
CHAPTER 2
Using Data

In this chapter, you will:

Declare and use constants and variables

Use integer data types

Use the boolean data type

Use floating-point data types

Use the char data type

Use the Scanner class to accept keyboard input

Use the JOptionPane class to accept GUI input

Perform arithmetic

Understand type conversion

Unless noted otherwise, all images are © 2014 Cengage Learning

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Declaring and Using Constants and Variables
A data item is constant when its value cannot be changed while a program is running.
For example, when you include the following statement in a Java class, the number 459 is
a constant:

System.out.println(459);

Every time an application containing the constant 459 is executed, the value 459 is displayed.
Programmers refer to the number 459 as a literal constant because its value is taken literally
at each use. The number 459 is also a numeric constant as opposed to a character or string
constant. Additionally, it is an unnamed constant as opposed to a named one, because no
identifier is associated with it.

Instead of using constant data, you can set up a data item to be variable. A variable is a named
memory location that can store a value. A variable can hold only one value at a time, but the
value it holds can change. For example, if you create a variable named ovenTemperature, it
might hold 0 when the application starts, later be altered to hold 350, and still later be altered
to hold 400.

Whether a data item is variable or constant, in Java it always has a data type. An item’s
data type describes the type of data that can be stored there, how much memory the item
occupies, and what types of operations can be performed on the data. Java provides for eight
primitive types of data. A primitive type is a simple data type. The eight types are described
in Table 2-1. Later in this chapter, you will learn more specific information about several
of these data types.

The eight data types in Table 2-1 are called primitive because they are simple and
uncomplicated. Primitive types also serve as the building blocks for more complex data types,
called reference types, which hold memory addresses. The classes you will begin creating in
Chapter 3 are examples of reference types, as is the Scanner class you will use later in this
chapter.

Keyword Description
byte Byte-length integer

short Short integer

int Integer

long Long integer

float Single-precision floating point

double Double-precision floating point

char A single character

boolean A Boolean value (true or false)

Table 2-1 Java primitive data types

CH A P T E R 2 Using Data

52

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Declaring Variables
A variable declaration is a statement that reserves a named memory location and includes
the following:

l A data type that identifies the type of data that the variable will store

l An identifier that is the variable’s name

l An optional assignment operator and assigned value, if you want a variable to contain an
initial value

l An ending semicolon

You name variables using the same naming rules as you do for legal class identifiers. Basically,
variable names must start with a letter and cannot be a reserved keyword. You must declare
a variable before you can use it. You can declare a variable at any point before you use it,
but it is common practice to declare variables first in a method and to place executable
statements after the declarations. Java is a strongly typed language, or one in which each
variable has a well-defined data type that limits the operations you can perform with it;
strong typing implies that all variables must be declared before they can be used.

Variable names conventionally begin with lowercase letters to distinguish them from class
names. However, as with class names, a program can compile without error even if names are
constructed unconventionally. Beginning an identifier with a lowercase letter and capitalizing
subsequent words within the identifier is a style known as camel casing. An identifier such
as lastName resembles a camel because of the uppercase “hump” in the middle.

For example, the following declaration creates a variable of type int named myAge and assigns
it an initial value of 25;

int myAge = 25;

This declaration is a complete, executable statement, so it ends with a semicolon. The equal
sign (=) is the assignment operator. Any value to the right of the equal sign is assigned to
the variable on the left of the equal sign. An assignment made when you declare a variable is
an initialization; an assignment made later is simply an assignment. Thus, the first statement
that follows is an initialization, and the second is an assignment:

int myAge = 25;
myAge = 42;

You declare a variable just once, but you might assign new values to it any number
of times.

Note that an expression with a literal to the left of the assignment operator (such as
25 = myAge) is illegal. The assignment operator has right-to-left associativity. Associativity
refers to the order in which values are used with operators. The associativity of every
operator is either right-to-left or left-to-right. An identifier that can appear on the left side
of an assignment operator sometimes is referred to as an lvalue. A numeric constant like
25 is not an lvalue; it is only an rvalue, or an item that can appear only on the right side
of an assignment operator. A variable can be used as an lvalue or an rvalue, but a literal
number can only be an rvalue.

Declaring and Using Constants and Variables

53

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

When you declare a variable within a method but do not assign a value to it, it is an
uninitialized variable. For example, the following variable declaration declares a variable of
type int named myAge, but no value is assigned at the time of creation:

int myAge;

An uninitialized variable contains an unknown value called a garbage value. Java
protects you from inadvertently using the garbage value that is stored in an uninitialized
variable. For example, if you attempt to display garbage or use it as part of a
calculation, you receive an error message stating that the variable might not have been
initialized.

When you learn about creating classes in the chapter Using Methods, Classes, and Objects, you
will discover that variables declared in a class, but outside any method, are automatically initialized
for you.

You can declare multiple variables of the same type in separate statements. You also can
declare two (or more) variables of the same type in a single statement by separating the
variable declarations with a comma, as shown in the following statement:

int myAge = 25, yourAge = 19;

By convention, programmers declare most variables in separate statements. You might
declare multiple variables in the same statement only if they are closely related. Remember
that even if a statement occupies multiple lines, the statement is not complete until the
semicolon is reached.

You can declare as many variables in a statement as you want, as long as the variables are the
same data type. However, if you want to declare variables of different types, you must use a
separate statement for each type.

Declaring Named Constants
A variable is a named memory location for which the contents can change. If a named
location’s value should not change during the execution of a program, you can create it to be a
named constant. A named constant is also known as a symbolic constant. A named constant
is similar to a variable in that it has a data type, a name, and a value. A named constant differs
from a variable in several ways:

l In its declaration statement, the data type of a named constant is preceded by the keyword
final.

l A named constant can be assigned a value only once, and then it can never be changed.
Usually you initialize a named constant when you declare it; if you do not initialize the
constant at declaration, it is known as a blank final, and you can assign a value later. You
can assign a value to a final constant only once, and you must assign a value before the
constant is used.

l Although it is not a requirement, named constants conventionally are given identifiers
using all uppercase letters, using underscores as needed to separate words.

CH A P T E R 2 Using Data

54

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

For example, each of the following defines a conventionally named constant:

final int NUMBER_OF_DEPTS = 20;
final double PI = 3.14159;
final double TAX_RATE = 0.015;
final string COMPANY = "ABC Manufacturing";

You can use each of these named constants anywhere you can use a variable of the same type,
except on the left side of an assignment statement after the first value has been assigned. In
other words, after they receive their initial values, named constants are rvalues.

A constant always has the same value within a program, so you might wonder why you
cannot use the actual, literal value. For example, why not use the unnamed constant 20 when
you need the number of departments in a company rather than going to the trouble of
creating the NUMBER_OF_DEPTS named constant? There are several good reasons to use the
named constant rather than the literal one:

l The number 20 is more easily recognized as the number of departments if it is associated
with an identifier. Using named constants makes your programs easier to read and
understand. Some programmers refer to the use of a literal numeric constant, such as 20,
as using a magic number—a value that does not have immediate, intuitive meaning or a
number that cannot be explained without additional knowledge. For example, you might
write a program that uses the value 7 for several purposes, so you might use constants
such as DAYS_IN_WEEK and NUM_RETAIL_OUTLETS that both hold the value 7 but more
clearly describe the purpose. Avoiding magic numbers helps provide internal
documentation for your programs.

l If the number of departments in your organization changes, you would change the
value of NUMBER_OF_DEPTS at one location within your program—where the constant is
defined—rather than searching for every use of 20 to change it to a different number.
Being able to make the change at one location saves you time and prevents you from
missing a reference to the number of departments.

l Even if you are willing to search for every instance of 20 in a program to change it to
the new department number value, you might inadvertently change the value of
one instance of 20 that is being used for something else, such as a payroll deduction
value.

l Using named constants reduces typographical errors. For example, if you must include 20
at several places within a program, you might inadvertently type 10 or 200 for one of the
instances, and the compiler will not recognize the mistake. However, if you use the
identifier NUMBER_OF_DEPTS, the compiler will ensure that you spell it correctly.

l When you use a named constant in an expression, it stands out as separate from a
variable. For example, in the following arithmetic statement, it is easy to see which
elements are variable and which are constant because the constants have been named
conventionally:

double payAmount = hoursWorked * STD_PAY_RATE –

numDependents * DEDUCTION;

Declaring and Using Constants and Variables

55

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Although many programmers use named constants to stand for most of the constant values
in their programs, many make an exception when using 0 or 1.

The Scope of Variables and Constants
A data item’s scope is the area in which it is visible to a program and in which you can refer to
it using its simple identifier. A variable or constant is in scope from the point it is declared
until the end of the block of code in which the declaration lies. A block of code is the code
contained between a set of curly braces. So, if you declare a variable or constant within a
method, it can be used from its declaration until the end of the method unless the method
contains multiple sets of curly braces. Then, a data item is usable only until the end of the
block that holds the declaration.

In the chapter Using Methods, Classes, and Objects, you will start to create classes that contain multiple sets
of curly braces. In the chapter More Object Concepts, you will learn some techniques for using variables that
are not currently in scope.

Concatenating Strings to Variables and Constants
You can display a variable or a constant in a print() or println() statement alone or in
combination with a string. For example, the NumbersPrintln class shown in Figure 2-1
declares an integer billingDate, which is initialized to 5. In the first shaded statement, the
value of billingDate is sent alone to the print() method; in the second shaded statement,
billingDate is combined with, or concatenated to, a String. In Java, when a numeric
variable is concatenated to a String using the plus sign, the entire expression becomes a
String. In Figure 2-1, print() and println() method calls are used to display different data
types, including a String, a number, and a concatenated String. The output of the
application shown in Figure 2-1 appears in Figure 2-2.

public class NumbersPrintln
{

public static void main(String[] args)
{

int billingDate = 5;
System.out.print("Bills are sent on day ");
System.out.print(billingDate);
System.out.println(" of the month");
System.out.println("Next bill: October " +

billingDate);
}

}

Figure 2-1 NumbersPrintln class

CH A P T E R 2 Using Data

56

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Later in this chapter, you will learn that a plus sign (+) between two numeric values indicates an addition
operation. However, when you place a string on one or both sides of a plus sign, concatenation occurs. In
Chapter 1, you learned that polymorphism describes the feature of languages that allows the same word or
symbol to be interpreted correctly in different situations based on the context. The plus sign is polymorphic in
that it indicates concatenation when used with strings but addition when used with numbers.

