the GregorianCalendar class to calculate
the number of days from today until the end of the current year. Save the file as
YearEnd.java.

10. a. Create a CertificateOfDeposit class. The class contains data fields that hold a
certificate number, account holder’s last name, balance, issue date, and maturity
date, using GregorianCalendar objects for each date. Provide get and set
methods for each field. Also provide a constructor that requires parameters
used to set the first four fields, and sets the maturity date to exactly one year
after the issue date. Save the class as CertificateOfDeposit.java.

b. Create an interactive application that prompts the user for data for two
CertificateOfDeposit objects. Prompt the user for certificate number, name,
balance, and issue date for each CertificateOfDeposit, and then instantiate
the objects. Display all the values, including the maturity dates. Save the
application as TestCertificateOfDeposit.java.

11. Create a class named State that holds the following fields: a String for the
name of the state, an integer for the population, and two City objects that hold
data about the capital city and the most populous city. The State constructor
requires six parameters that represent the names and populations of the state,
its capital, and its most populous city. Provide get methods for each field.
Create the City class to be a nonstatic, private inner class within the State
class; the City class contains a city’s name and population. Create a class to
assign values to and display values from two State objects. Save the files as
State.java and TestState.java.

Debugging Exercises
1. Each of the following files in the Chapter04 folder of your downloadable student

files has syntax and/or logic errors. In each case, determine the problem and fix the
program. After you correct the errors, save each file using the same filename
preceded with Fix. For example, save DebugFour1.java as FixDebugFour1.java.

a. DebugFour1.java
b. DebugFour2.java
c. DebugFour3.java and DebugBox.java
d. DebugFour4.java

237

Exercises

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

When you change a filename, remember to change every instance of the class name within the file so that it
matches the new filename. In Java, the filename and class name must always match.

Game Zone

1. Dice are used in many games. One die can be thrown to randomly show a value
from 1 through 6. Design a Die class that can hold an integer data field for a value
(from 1 to 6). Include a constructor that randomly assigns a value to a die object.
Appendix D contains information on generating random numbers. To fully under-
stand the process, you must learn more about Java classes and methods. However,
for now, you can copy the following statement to generate a random number
between 1 and 6 and assign it to a variable. Using this statement assumes you have
assigned appropriate values to the static constants.

randomValue = ((int)(Math.random() * 100) % HIGHEST_DIE_VALUE +
LOWEST_DIE_VALUE);

Also include a method in the class to return a die’s value. Save the class as Die.java.

Write an application that randomly “throws” two dice and displays their values.
After you read the chapter Making Decisions, you will be able to have the game
determine the higher die. For now, just observe how the values change as you
execute the program multiple times. Save the application as TwoDice.java.

2. Using the Die class, write an application that randomly “throws” five dice for the
computer and five dice for the player. Display the values and then, by observing
the results, decide who wins based on the following hierarchy of Die values.
(The computer will not decide the winner; the player will determine the winner
based on observation.) Any higher combination beats a lower one; for example, five
of a kind beats four of a kind.

l Five of a kind

l Four of a kind

l Three of a kind

l A pair

After you learn about decision making in the next chapter, you will be able
to make the program determine whether you or the computer had the better
roll, and after you read the chapter Arrays, you will be able to make the
determination more efficient. For now, just observe how the values change
as you execute the program multiple times. Save the application as
FiveDice.java.

238

C H A P T E R 4 More Object Concepts

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Case Problems

These projects build on the ones you created in Chapter 3, so they have the same
filenames. If you want to retain both versions of the files, save them in different folders.

1. a. Carly’s Catering provides meals for parties and special events. In Chapter 3, you
created an Event class for the company. The Event class contains two public
final static fields that hold the price per guest ($35) and the cutoff value for
a large event (50 guests), and three private fields that hold an event number,
number of guests for the event, and the price. It also contains two public set
methods and three public get methods.

Now, modify the Event class to contain two overloaded constructors.

l One constructor accepts an event number and number of guests as parameters.
Pass these values to the setEventNumber() and setGuests() methods,
respectively. The setGuests() method will automatically calculate the event
price.

l The other constructor is a default constructor that passes “A000” and 0 to the
two-parameter constructor.

Save the file as Event.java.

b. In Chapter 3, you also created an EventDemo class to demonstrate using
two Event objects. Now, modify that class to instantiate two Event objects,
and include the following new methods in the class:

l Instantiate one object to retain the constructor default values.

l Accept user data for the event number and guests fields, and use this data set to
instantiate the second object. Display all the details for both objects.

Save the file as EventDemo.java.

2. a. Sammy’s Seashore Supplies rents beach equipment such as kayaks, canoes,
beach chairs, and umbrellas to tourists. In Chapter 3, you created a Rental
class for the company. The Rental class contains two public final static
fields that hold the number of minutes in an hour and the hourly rental rate
($40), and four private fields that hold a contract number, number of hours
for the rental, number of minutes over an hour, and the price. It also contains
two public set methods and four public get methods.

Now, modify the Rental class to contain two overloaded constructors.

l One constructor accepts a contract number and number of minutes as
parameters. Pass these values to the setContractNumber() and
setHoursAndMinutes() methods, respectively. The setHoursAndMinutes()
method will automatically calculate the hours, extra minutes, and price.

239

Exercises

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

l The other constructor is a default constructor that passes “A000” and 0 to the
two-parameter constructor.

Save the file as Rental.java.

b. In Chapter 3, you also created a RentalDemo class to demonstrate a Rental
object. Now, modify that class to instantiate two Rental objects.

l Instantiate one object to retain the constructor default values.

l Accept user data for the contract number and minutes fields and use this data
set to instantiate the second object. Display all the details for both objects.

Save the file as RentalDemo.java.

240

C H A P T E R 4 More Object Concepts

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