When you concatenate a String with numbers, the entire expression is a String. Therefore,
the expression "A" + 3 + 4 results in the String "A34". If your intention is to create the String
"A7", then you could add parentheses to write "A" + (3 + 4).

The program in Figure 2-1 uses the command line to display values, but you also can use a
dialog box. Recall from Chapter 1 that you can use the showMessageDialog() method with
two arguments: null, which indicates the box should appear in the center of the screen, and
the String to be displayed in the box. Figure 2-3 shows a NumbersDialog class that uses the
showMessageDialog() method twice to display an integer declared as creditDays and
initialized to 30. In each shaded statement in the class, the numeric variable is concatenated
to a String, making the entire second argument a String. In the first shaded statement,
the concatenated String is an empty String (or null String), created by typing a set of
quotes with nothing between them. The application produces the two dialog boxes shown in
Figures 2-4 and 2-5. The first dialog box shows just the value 30; after it is dismissed by
clicking OK, the second dialog box appears.

import javax.swing.JOptionPane;
public class NumbersDialog
{

public static void main(String[] args)
{

int creditDays = 30;
JOptionPane.showMessageDialog(null, "" + creditDays);
JOptionPane.showMessageDialog

(null, "Every bill is due in " + creditDays + " days");
}

}

Figure 2-3 NumbersDialog class

Figure 2-2 Output of NumbersPrintln application

Declaring and Using Constants and Variables

57

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Pitfall: Forgetting That a Variable Holds One Value at a Time
Each constant can hold only one value for the duration of its program; each variable can hold
just one value at a time. Suppose you have two variables, x and y, and x holds 2 and y holds
10. Suppose further that you want to switch their values so that x holds 10 and y holds 2. You
cannot simply make an assignment such as x = y because then both variables will hold 10, and
the 2 will be lost. Similarly, if you make the assignment y = x, then both variables will hold 2,
and the 10 will be lost. The solution is to declare and use a third variable, as in the following
sequence of events:

int x = 2, y = 10, z;
z = x;
x = y;
y = z;

In this example, the third variable, z, is used as a temporary holding spot for one of the
original values. The variable z is assigned the value of x, so z becomes 2. Then the value of y,
10, is assigned to x. Finally, the 2 held in z is assigned to y. The extra variable is used because
as soon as you assign a value to a variable, any value that was previously in the memory
location is gone.

Watch the video Declaring Variables and Constants.

Figure 2-4 First dialog box created by NumbersDialog application

Figure 2-5 Second dialog box created by NumbersDialog application

CH A P T E R 2 Using Data

58

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Declaring and Using Constants and Variables

1. A variable is a named memory location that you can use to store a value; it can
hold only one value at a time, but the value it holds can change.

2. An item’s data type determines what legal identifiers can be used to describe
variables and whether the variables can occupy memory.

3. A variable declaration is a statement that reserves a named memory location
and includes a data type, an identifier, an optional assignment operator and
assigned value, and an ending semicolon.

. yr o me mypucco sel bai r av
ll a —yr o me mypucco nac sel bai r av r eht eh weni mr et edt on seod epyt at ad eht dna
,r eifi t nedi l agel ar of sel ur eht r etl at on seod epyt at ad ehT. at ad eht no de mr ofr ep eb

nac snoi t ar epof o sepyt t ah w dna, sei pucco meti eht yr o me mhcu mwoh, der ot s
eb nact aht at adf o epyt eht sebi r csed epyt at ad s’ meti nA. 2# si t ne met at s esl af ehT

You Do It

Declaring and Using a Variable

In this section, you write an application to work with a variable and a constant.

1. Open a new document in your text editor. Create a class header and an
opening and closing curly brace for a new class named DataDemo by typing
the following:
public class DataDemo
{
}

2. Between the curly braces, indent a few spaces and type the following main()
method header and its curly braces:
public static void main(String[] args)
{
}

(continues)

Declaring and Using Constants and Variables

59

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. Between the main() method’s curly braces, type the following variable
declaration:
int aWholeNumber = 315;

4. Type the following output statements. The first displays a string that includes
a space before the closing quotation mark and leaves the insertion point for
the next output on the same line. The second statement displays the value of
aWholeNumber and then advances to a new line.
System.out.print("The number is ");
System.out.println(aWholeNumber);

5. Save the file as DataDemo.java.

6. Up to this point in the book, every print() and println() statement you have
seen has used a String as an argument. When you added the last two state-
ments to the DataDemo class, you wrote a println() statement that uses an
int as an argument. As a matter of fact, there are many different versions of
print() and println() that use different data types. Go to the Java Web site
(www.oracle.com/technetwork/java/index.html), select Java APIs,
and then select Java SE 7. Scroll through the list of All Classes, and select
PrintStream; you will recall from Chapter 1 that PrintStream is the data type
for the out object used with the println() method. Scroll down to view the list of
methods in theMethod Summary, and notice the many versions of the print()
and println() methods, including ones that accept a String, an int, a long,
and so on. In the last two statements you added to this program, one used a
method version that accepts a String and the other used a method version
that accepts an int.

7. Compile the file from the
command line by typing
javac DataDemo.java. If
necessary, correct any
errors, save the file, and then
compile again.

8. Execute the application from
the command line by typing
java DataDemo. The
command window output is
shown in Figure 2-6. Figure 2-6 Output of the DataDemo application

(continued)

(continues)

CH A P T E R 2 Using Data

60

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html

Trying to Use an Uninitialized Variable

In this section you see what happens when a variable is uninitialized.

1. In the DataDemo class, remove the assignment operator and the initialization
value of the aWholeNumber variable so the declaration becomes:
int aWholeNumber;

2. Save the class and recompile it. An error message appears as shown in Figure 2-7.
Notice that the declaration statement does not generate an error because you
can declare a variable without initializing it. However, the println() statement
generates the error message because in Java, you cannot display an uninitialized
variable.

3. Modify the aWholeNumber declaration so that the variable is again initialized to
315. Compile the class, and execute it again.

Adding a Named Constant to a Program

In this section you add a named constant to the DataDemo program.

1. After the declaration of the aWholeNumber variable in the DataDemo class,
insert a new line in your program and type the following constant declaration:
final int STATES_IN_US = 50;

2. Following the last println() statement in the existing program, add a new
statement to display a string and the constant. In this case, you concatenate
the string and the numeric value, so the println() method call uses the
version that accepts a String argument.
System.out.println("The number of states is " +

STATES_IN_US);

Figure 2-7 Error message generated when a variable is not initialized

(continues)

(continued)

Declaring and Using Constants and Variables

61

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. Save the program, and
then compile and execute it.
The output appears in
Figure 2-8.

Learning About Integer Data Types
In Java, you can use variables of types byte, short, int, and long to store (or hold) integers;
an integer is a whole number without decimal places.

The int data type is the most commonly used integer type. A variable of type int can hold
any whole number value from –2,147,483,648 to +2,147,483,647. When you assign a value to
an int variable, you do not type any commas or periods; you type only digits and an optional
plus or minus sign to indicate a positive or negative integer.

The legal integer values are –231 through 231–1. These are the highest and lowest values that you can store
in four bytes of memory, which is the size of an int variable.

The types byte, short, and long are all variations of the integer type. The byte and short
types occupy less memory and can hold only smaller values; the long type occupies more
memory and can hold larger values. Table 2-2 shows the upper and lower value limits for each
of these types. In other programming languages, the format and size of primitive data types
might depend on the platform on which a program is running. In contrast, Java consistently
specifies the size and format of its primitive data types.

It is important to choose appropriate types for the variables you will use in an application. If you
attempt to assign a value that is too large for the data type of the variable, the compiler issues an

Figure 2-8 Output of DataDemo program
after recent changes

(continued)

Type Minimum Value Maximum Value Size in Bytes
byte −128 127 1

short −32,768 32,767 2

int −2,147,483,648 2,147,483,647 4

long −9,223,372,036,854,775,808 9,223,372,036,854,775,807 8

Table 2-2 Limits on integer values by type

CH A P T E R 2 Using Data

62

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

error message, and the application does not execute. If you choose a data type that is larger than
you need, you waste memory. For example, a personnel application might use a byte variable
for number of dependents (because a limit of 127 is more than enough), a short for hours
worked in a month (because 127 isn’t enough), and an int for an annual salary (because even
though a limit of 32,000 might be large enough for your salary, it isn’t enough for the CEO’s).

Some famous glitches have occurred because programmers did not pay attention to the limits of various
data types. For example, a hospital computer system in Washington, D.C., used the equivalent of a short
to count days elapsed since January 1, 1900. The system collapsed on the 32,768th day (which was in
1989), requiring manual operations for a lengthy period.

If an application uses a literal constant integer, such as 932, the number is an int by default. If
you need to use a constant higher than 2,147,483,647, you must follow the number with the
letter L to indicate long. For example, the following statement stores a number that is greater
than the maximum limit for the int type.

long mosquitosInTheNorthWoods = 2444555888L;

You can type either an uppercase or lowercase L after the digits to indicate the long type, but
the uppercase L is preferred to avoid confusion with the number 1. You don’t need any special
notation to store a numeric constant in an int, byte, or a short.

Because integer constants, such as 18, are type int by default, the examples in this book
almost always declare a variable as type int when the variable’s purpose is to hold a whole
number. That is, even if the expected value is less than 128, such as hoursWorkedToday, this
book will declare the variable to be an int. If you are writing an application in which saving
memory is important, you might choose to declare the same variable as a byte.

Saving memory is seldom an issue for an application that runs on a PC. However, when you write applications
for small devices with limited memory, like phones, conserving memory becomes more important.

TWO TRUTHS & A LIE

Learning About Integer Data Types

1. A variable of type int can hold any whole number value from approximately
negative two billion to positive two billion.

2. When you assign a value to an int variable, you do not type any commas; you type
only digits and an optional plus or minus sign to indicate a positive or negative integer.

3. You can use the data types byte or short to hold larger values than can be
accommodated by an int.

. seul avll a ms yl no
dl oh ot deenlli w el bai r av a wonk uoy fi trohs a r o etyb a esu uoy ; seul av egr al

yr ev hti w gni kr oweblli wuoy wonk uoy fi gnol a esu uoY. 3# si t ne met at s esl af ehT
Learning About Integer Data Types

63

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You Do It

Working with Integers
In this section you work more with integer values.

1. Open a new file in your text editor, and create a shell for an IntegerDemo class
as follows:
public class IntegerDemo
{
}

2. Between the curly braces, indent a few spaces and write the shell for a main()
method as follows:
public static void main(String[] args)
{
}

3. Within the main() method, create four declarations, one each for the four
integer data types.
int anInt = 12;
byte aByte = 12;
short aShort = 12;
long aLong = 12;

4. Next, add four output statements that describe and display each of the
values. The spaces are included at the ends of the string literals so that the
values will be aligned vertically when they are displayed.
System.out.println("The int is " + anInt);
System.out.println("The byte is " + aByte);
System.out.println("The short is " + aShort);
System.out.println("The long is " + aLong);

5. Save the file as IntegerDemo.java. Then compile and execute it. Figure 2-9
shows the output. All the values are legal sizes for each data type, so the
program compiles and executes without error.

(continues)

CH A P T E R 2 Using Data

64

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6. Change each assigned value in the application from 12 to 1234, and then
save and recompile the program. Figure 2-10 shows the error message gener-
ated because 1234 is too large to be placed in a byte variable. The message,
“possible loss of precision”, means that if the large number had been
inserted into the small space, the accuracy of the number would have been
compromised.

7. Change the value of aByte back to 12. Change the value of aShort to
123456. Save and recompile the program. Figure 2-11 shows the result.
The error message “possible loss of precision” is the same as when the byte
value was invalid, but the error indicates that the problem is now with the
short variable.

Figure 2-9 Output of the IntegerDemo program

Figure 2-10 Error message generated when a value that is too large is assigned to a
byte variable

(continued)

(continues)

Learning About Integer Data Types

65

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8. Change the value of the short variable to 12345, and then save and compile
the program. Now, the program compiles without error. Execute the program
and confirm that it runs as expected.

9. At the Java Web site (www.oracle.com/technetwork/java/index.html), examine
the list of println() methods in the PrintStream class. Although you can find
versions that accept String, int, and long arguments, you cannot find ones
that accept byte or short values. Yet, the println() statements in the latest
version of the program work correctly. The reason has to do with type
conversion, which you will learn about later in this chapter.

10. Replace the value of aLong with 1234567890987654321. Save the program
and compile it. Figure 2-12 shows the error message that indicates that the
integer number is too large. The message does not say that the value is too big
for a long type variable. Instead, it means that the literal constant was evaluated
and found to be too large to be a default int before any attempt was made to
store it in the long variable.

Figure 2-12 Error message generated when a value that is too large is assigned to a
long variable

Figure 2-11 Error message generated when a value that is too large is assigned to a
short variable

(continues)

(continued)

CH A P T E R 2 Using Data

66

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.oracle.com/technetwork/java/index.html

11. Remedy the problem by adding an L to the end of the long numeric value. Now,
the constant is the correct data type that can be assigned to the long variable.
Save, compile, and execute the program; it executes successfully.

12. Watch out for errors that occur when data values are acceptable for a data type
when used alone but together might produce arithmetic results that are out of
range. To demonstrate, add the following declaration at the end of the current
list of variable declarations in the IntegerDemo program:
int anotherInt = anInt * 10000000;

13. At the end of the current list of output statements, add another output statement
so that you can see the result of the arithmetic:
System.out.println("Another int is " + anotherInt);

Save, compile, and execute the program. The output appears in Figure 2-13.
Although 1234 and 10000000 are both acceptable int values, their product is
out of range for an int, and the resulting int does not appear to have been
calculated correctly. Because the arithmetic result was too large, some informa-
tion about the value has been lost, including the result’s sign. If you see such
unreasonable results in your programs, you need to consider using different
data types for your values.

Using the boolean Data Type
Boolean logic is based on true-or-false comparisons. Whereas an int variable can hold
millions of different values (at different times), a boolean variable can hold only one of two
values—true or false. The following statements declare and assign appropriate values to
Boolean variables:

boolean isItPayday = false;
boolean areYouBroke = true;

Figure 2-13 Output of the modified IntegerDemo program with an out-of-range integer

(continued)

Using the boolean Data Type

67

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You also can assign values based on the result of comparisons to Boolean variables. Java
supports six relational operators that are used to make comparisons. A relational operator
compares two items; it is sometimes called a comparison operator. An expression that
contains a relational operator has a Boolean value. Table 2-3 describes the relational
operators.

When you use Boolean as an adjective, as in Boolean operators, you usually begin with an uppercase B
because the data type is named for Sir George Boole, the founder of symbolic logic, who lived from 1815 to
1864. The Java data type boolean, however, begins with a lowercase b.

When you use any of the operators that have two symbols (==, <=, >=, or !=), you cannot
place any whitespace between the two symbols. You also cannot reverse the order of the
symbols. That is, =<, =>, and =! are all invalid operators.

Legal declaration statements might include the following statements, which compare two
values directly:

boolean isSixBigger = (6 > 5);
// Value stored would be true

boolean isSevenSmallerOrEqual = (7 <= 4);
// Value stored would be false

Although you can use any legal identifier for Boolean variables, they are easily identified as Boolean if you use
a form of to be (such as is or are) as part of the variable name, as in isSixBigger.

The Boolean expressions are more meaningful when variables (that have been assigned
values) are used in the comparisons, as in the following examples. In the first statement,
the hours variable is compared to a constant value of 40. If the hours variable is not
greater than 40, the expression evaluates to false. In the second statement, the income
variable must be greater than 100000 for the expression to evaluate to true. In the
third statement, two variables are compared to determine the value of
isFirstScoreHigher.

Operator Description True Example False Example

< Less than 3 < 8 8 < 3

> Greater than 4 > 2 2 > 4

== Equal to 7 == 7 3 == 9

<= Less than or equal to 5 <= 5 8 <= 6

>= Greater than or equal to 7 >= 3 1 >= 2

!= Not equal to 5 != 6 3 != 3

Table 2-3 Relational operators

CH A P T E R 2 Using Data

68

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

boolean isOvertimePay = (hours > 40);
boolean isTaxBracketHigh = (income > 100000);
boolean isFirstScoreHigher = (score1 > score2);

Boolean expressions will become far more useful to you when you learn about decision
making and looping in Chapters 5 and 6.

TWO TRUTHS & A LIE

Using the boolean Data Type

1. A Boolean variable can hold only one of two values—true or false.

2. Java supports six relational operators that are used to make comparisons:
=, <, >, =<, =>, and =!.

3. An expression that contains a relational operator has a Boolean value.

.) ngi sl auqe eht sedecer p
t ni op noi t a mal cxe eht(=! dna,) ngi sl auqe eht sedecer p ngi s naht- r et aer g eht(

=>,) ngi sl auqe eht sedecer p ngi s naht- ssel eht(=<, >, <,) sngi sl auqe owt(==er a
snosi r ap moc eka mot desu sr ot ar epol anoi t al er xi s ehT. 2# si t ne met at s esl af ehT

Learning About Floating-Point Data Types
A floating-point number contains decimal positions. Java supports two floating-point data
types: float and double. A float data type can hold floating-point values of up to six or
seven significant digits of accuracy. A double data type requires more memory than a float
and can hold 14 or 15 significant digits of accuracy. The term significant digits refers to
the mathematical accuracy of a value. For example, a float given the value 0.324616777 is
displayed as 0.324617 because the value is accurate only to the sixth decimal position. Table 2-4
shows the minimum and maximum values for each floating-point data type. Notice that the
maximum value for a double is 3.4 * 10 to the 38th power, which means 3.4 times 10 with 38
trailing zeros—a very large number.

A float given the value 324616777 is displayed as 3.24617e+008, which means approximately 3.24617
times 10 to the 8th power, or 324617000. The e in the displayed value stands for exponent; the +008
means the true decimal point is eight positions to the right of where it is displayed, indicating a very large
number. (A negative number would indicate that the true decimal point belongs to the left, indicating a very
small number.) This format is called scientific notation. The large value contains only six significant digits.

A programmer might choose to store a value as a float instead of a double to save memory. However,
if high levels of accuracy are needed, such as in graphics-intensive software, the programmer might choose
to use a double, opting for high accuracy over saved memory.

Learning About Floating-Point Data Types

69

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A value stored in a double is a double-precision floating-point number; a value in a float is a single-
precision floating-point number.

Just as an integer constant, such as 18, is a value of type int by default, a floating-point
constant, such as 18.23, is a double by default. To indicate that a floating-point numeric
constant is a float, you can type the letter F after the number, as in the following:

float pocketChange = 4.87F;

You can type either a lowercase or an uppercase F. You also can type D (or d) after a floating-
point constant to indicate it is a double, but even without the D, the value will be stored as a
double by default. Floating-point numbers can be imprecise, as you will see later in this
chapter.

TWO TRUTHS & A LIE

Learning About Floating-Point Data Types

1. Java supports two floating-point data types: float and double. The double data
type requires more memory and can hold more significant digits.

2. A floating-point constant, such as 5.6, is a float by default.

3. As with integers, you can perform the mathematical operations of addition,
subtraction, multiplication, and division with floating-point numbers.

.tl uaf ed
yb elbuod a si , 6. 5 sa hcus,t nat snoct ni op- gni t aolf A. 2# si t ne met at s esl af ehT

Using the char Data Type
You use the char data type to hold any single character. You place constant character values
within single quotation marks because the computer stores characters and integers
differently. For example, the following are typical character declarations:

char middleInitial = 'M';
char gradeInChemistry = 'A';
char aStar = '*';

Type Minimum Maximum Size in Bytes
float –3.4 * 1038 3.4 * 1038 4

double –1.7 * 10308 1.7 * 10308 8

Table 2-4 Limits on floating-point values

CH A P T E R 2 Using Data

70

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Some programmers prefer to pronounce char as care because it represents the first syllable in the word
character. Others prefer to pronounce the word as char to rhyme with car. You should use the preferred
pronunciation in your organization.

A character can be any letter—uppercase or lowercase. It might also be a punctuation mark
or digit. A character that is a digit is represented in computer memory differently than a
numeric value represented by the same digit. For example, the following two statements
are legal:

char aCharValue = '9';
int aNumValue = 9;

If you display each of these values using a println() statement, you see a 9. However, only
the numeric value, aNumValue, can be used to represent the value 9 in arithmetic statements.

A numeric constant can be stored in a character variable and a character that represents a
number can be stored in a numeric variable. For example, the following two statements are
legal, but unless you understand their meanings, they might produce undesirable results:

char aCharValue = 9;
int aNumValue = '9';

If these variables are displayed using println() statements, then the resulting output is a
blank for aCharValue and the number 57 for aNumValue. The unexpected values are Unicode
values. Every computer stores every character it uses as a number; every character is assigned
a unique numeric code using Unicode. Table 2-5 shows some Unicode decimal values and
their character equivalents. For example, the character A is stored using the value 65, and the
character B is stored using the value 66. Appendix B contains more information on Unicode.

Dec Char Dec Char Dec Char Dec Char

0 nul 32 64 @ 96 `

1 soh^A 33 ! 65 A 97 a

2 stx^B 34 “ 66 B 98 b

3 etx^C 35 # 67 C 99 c

4 eot^D 36 $ 68 D 100 d

5 enq^E 37 % 69 E 101 e

6 ask^F 38 & 70 F 102 f

7 bel^G 39 ‘ 71 G 103 g

8 bs^H 40 (72 H 104 h

9 ht^I 41) 73 I 105 i

10 lf^J 42 * 74 J 106 j

Table 2-5 Unicode values 0 through 127 and their character equivalents (continues)

Using the char Data Type

71

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A variable of type char can hold only one character. To store a string of characters, such as a
person’s name, you must use a data structure called a String. In Java, String is a built-in
class that provides you with the means for storing and manipulating character strings. Unlike
single characters, which use single quotation marks, string constants are written between
double quotation marks. For example, the expression that stores the name Audrey as a string
in a variable named firstName is:

String firstName = "Audrey";

You will learn more about strings and the String class in the chapter Characters, Strings, and
the StringBuilder.

Dec Char Dec Char Dec Char Dec Char

11 vt^K 43 + 75 K 107 k

12 ff^L 44 , 76 L 108 l

13 cr^M 45 - 77 M 109 m

14 so^N 46 . 78 N 110 n

15 si^O 47 / 79 O 111 o

16 dle^P 48 0 80 P 112 p

17 dc1^Q 49 1 81 Q 113 q

18 dc2^R 50 2 82 R 114 r

19 dc3^S 51 3 83 S 115 s

20 dc4^T 52 4 84 T 116 t

21 nak^U 53 5 85 U 117 u

22 syn^V 54 6 86 V 118 v

23 etb^W 55 7 87 W 119 w

24 can^X 56 8 88 X 120 x

25 em^Y 57 9 89 Y 121 y

26 sub^Z 58 : 90 Z 122 z

27 esc 59 ; 91 [123 {

28 fs 60 < 92 \ 124 |

29 gs 61 = 93] 125 }

30 rs 62 > 94 ^ 126 ~

31 us 63 ? 95 _ 127 del

Table 2-5 Unicode values 0 through 127 and their character equivalents

(continued)

CH A P T E R 2 Using Data

72

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You can store any character—including nonprinting characters such as a backspace or a tab—
in a char variable. To store these characters, you can use an escape sequence, which always
begins with a backslash followed by a character—the pair represents a single character. For
example, the following code stores a newline character and a tab character in the char
variables aNewLine and aTabChar:

char aNewLine = '\n';
char aTabChar = '\t';

In the declarations of aNewLine and aTabChar, the backslash and character pair acts as a
single character; the escape sequence serves to give a new meaning to the character. That is,
the literal characters in the preceding code have different values from the “plain” characters
'n' or 't'. Table 2-6 describes some common escape sequences that you can use with
command window output in Java.

When you display values within JOptionPane dialog boxes rather than in a command window, the escape
sequences '\n' (newline), '\"' (double quote), and '\\' (backslash) operate as expected within a
JOptionPane object, but '\t', '\b', and '\r' do not work in the GUI environment.

When you want to produce console output on multiple lines in the command window,
you have two options: You can use the newline escape sequence, or you can use the
println() method multiple times. For example, Figures 2-14 and 2-15 both show
classes that produce the same output: “Hello” on one line and “there” on another. The
version you choose to use is up to you. The example in Figure 2-14 is more efficient—
from a typist’s point of view because the text System.out.println appears only once,
and from the compiler’s point of view because the println() method is called only
once. The example in Figure 2-15, however, might be easier to read and understand.
When programming in Java, you will find occasions when each of these approaches
makes sense.

Escape Sequence Description

\b Backspace; moves the cursor one space to the left

\t Tab; moves the cursor to the next tab stop

\n Newline or linefeed; moves the cursor to the beginning of the next line

\r Carriage return; moves the cursor to the beginning of the current line

\" Double quotation mark; displays a double quotation mark

\' Single quotation mark; displays a single quotation mark

\\ Backslash; displays a backslash character

Table 2-6 Common escape sequences

Using the char Data Type

73

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public class HelloThereNewLine
{

public static void main(String[] args)
{

System.out.println("Hello\nthere");
}

}

Figure 2-14 HelloThereNewLine class

public class HelloTherePrintlnTwice
{

public static void main(String[] args)
{

System.out.println("Hello");
System.out.println("there");

}
}

Figure 2-15 HelloTherePrintlnTwice class

The println() method uses the local platform’s line terminator character, which might or might not be
the newline character \n.

TWO TRUTHS & A LIE

Using the char Data Type

1. You use the char data type to hold any single character; you place constant
character values within single quotation marks.

2. To store a string of characters, you use a data structure called a Text; string
constants are written between parentheses.

3. An escape sequence always begins with a backslash followed by a character; the
pair represents a single character.

. skr a mnoi t at ouq neewt eb netti r w er a st nat snoc gni rt s ; gnirtS a dell ac
er ut curt s at ad a esu uoy , sr et car ahcf o gni rt s a er ot s oT. 2# si t ne met at s esl af ehT

CH A P T E R 2 Using Data

74

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You Do It

Working with the char Data Type

In the steps in this section, you create an application that demonstrates some
features of the char data type.

1. Create the shells for a class named CharDemo and its main()method as follows:
public class CharDemo
{

public static void main(String[] args)
{
}

}

2. Between the curly braces for the main() method, declare a char variable, and
provide an initialization value:
char initial = 'A';

3. Add two statements. The first displays the variable, and the second
demonstrates some escape sequence characters.
System.out.println(initial);
System.out.print("\t\"abc\\def\bghi\n\njkl");

4. Save the file as CharDemo.java,
and then compile and execute it.
Figure 2-16 shows the output.
The first line of output contains
the value of the char variable.
The next line starts with a tab
created by the escape sequence
\t. The tab is followed by a
quotation mark produced by
the escape sequence \". Then
abc is displayed, followed by the
next escape sequence that
produces a slash. The next series of characters to display is def, but because
those letters are followed by a backspace escape sequence, the f is overridden
by ghi. After ghi, two newline escape sequences provide a double-spaced effect.
Finally, the last three characters jkl are displayed.

5. Modify, recompile, and execute the CharDemo program as many times as you like
until you can accurately predict what will be displayed when you use various
combinations of characters and escape sequences.

Figure 2-16 Output of the CharDemo program

Using the char Data Type

75

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using the Scanner Class to Accept Keyboard Input
Although you can assign values to variables you declare, programs typically become more
useful when a user can supply different values for variables each time a program executes. In
Chapter 1, you learned how to display output on the monitor using the System.out property.
System.out refers to the standard output device, which usually is the monitor. To create
interactive programs that accept input from a user, you can use System.in, which refers to
the standard input device (normally the keyboard).

You have learned that you can use the print() and println() methods to display many data
types; for example, you can use them to display a double, int, or String. The System.in
object is not as flexible; it is designed to read only bytes. That’s a problem, because you often
want to accept data of other types. Fortunately, the designers of Java have created a class
named Scanner that makes System.in more flexible.

To create a Scanner object and connect it to the System.in object, you write a statement
similar to the following:

Scanner inputDevice = new Scanner(System.in);

The portion of the statement to the left of the assignment operator, Scanner
inputDevice, declares an object of type Scanner with the programmer-chosen name
inputDevice, in exactly the same way that int x; declares an integer with the
programmer-chosen name x.

The portion of the statement to the right of the assignment operator, new Scanner(System.in),
creates a Scanner object that is connected to the System.in property. In other words, the
created Scanner object is connected to the default input device. The keyword new is required
by Java; you will use it whenever you create objects that are more complex than the simple
data types.

In the chapter More Object Concepts, you will learn that the second part of the Scanner declaration calls a
special method called a constructor that is part of the prewritten Scanner class. You also will learn more
about the Java keyword new in the next two chapters.

The assignment operator in the Scanner declaration statement assigns the value of the new
object—that is, its memory address—to the inputDevice object in the program.

The Scanner class contains methods that retrieve values from an input device. Each
retrieved value is a token, which is a set of characters that is separated from the next set
by whitespace. Most often, this means that data is accepted when a user presses the
Enter key, but it could also mean that a token is accepted after a space or tab. Table 2-7
summarizes some of the most useful methods that read different data types from the
default input device. Each retrieves a value from the keyboard and returns it if the next
token is the correct data type.

CH A P T E R 2 Using Data

76

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The Scanner class does not contain a nextChar() method. To retrieve a single character from
the keyboard, you can use the nextLine() method and then use the charAt() method. The
chapter Characters, Strings, and the StringBuilder provides more details about the charAt()
method.

Figure 2-17 contains a program that uses two of the Scanner class methods. The program
reads a string and an integer from the keyboard and displays them. The Scanner class is used
in the four shaded statements in the figure.

l The first shaded statement is import java.util.Scanner;. This statement imports the
package necessary to use the Scanner class.

l The second shaded statement declares a Scanner object named inputDevice.

l The third shaded statement uses the nextLine() method to retrieve a line of text from the
keyboard and store it in the name variable.

l The last shaded statement uses the nextInt() method to retrieve an integer from the
keyboard and store it in the age variable.

Figure 2-18 shows a typical execution of the program.

Java programmers would say that the Scannermethods return the appropriate value. That also means that
the value of the method is the appropriate value, and that you can assign the returned value to a variable,
display it, or use it in other legal statements. In the chapter Using Methods, Classes, and Objects, you will
learn how to write your own methods that return values.

Method Description
nextDouble() Retrieves input as a double

nextInt() Retrieves input as an int

nextLine() Retrieves the next line of data and returns it as a String

next() Retrieves the next complete token as a String

nextShort() Retrieves input as a short

nextByte() Retrieves input as a byte

nextFloat() Retrieves input as a float. Note that when you enter an input value that will
be stored as a float, you do not type an F. The F is used only with constants
coded within a program.

nextLong() Retrieves input as a long. Note that when you enter an input value that will be
stored as a long, you do not type an L. The L is used only with constants
coded within a program.

Table 2-7 Selected Scanner class methods

Using the Scanner Class to Accept Keyboard Input

77

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

If you use any of the Scanner methods and the next token cannot be converted to the right
data type, you receive an error message. For example, the program in Figure 2-17 uses
nextInt() to retrieve age, so if the user entered a noninteger value for age, such as the
double 19.5 or the String "nineteen", an error would occur. You will learn how to recover
from this type of error in the chapter Exception Handling, but for now, you will have to trust
the user to enter the correct data type.

The literal Strings contained in the print() statements that appear before each input
statement in Figure 2-17 are examples of prompts. A prompt is a message displayed for
the user that requests and describes input. Interactive programs would work without
prompts, but they would not be as user-friendly. Each prompt in the GetUserInfo class
ends with two greater-than signs and a space. This punctuation is not required; it just
separates the words in the prompt from the user’s input value on the screen, improving
readability. You might prefer to use a series of periods, several dashes, or just a few
spaces.

Figure 2-18 Typical execution of the GetUserInfo program

import java.util.Scanner;
public class GetUserInfo
{
 public static void main(String[] args)
 {
 String name;
 int age;
 Scanner inputDevice = new Scanner(System.in);
 System.out.print("Please enter your name >> ");
 name = inputDevice.nextLine();
 System.out.print("Please enter your age >> ");
 age = inputDevice.nextInt();
 System.out.println("Your name is " + name +
 " and you are " + age + " years old.");
 }
}

Repeating as output what a user
has entered as input is called
echoing the input. Echoing
input is a good programming
practice; it helps eliminate
misunderstandings when the
user can visually confirm
what was entered.

Figure 2-17 The GetUserInfo class

CH A P T E R 2 Using Data

78

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

It is legal to write a single prompt that requests multiple input values—for example, “Please
enter your age, area code, and zip code.” The user could then enter the three values separated
with spaces, tabs, or Enter key presses. The values would then be interpreted as separate
tokens and could be retrieved with three separate nextInt() method calls. However, asking a
user to enter multiple values often leads to mistakes. This book will follow the practice of
using a separate prompt for each input value required.

Pitfall: Using nextLine() Following One of the
Other Scanner Input Methods
You can encounter a problem when you use one of the numeric Scanner class retrieval
methods or the next() method before you use the nextLine() method. Consider the
program in Figure 2-19. It is identical to the one in Figure 2-17, except that the user is
asked for an age before being asked for a name. (See shading.) Figure 2-20 shows a typical
execution.

Figure 2-20 Typical execution of the GetUserInfo2 program

import java.util.Scanner;
public class GetUserInfo2
{
 public static void main(String[] args)
 {
 String name;
 int age;
 Scanner inputDevice = new Scanner(System.in);
 System.out.print("Please enter your age >> ");
 age = inputDevice.nextInt();
 System.out.print("Please enter your name >> ");
 name = inputDevice.nextLine();
 System.out.println("Your name is " + name +
 " and you are " + age + " years old.");
 }
}

If you accept numeric input
prior to string input, the
string input is ignored
unless you take special
action.

Don’t Do It

Figure 2-19 The GetUserInfo2 class

Using the Scanner Class to Accept Keyboard Input

79

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In Figure 2-20, the user is prompted correctly for an age. However, after the user enters an
age and the prompt for the name is displayed, the program does not pause to let the user
enter a name. Instead, the program proceeds directly to the output statement, which does not
contain a valid name, as you can see in Figure 2-20.

When you type characters using the keyboard, they are stored temporarily in a location in
memory called the keyboard buffer. The keyboard buffer sometimes is called the type-ahead
buffer. All keystrokes are stored in the keyboard buffer, including the Enter key. The problem
occurs because of a difference in the way the nextLine() method and the other Scanner
retrieval methods work:

l The Scanner methods next(), nextInt(), and nextDouble() retrieve the next token in
the buffer up to the next whitespace, which might be a space, tab, or Enter key.

l The nextLine() method reads all data up to the Enter key character.

So, in the execution of the program in Figure 2-20, the user is prompted for an age, types 28,
and presses Enter. The call to the nextInt() method retrieves the 28 and leaves the Enter key
press in the input buffer. Then the name prompt is displayed and the call to nextLine()
retrieves the waiting Enter key before the user can type a name.

The solution to the problem is simple. After any next(), nextInt(), or nextDouble() call,
you can add an extra nextLine() method call that will retrieve the abandoned Enter key
character. Then, no matter what type of input follows, the program will execute smoothly.
Figure 2-21 shows a program that contains just one change from Figure 2-19—the addition of
the shaded statement that retrieves the abandoned Enter key character from the input buffer.
Although you could assign the Enter key to a character variable, there is no need to do so.
When you accept an entry and discard it without using it, programmers say that the entry is
consumed. Figure 2-21 shows that the call to nextInt() accepts the integer, the first call to
nextLine() accepts the Enter key that follows the integer entry, and the second nextLine()
call accepts both the entered name and the Enter key that follows it. Figure 2-22 shows that
the revised program executes correctly.

CH A P T E R 2 Using Data

80

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

When you write programs that accept user input, there is a risk that the user will enter the wrong type of data.
For example, if you include a nextInt() method call in your program, but the user types an alphabetic
character, an error will occur, and your program will stop running. You will learn to handle this type of error
later in this book.

Figure 2-22 Typical execution of the GetUserInfo3 program

import java.util.Scanner;
public class GetUserInfo3
{
 public static void main(String[] args)
 {
 String name;
 int age;
 Scanner inputDevice = new Scanner(System.in);
 System.out.print("Please enter your age >> ");
 age = inputDevice.nextInt();
 inputDevice.nextLine();
 System.out.print("Please enter your name >> ");
 name = inputDevice.nextLine();
 System.out.println("Your name is " + name +
 " and you are " + age + " years old.");
 }
}

This statement gets
the integer.

This statement gets
the name and
discards the Enter
key that follows the
name.

This statement
consumes the Enter
key that follows the
integer.

Figure 2-21 The GetUserInfo3 class

Using the Scanner Class to Accept Keyboard Input

81

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Using the Scanner Class to Accept Keyboard Input

1. System.in refers to the standard input device, which normally is the
keyboard.

2. System.in is more flexible than System.out because it can read all the basic Java
data types.

3. When a user types data followed by the Enter key, the Enter key character is left
in the keyboard buffer after Scanner class methods retrieve the other
keystrokes.

. set yb yl no daer ot dengi sed si ni.metsyS t ub, sepyt at ad suoi r av yal psi d nac
tuo.metsyS. tuo.metsyS sa el bi xelf sat on si ni.metsyS. 2# si t ne met at s esl af ehT

You Do It

Accepting User Input

In the next steps you create a program that accepts user input.

1. Open the IntegerDemo.java file you created in a “You Do It” section earlier in
this chapter. Change the class name to IntegerDemoInteractive, and save
the file as IntegerDemoInteractive.java.

2. As the first line in the file, insert an import statement that will allow you to use
the Scanner class:
import java.util.Scanner;

3. Remove the assignment operator and the assigned values from each of the
four numeric variable declarations.

4. Following the numeric variable declarations, insert a Scanner object
declaration:
Scanner input = new Scanner(System.in);

5. Following the variable declarations, insert a prompt for the integer value, and
an input statement that accepts the value, as follows:
System.out.print("Please enter an integer >> ");
anInt = input.nextInt(); (continues)

CH A P T E R 2 Using Data

82

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6. Then add similar statements for the other three variables:
System.out.print("Please enter a byte integer >> ");
aByte = input.nextByte();
System.out.print("Please enter a short integer >> ");
aShort = input.nextShort();
System.out.print("Please enter a long integer >> ");
aLong = input.nextLong();

7. Save the file, and then compile and execute it. Figure 2-23 shows a typical
execution. Execute the program a few more times, using different values
each time and confirming that the correct values have been accepted from
the keyboard.

Adding String Input

Next, you add String input to the IntegerDemoInteractive program.

1. Change the class name of the IntegerDemoInteractive program to
IntegerDemoInteractiveWithName, and immediately save the file as
IntegerDemoInteractiveWithName.java.

2. Add a new variable with the other variable declarations as follows:
String name;

3. After the last input statement (that gets the value for aLong), add three statements
that prompt the user for a name, accept the name, and use the name as follows:
System.out.print("Please enter your name >> ");
name = input.nextLine();
System.out.println("Thank you, " + name);

Figure 2-23 Typical execution of the IntegerDemoInteractive program

(continues)

(continued)

Using the Scanner Class to Accept Keyboard Input

83

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4. Save the file, and compile and execute it. Figure 2-24 shows a typical execution.
You can enter the numbers, but when the prompt for the name appears, you are
not given the opportunity to respond. Instead, the string "Thank you", including
the ending comma and space, is output immediately, and the program ends.
This output is incorrect because the input statement that should retrieve the
name from the keyboard instead retrieves the Enter key that was still in the
keyboard buffer after the last numeric entry.

5. To fix the problem, insert an extra call to the nextLine() method just before
the statement that accepts the name. This call will consume the Enter key.
You do not need an assignment operator with this statement, because there
is no need to store the Enter key character.
input.nextLine();

Figure 2-24 Typical execution of incomplete IntegerDemoInteractiveWithName
application that does not accept a name

(continues)

(continued)

CH A P T E R 2 Using Data

84

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6. Save, compile, and execute the program. Figure 2-25 shows a typical successful
execution.

Using the JOptionPane Class to Accept GUI Input
In Chapter 1, you learned how to display output at the command line and how to create GUI
message boxes to display String objects. Earlier in this chapter, you learned to accept input
from the keyboard at the command line. You also can accept input in a GUI dialog box using
the JOptionPane class.

Two dialog boxes that can be used to accept user input are:

l InputDialog—Prompts the user for text input

l ConfirmDialog—Asks the user a question, providing buttons that the user can click for
Yes, No, and Cancel responses

Using Input Dialog Boxes
An input dialog box asks a question and provides a text field in which the user can enter a
response. You can create an input dialog box using the showInputDialog()method. Six versions
of this method are available, but the simplest version uses a single argument that is the prompt

Figure 2-25 Typical successful execution of IntegerDemoInteractiveWithName
application

(continued)

Using the JOptionPane Class to Accept GUI Input

85

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

you want to display within the dialog box. The showInputDialog() method returns a String
that represents a user’s response; this means that you can assign the showInputDialog()
method to a String variable and the variable will hold the value that the user enters.

For example, Figure 2-26 shows an application that creates an input dialog box containing a
prompt for a first name. When the user executes the application, types “William”, then clicks
the OK button or presses Enter on the keyboard, the response String will contain “William”.
In the application in Figure 2-26, the response is concatenated with a welcoming message and
displayed in a message dialog box. Figure 2-27 shows the dialog box containing a user’s
response, and Figure 2-28 shows the resulting output message box.

import javax.swing.JOptionPane;
public class HelloNameDialog
{

public static void main(String[] args)
{

String result;
result = JOptionPane.showInputDialog(null, "What is your name?");
JOptionPane.showMessageDialog(null, "Hello, " + result + "!");

}
}

Figure 2-26 The HelloNameDialog class

Figure 2-28 Output of the HelloNameDialog application

Figure 2-27 Input dialog box of the HelloNameDialog application

CH A P T E R 2 Using Data

86

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Within the JOptionPane class, one version of the showInputDialog() method allows the
programmer flexibility in controlling the appearance of the input dialog box. The version of
showInputDialog() that requires four arguments can be used to display a title in the dialog
box title bar and a message that describes the type of dialog box. The four arguments to
showInputDialog() include:

l The parent component, which is the screen component, such as a frame, in front of which
the dialog box will appear. If this argument is null, the dialog box is centered on the
screen.

l The message the user will see before entering a value. Usually this message is a String,
but it actually can be any type of object.

l The title to be displayed in the title bar of the input dialog box.

l A class field describing the type of dialog box; it can be one of the following:

ERROR_MESSAGE, INFORMATION_MESSAGE, PLAIN_MESSAGE, QUESTION_MESSAGE, or
WARNING_MESSAGE.

For example, when the following statement executes, it displays the input dialog box shown in
Figure 2-29.

JOptionPane.showInputDialog(null,
"What is your area code?",
"Area code information",
JOptionPane.QUESTION_MESSAGE);

Note that the title bar displays “Area code information,” and the dialog box shows a question
mark icon.

The showInputDialog() method returns a String object, which makes sense when you
consider that you might want a user to type any combination of keystrokes into the dialog
box. However, when the value that the user enters is intended to be used as a number, as in an
arithmetic statement, the returned String must be converted to the correct numeric type.
Later in this chapter, you will learn how to change primitive data from one data type to
another. However, the techniques you will learn work only with primitive data types—
double, int, char, and so on—not with class objects (that are reference types) such as
a String. To convert a String to an integer or double, you must use methods from the
built-in Java classes Integer and Double. Each primitive type in Java has a corresponding

Figure 2-29 An input dialog box with a String in the title bar and a question mark icon

Using the JOptionPane Class to Accept GUI Input

87

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

class contained in the java.lang package; like most classes, the names of these classes begin
with uppercase letters. These classes are called type-wrapper classes. They include methods
that can process primitive type values.

Figure 2-30 shows a SalaryDialog application that contains two String objects—
wageString and dependentsString. Two showInputDialog() methods are called, and the
answers are stored in the declared Strings. The shaded statements in Figure 2-30 show how
the Strings are converted to numeric values using methods from the type-wrapper classes
Integer and Double. The double value is converted using the Double.parseDouble()
method, and the integer is converted using the Integer.parseInt() method. Figure 2-31
shows a typical execution of the application.

Remember that in Java, the reserved keyword static means that a method is accessible and usable even
though no objects of the class exist. You can tell that the method Double.parseDouble() is a
static method, because the method name is used with the class name Double—no object is needed.
Similarly, you can tell that Integer.parseInt() is also a static method.

The term parse means to break into component parts. Grammarians talk about “parsing a sentence”—
deconstructing it so as to describe its grammatical components. Parsing a String converts it to its
numeric equivalent.

import javax.swing.JOptionPane;
public class SalaryDialog
{

public static void main(String[] args)
{

String wageString, dependentsString;
double wage, weeklyPay;
int dependents;
final double HOURS_IN_WEEK = 37.5;
wageString = JOptionPane.showInputDialog(null,

"Enter employee's hourly wage", "Salary dialog 1",
JOptionPane.INFORMATION_MESSAGE);

weeklyPay = Double.parseDouble(wageString) *
HOURS_IN_WEEK;

dependentsString = JOptionPane.showInputDialog(null,
"How many dependents?", "Salary dialog 2",
JOptionPane.QUESTION_MESSAGE);

dependents = Integer.parseInt(dependentsString);
JOptionPane.showMessageDialog(null, "Weekly salary is $" +

weeklyPay + "\nDeductions will be made for " +
dependents + " dependents");

}
}

Figure 2-30 The SalaryDialog class

CH A P T E R 2 Using Data

88

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using Confirm Dialog Boxes
Sometimes, the input you want from a user does not have to be typed from the keyboard.
When you present simple options to a user, you can offer buttons that the user can click to
confirm a choice. A confirm dialog box displays the options Yes, No, and Cancel; you can
create one using the showConfirmDialog()method in the JOptionPane class. Four versions
of the method are available; the simplest requires a parent component (which can be null)
and the String prompt that is displayed in the box. The showConfirmDialog() method
returns an integer containing one of three possible values: JOptionPane.YES_OPTION,
JOptionPane.NO_OPTION, or JOptionPane.CANCEL_OPTION. Figure 2-32 shows an
application that asks a user a question. The shaded statement displays the dialog box shown
in Figure 2-33 and stores the user’s response in the integer variable named selection.

import javax.swing.JOptionPane;
public class AirlineDialog
{

public static void main (String[] args)
{

int selection;
boolean isYes;
selection = JOptionPane.showConfirmDialog(null,

"Do you want to upgrade to first class?");
isYes = (selection == JOptionPane.YES_OPTION);
JOptionPane.showMessageDialog(null,

"You responded " + isYes);
}

}

Figure 2-32 The AirlineDialog class

Figure 2-31 Sample execution of the SalaryDialog application

Using the JOptionPane Class to Accept GUI Input

89

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

After a value is stored in selection, a Boolean variable named isYes is set to the result when
selection and JOptionPane.YES_OPTION are compared. If the user has selected the Yes
button in the dialog box, this variable is set to true; otherwise, the variable is set to false.
Finally, the true or false result is displayed; Figure 2-34 shows the result when a user clicks the
Yes button in the dialog box.

You can also create a confirm dialog box with five arguments, as follows:

l The parent component, which can be null

l The prompt message

l The title to be displayed in the title bar

l An integer that indicates which option button will be shown (It should be one of the class
variables YES_NO_CANCEL_OPTION or YES_NO_OPTION.)

l An integer that describes the kind of dialog box (It should be one of the class variables
ERROR_MESSAGE, INFORMATION_MESSAGE, PLAIN_MESSAGE, QUESTION_MESSAGE, or
WARNING_MESSAGE.)

When the following statement is executed, it displays a confirm dialog box, as shown in Figure 2-35:

JOptionPane.showConfirmDialog(null,
"A data input error has occurred. Continue?",
"Data input error", JOptionPane.YES_NO_OPTION,
JOptionPane.ERROR_MESSAGE);

Note that the title bar displays “Data input error,” the Yes and No buttons appear, and the
dialog box shows the error message, “A data input error has occurred. Continue?” It also
displays the octagonal ERROR_MESSAGE icon.

Figure 2-34 Output of AirlineDialog application when user clicks Yes

Figure 2-33 The confirm dialog box displayed by the AirlineDialog application

CH A P T E R 2 Using Data

90

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Confirm dialog boxes provide more practical uses when your applications can make decisions based on the
users’ responses. In the chapter Making Decisions, you will learn how to make decisions within programs.

TWO TRUTHS & A LIE

Using the JOptionPane Class to Accept GUI Input

1. You can create an input dialog box using the showInputDialog() method; the
method returns a String that represents a user’s response.

2. You can use methods from the Java classes Integer and Double when you want to
convert a dialog box’s returned values to numbers.

3. A confirm dialog box can be created using the showConfirmDialog() method in
the JOptionPane class; a confirm dialog box displays the options Accept, Reject,
and Escape.

.l ecnaC
dna, oN, seY snoi t po eht syal psi d xob gol ai d mrif noc A. 3# si t ne met at s esl af ehT

Watch the video Getting Input.

Performing Arithmetic
Table 2-8 describes the five standard arithmetic operators that you use to perform calculations
with values in your programs. A value used on either side of an operator is an operand. For
example, in the expression 45 + 2, the numbers 45 and 2 are operands. The arithmetic operators are
examples of binary operators, so named because they require two operands.

You will learn about the Java shortcut arithmetic operators in the chapter Looping.

Figure 2-35 Confirm dialog box with title, Yes and No buttons, and error icon

Performing Arithmetic

91

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The operators / and % deserve special consideration. Java supports two types of division:

l Floating-point division occurs when either or both of the operands are floating-point
values. For example, 45.0 / 2 is 22.5.

l Integer division occurs when both of the operands are integers. The result is an integer,
and any fractional part of the result is lost. For example, the result of 45 / 2 is 22. As
another example, 39 / 5 is 7 because 5 goes into 39 seven whole times; 38 / 5, 37 / 5, 36 / 5,
and 35 / 5 all evaluate to 7.

The percent sign is the remainder operator. The remainder operator is most often used with
two integers, and the result is an integer with the value of the remainder after division takes
place. For example, the result of 45 % 2 is 1 because 2 “goes into” 45 twenty-two times with a
remainder of 1. Other examples of remainder operations include the following:

l 39 % 5 is 4 because 5 goes into 39 seven times with a remainder of 4.

l 20 % 3 is 2 because when 20 is divided by 3, the remainder is 2. 36 % 4 is 0 because there is
no remainder when 4 is divided into 36.

Note that when you perform paper-and-pencil division, you divide first to determine a
remainder. In Java, you do not need to perform a division operation before you can perform a
remainder operation. A remainder operation can stand alone.

Although the remainder operator is most often used with integers, it is legal but less often
useful to use the operator with floating-point values. In Java, when you use the % operator
with floating-point values, the result is the remainder from a rounded division.

The remainder operator is also called the modulus operator, or sometimes just mod. Mathematicians
would argue that remainder is the better term because in Java, the result of using the remainder operator
can be negative, but in mathematics, the result of a modulus operation can never be negative.

Operator Description Example

+ Addition 45 + 2, the result is 47

– Subtraction 45 – 2, the result is 43

* Multiplication 45 * 2, the result is 90

/ Division 45.0 / 2, the result is 22.5
45 / 2, the result is 22 (not 22.5)

% Remainder (modulus) 45 % 2, the result is 1 (that is, 45 / 2 = 22 with a
remainder of 1)

Table 2-8 Arithmetic operators

CH A P T E R 2 Using Data

92

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Associativity and Precedence
When you combine mathematical operations in a single statement, you must understand
both associativity and precedence. The associativity of arithmetic operators with the same
precedence is left-to-right. In a statement such as answer = x + y + z;, the x and y are added
first, producing a temporary result, and then z is added to the temporary sum. After the sum
is computed, the result is assigned to answer.

Operator precedence refers to the rules for the order in which parts of a mathematical
expression are evaluated. The multiplication, division, and remainder operators have the
same precedence. Their precedence is higher than that of the addition and subtraction
operators. Addition and subtraction have the same precedence, and their precedence is lower
than that of the other operators. In other words, expressions are evaluated from left to right,
and multiplication, division, and remainder always take place prior to addition or subtraction.
Table 2-9 summarizes the precedence of the arithmetic operators.

For example, the following statement assigns 14 to result:

int result = 2 + 3 * 4;

The multiplication operation (3 * 4) occurs before adding 2. You can override normal
operator precedence by putting the operation to perform first in parentheses. The following
statement assigns 20 to result:

int result = (2 + 3) * 4;

The addition within the parentheses takes place first, and then the intermediate result (5) is
multiplied by 4. When multiple pairs of parentheses are used in a statement, the innermost
expression surrounded by parentheses is evaluated first. For example, the value of the
following expression is 46:

2 * (3 + (4 * 5))

First, 4 * 5 evaluates to 20, and then 3 is added, giving 23. Finally, the value is multiplied by 2,
giving 46.

Remembering that *, /, and % have the same precedence is important in arithmetic
calculations. These operations are performed from left to right, regardless of the order in
which they appear. For example, the value of the following expression is 9:

25 / 8 * 3

First, 25 is divided by 8. The result is 3 because with integer division, you lose any remainder.
Then 3 is multiplied by 3, giving 9. If you assumed that multiplication was performed before
division, you would calculate an incorrect answer.

Operators Descriptions Relative Precedence

* / % Multiplication, division, remainder Higher

+ – Addition, subtraction Lower

Table 2-9 Relative precedence of arithmetic operators

Performing Arithmetic

93

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You will learn more about operator precedence in the chapter Making Decisions.

Writing Arithmetic Statements Efficiently
You can make your programs operate more efficiently if you avoid unnecessary repetition of
arithmetic statements. For example, suppose you know the values for an employee’s hourly
pay and pay rate and you want to compute state and federal withholding tax based on known
rates. You could write two statements as follows:

stateWithholding = hours * rate * STATE_RATE;
federalWithholding = hours * rate * FED_RATE;

With this approach, you perform the multiplication of hours * rate twice. It is more efficient
to perform the calculation once, as follows:

grossPay = hours * rate;
stateWithholding = grossPay * STATE_RATE;
federalWithholding = grossPay * FED_RATE;

The time saved is very small, but these savings would be more important if the calculation
was more complicated or if it was repeated many times in a program. As you think about the
programs you write, remain on the lookout for ways to improve efficiency by avoiding
duplication of operations.

Pitfall: Not Understanding Imprecision in Floating-Point Numbers
Integer values are exact, but floating-point numbers frequently are only approximations. For
example, when you divide 1.0 by 3.0, the mathematical result is 0.3333333…, with the 3s
continuing infinitely. No matter how many decimal places you can store, the result is only an
approximation. Even values that don’t repeat indefinitely in our usual numbering system,
such as 0.1, cannot be represented precisely in the binary format used by computers.
Imprecision leads to several problems:

Appendix B provides a more thorough explanation of numbering systems and why fractional values cannot be
represented accurately.

l When you produce floating-point output, it might not look like what you expect or
want.

l When you make comparisons with floating-point numbers, the comparisons might not be
what you expect or want.

For example, Figure 2-36 shows a class in which an answer is computed as 2.20 – 2.00.
Mathematically, the result should be 0.20. But, as the output in Figure 2-37 shows, the result

CH A P T E R 2 Using Data

94

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

is calculated as a value that is slightly more than 0.20, and when answer is compared to 0.20,
the result is false.

public class ImprecisionDemo
{

public static void main(String[] args)
{

double answer = 2.20 - 2.00;
boolean isEqual = answer == 0.20;
System.out.println("answer is " + answer);
System.out.println("isEqual is " + isEqual);

}
}

Figure 2-36 The ImprecisionDemo program

For now, you might choose to accept the slight imprecisions generated when you use
floating-point numbers. However, if you want to eliminate the imprecisions, you can use
one of several techniques to round values. Appendix C contains directions on how to round
numbers and how to format a floating-point number so it displays the desired number of
decimal positions.

Several movies have used the fact that floating-point numbers are not precise as a plot element. For
example, in the movies Superman III and Office Space, thieves round currency values and divert the
remaining fractions of cents to their own accounts.

Watch the video Arithmetic.

Figure 2-37 Execution of the ImprecisionDemo program

Performing Arithmetic

95

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Performing Arithmetic

1. The arithmetic operators are examples of unary operators, which are so named
because they perform one operation at a time.

2. In Java, operator precedence dictates that multiplication, division, and remainder
always take place prior to addition or subtraction in an expression.

3. Floating-point arithmetic might produce imprecise results.

. sdnar epo owt eri uqer yeht esuaceb de man os er a hci h w, sr ot ar epo
yr ani bf o sel p maxe er a sr ot ar epo ci t e mhti r a ehT. 1# si t ne met at s esl af ehT

You Do It

Using Arithmetic Operators

In these steps, you create a program that uses arithmetic operators.

1. Open a new file in your text editor, and type the import statement needed for
interactive input with the Scanner class:
import java.util.Scanner;

2. Type the class header and its curly braces for a class named ArithmeticDemo.
Within the class’s curly braces, enter the main() method header and its
braces.
public class ArithmeticDemo
{

public static void main(String[] args)
{
}

}

3. With the main() method, declare five int variables that will be used to hold
two input values and their sum, difference, and average:
int firstNumber;
int secondNumber;
int sum;
int difference;
int average;

(continues)

CH A P T E R 2 Using Data

96

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4. Also declare a Scanner object so that keyboard input can be accepted.
Scanner input = new Scanner(System.in);

5. Prompt the user for and accept two integers:
System.out.print("Please enter an integer >> ");
firstNumber = input.nextInt();
System.out.print("Please enter another integer >> ");
secondNumber = input.nextInt();

6. Add statements to perform the necessary arithmetic operations:
sum = firstNumber + secondNumber;
difference = firstNumber - secondNumber;
average = sum / 2;

7. Display the three calculated values:
System.out.println(firstNumber + " + " +

secondNumber + " is " + sum);
System.out.println(firstNumber + " - " +

secondNumber + " is " + difference);
System.out.println("The average of " + firstNumber +

" and " + secondNumber + " is " + average);

8. Save the file as ArithmeticDemo.java, and then compile and execute it. Enter
values of your choice. Figure 2-38 shows a typical execution. Notice that
because integer division was used to compute the average, the answer is an
integer.

9. Execute the program multiple times using various integer values and confirm
that the results are accurate.

Figure 2-38 Typical execution of ArithmeticDemo application

(continued)

(continues)

Performing Arithmetic

97

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Performing Floating-Point Arithmetic

Next, you will modify the ArithmeticDemo application to work with floating-point values
instead of integers.

1. Within the ArithmeticDemo application, change the class name to
ArithmeticDemo2, and immediately save the file as ArithmeticDemo2.java.
Change all the variables’ data types to double. Change the two prompts to request
double values, and change the two calls to the nextInt()method to nextDouble().
Save, compile, and execute the program again. Figure 2-39 shows a typical
execution. Notice that the average calculation now includes decimal places.

2. Rerun the program, experimenting with various input values. Some of your output
might appear with imprecisions similar to those shown in Figure 2-40. If you are
not satisfied with the slight imprecisions created when using floating-point arithmetic,
you can round or change the display of the values, as discussed in Appendix C.

Figure 2-39 Typical execution of the ArithmeticDemo2 application

Figure 2-40 Another typical execution of the ArithmeticDemo2 application

(continued)

CH A P T E R 2 Using Data

98

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Understanding Type Conversion
When you perform arithmetic with variables or constants of the same type, the result of the
operation retains the same type. For example, when you divide two ints, the result is an int,
and when you subtract two doubles, the result is a double. Often, however, you might want
to perform mathematical operations on operands with unlike types. The process of
converting one data type to another is type conversion. Java performs some conversions for
you automatically or implicitly, but other conversions must be requested explicitly by the
programmer.

Automatic Type Conversion
When you perform arithmetic operations with operands of unlike types, Java chooses a
unifying type for the result. The unifying type is the type to which all operands in an
expression are converted so that they are compatible with each other. Java performs an
implicit conversion; that is, it automatically converts nonconforming operands to the unifying
type. Implicit conversions also are called promotions. Figure 2-41 shows the order for
establishing unifying types between values.

When two unlike types are used in an expression, the unifying type is the one that is higher in
the list in Figure 2-41. In other words, when an operand that is a type lower on the list is
combined with a type that is higher, the lower-type operand is converted to the higher one.
For example, the addition of a double and an int results in a double, and the subtraction of a
long from a float results in a float.

Boolean values cannot be converted to another type. In some languages, such as C++, Boolean values are
actually numbers. However, this is not the case in Java.

double Highest

float

long

int Lowest

(short and byte are automatically converted to int when used in
expressions)

Figure 2-41 Order for establishing unifying data types

Understanding Type Conversion

99

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

For example, assume that an int, hoursWorked, and a double, payRate, are defined and then
multiplied as follows:

int hoursWorked = 37;
double payRate = 6.73;
double grossPay = hoursWorked * payRate;

The result of the multiplication is a double because when a double and an int are multiplied,
the int is promoted to the higher-ranking unifying type double—the type that is higher in
the list in Figure 2-41. Therefore, assigning the result to grossPay is legal.

The following code will not compile because hoursWorked times payRate is a double, and
Java does not allow the loss of precision that occurs if you try to store the calculated double
result in an int.

int hoursWorked = 37;
double payRate = 6.73;
int grossPay = hoursWorked * payRate;

The data types char, short, and byte all are promoted to int when used in statements with
unlike types. If you perform a calculation with any combination of char, short, and byte
values, the result is an int by default. For example, if you add two bytes, the result is an int,
not a byte.

Explicit Type Conversions
You can purposely override the unifying type imposed by Java by performing a type cast.
Type casting forces a value of one data type to be used as a value of another type. To perform
a type cast, you use a cast operator, which is created by placing the desired result type in
parentheses. Using a cast operator is an explicit conversion. The cast operator is followed by
the variable or constant to be cast. For example, a type cast is performed in the following
code:

double bankBalance = 189.66;
float weeklyBudget = (float) (bankBalance / 4);

// weeklyBudget is 47.415, one-fourth of bankBalance

The cast operator is more completely called the unary cast operator. Unlike a binary operator that
requires two operands, a unary operator uses only one operand. The unary cast operator is followed by
its operand.

In this example, the double value bankBalance is divided by the integer 4, and the result is a
double. Then the double result is converted to a float before it is stored in weeklyBudget.

CH A P T E R 2 Using Data

100

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Without the conversion, the statement that assigns the result to weeklyBudget would not
compile. Similarly, a cast from a float to an int occurs in this code segment:

float myMoney = 47.82f;
int dollars = (int) myMoney;

// dollars is 47, the integer part of myMoney

In this example, the float value myMoney is converted to an int before it is stored in the
integer variable named dollars. When the float value is converted to an int, the decimal
place values are lost. The cast operator does not permanently alter any variable’s data type;
the alteration is only for the duration of the current operation.

The word cast is used in a similar fashion when referring to molding metal, as in cast iron. In a Java
arithmetic cast, a value is “molded” into a different type.

It is easy to lose data when performing a cast. For example, the largest byte value is 127 and the largest
int value is 2,147,483,647, so the following statements produce distorted results:

int anOkayInt = 200;

byte aBadByte = (byte)anOkayInt;

A byte is constructed from eight 1s and 0s, or binary digits. The first binary digit, or bit, holds a 0 or 1 to
represent positive or negative. The remaining seven bits store the actual value. When the integer value 200
is stored in the byte variable, its large value consumes the eighth bit, turning it to a 1, and forcing the
aBadByte variable to appear to hold the value –72, which is inaccurate and misleading.

You do not need to perform a cast when assigning a value to a higher unifying type. For
example, when you write a statement such as the following, Java automatically promotes the
integer constant 10 to be a double so that it can be stored in the payRate variable:

double payRate = 10;

However, for clarity, if you want to assign 10 to payRate, you might prefer to write the
following:

double payRate = 10.0;

The result is identical whether you assign the literal double 10.0 or the literal int 10 to the
double variable.

Understanding Type Conversion

101

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Understanding Type Conversion

1. When you perform arithmetic operations with operands of unlike types, you must
make an explicit conversion to a unifying type.

2. Summing a double, int, and float results in a double.

3. You can explicitly override the unifying type imposed by Java by performing a
type cast; type casting forces a value of one data type to be used as a value of
another type.

. epyt gni yfi nu a ot noi sr evnocti cil p mi na s mr ofr ep avaJ , sepyt ekil nuf o
sdnar epo hti wsnoi t ar epo ci t e mhti r a mr ofr ep uoy neh W. 1# si t ne met at s esl af ehT

You Do It

Implicit and Explicit Casting

In this section you explore the concepts of the unifying types and casting.

1. Open the ArithmeticDemo.java file that uses integer values to calculate a
sum, difference, and average. Change the class name to ArithmeticDemo3,
and immediately save the file as ArithmeticDemo3.java.

2. In the previous version of the program, the average was calculated without
decimal places because when two integers are divided, the result is an
integer. To compute a more accurate average, change the data type for the
average variable from int to double.

3. Save, compile, and execute the program. As the sample execution in Figure 2-42
shows, the program compiles and executes, but the average is still not accurate.
The average of 20 and 19 is calculated to be just 19 because the decimal
portion of the arithmetic result is lost. The program executes because the result
of an integer divided by an integer is an integer, and when the integer is assigned
to the double, automatic type conversion takes place.

(continues)

CH A P T E R 2 Using Data

102

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4. Change the statement that computes the average to include a cast as follows:
average = (double) sum / 2;

5. Save, compile, and execute the program. As shown in Figure 2-43, now the
program displays a more accurate average. The integer sum has been cast to a
double, and when the double is divided by the integer, the result is a double,
which is then assigned to average.

6. Change the statement that computes the average to include a second set of
parentheses, as follows:
average = (double) (sum / 2);

Figure 2-43 Typical execution of ArithmeticDemo3 application after addition of a cast
operation for the average

Figure 2-42 Typical execution of ArithmeticDemo3 application

(continued)

(continues)

Understanding Type Conversion

103

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

7. Save, compile, and execute the program. Now, the fractional portion of the result
is omitted again. That’s because the result of sum / 2 is calculated first, and the
result is an integer. Then the whole-number result is cast to a double and assigned
to a double—but the fractional part of the answer was already lost and casting is
too late. Remove the newly added parentheses, save the program, compile it, and
execute it again to confirm that the fractional part of the answer is reinstated.

8. As an alternative to the explicit cast in the division statement in the
ArithmeticDemo program, you could write the average calculation as follows:
average = sum / 2.0;

In this calculation, when the integer sum is divided by the double constant 2.0,
the result is a double. The result then does not require any cast to be assigned
to the double average without loss of data. Try this in your program.

9. Go to the Java Web site (www.oracle.com/technetwork/java/index.html),
select Java APIs, and then select Java SE 7. Scroll through the list of
All Classes, and select PrintStream, which is the data type for the out object
used with the println() method. Scroll down to view the list of methods in the
Method Summary. As you did in a previous exercise, notice the many versions of
the print() and println()methods, including ones that accept a String, an int,
and a long. Notice, however, that no versions accept a byte or a short. That’s
because when a byte or short is sent to the print() or println() method, it is
automatically promoted to an int, so that version of the method is used.

Don’t Do It
l Don’t mispronounce “integer.” People who are unfamiliar with the term often say

“interger,” inserting an extra r.

l Don’t attempt to assign a literal constant floating-point number, such as 2.5, to a float
without following the constant with an uppercase or lowercase F. By default, constant
floating-point values are doubles.

l Don’t try to use a Java keyword as an identifier for a variable or constant. Table 1-1 in
Chapter 1 contains a list of Java keywords.

l Don’t attempt to assign a constant value under –2,147,483,648 or over +2,147,483,647 to a
long variable without following the constant with an uppercase or lowercase L. By default,
constant integers are ints, and a value under –2,147,483,648 or over 2,147,483,647 is too
large to be an int.

l Don’t assume that you must divide numbers as a step to determining a remainder; the
remainder operator (%) is all that’s needed.

(continued)

CH A P T E R 2 Using Data

104

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html

l Don’t try to use a variable or named constant that has not yet been assigned a value.

l Don’t forget to consume the Enter key after numeric input using the Scanner class when a
nextLine() method call follows.

l Don’t forget to use the appropriate import statement when using the Scanner or
JOptionPane class.

l Don’t forget precedence rules when you write statements that contain multiple arithmetic
operations. For example, score1 + score2 / 2 does not compute the average of two scores.
Instead, it adds half of score2 to score1. To compute the average, you would write
(score1 + score2) / 2.

l Don’t forget that integer division results in an integer, dropping any fractional part. For
example, 1 / 2 is not equal to 0.5; it is equal to 0.

l Don’t forget that extra parentheses can change the result of an operation that includes casting.

l Don’t forget that floating-point numbers are imprecise.

l Don’t attempt to assign a constant decimal value to an integer using a leading 0. For
example, if you declare int num = 021; and then display num, you will see 17. The leading 0
indicates that the value is in base 8 (octal), so its value is two 8s plus one 1. In the decimal
system, 21 and 021 mean the same thing, but not in Java.

l Don’t use a single equal sign (=) in a Boolean comparison for equality. The operator used
for equivalency is composed of two equal signs (==).

l Don’t try to store a string of characters, such as a name, in a char variable. A char variable
can hold only a single character.

l Don’t forget that when a String and a numeric value are concatenated, the resulting
expression is a string. For example, "X" + 2 + 4 results in "X24", not "X6". If you want the
result to be "X6", you can use the expression "X" + (2 + 4).

Key Terms
Constant describes values that cannot be changed during the execution of an application.

A literal constant is a value that is taken literally at each use.

A numeric constant is a number whose value is taken literally at each use.

An unnamed constant has no identifier associated with it.

A variable is a named memory location that you can use to store a value.

An item’s data type describes the type of data that can be stored there, how much memory
the item occupies, and what types of operations can be performed on the data.

A primitive type is a simple data type. Java’s primitive types are byte, short, int, long, float,
double, char, and boolean.

Key Terms

105

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Reference types are complex data types that are constructed from primitive types.

A variable declaration is a statement that reserves a named memory location.

A strongly typed language is one in which each variable has a well-defined type that limits
the operations you can perform with it; strong typing implies that variables must be declared
before they can be used.

Camel casing is a style in which an identifier begins with a lowercase letter and subsequent
words within the identifier are capitalized.

The assignment operator is the equal sign (=); any value to the right of the equal sign is
assigned to the variable on the left of the equal sign.

An initialization is an assignment made when you declare a variable.

An assignment is the act of providing a value for a variable.

Associativity refers to the order in which operands are used with operators.

An lvalue is an expression that can appear on the left side of an assignment statement.

An rvalue is an expression that can appear only on the right side of an assignment statement.

An uninitialized variable is one that has not been assigned a value.

A garbage value is the unknown value stored in an uninitialized variable.

A named constant is a named memory location whose value cannot change after it is
assigned.

A symbolic constant is a named constant.

The keyword final precedes named constant declarations.

A blank final is a final variable that has not yet been assigned a value.

A magic number is a value that does not have immediate, intuitive meaning or a number
that cannot be explained without additional knowledge. Unnamed constants are magic
numbers.

The scope of a data item is the area in which it is visible to a program and in which you can
refer to it using its simple identifier.

A block of code is the code contained between a set of curly braces.

Concatenated describes values that are attached end to end.

A null String is an empty String created by typing a set of quotes with nothing between
them.

An integer is a whole number without decimal places.

The int data type is used to declare variables and constants that store integers in the range
of –2,147,483,648 to +2,147,483,647.

CH A P T E R 2 Using Data

106

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The byte data type holds very small integers, from –128 to 127.

The short data type holds small integers, from –32,768 to 32,767.

The long data type holds very large integers, from -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807.

A boolean variable can hold only one of two values—true or false.

A relational operator compares two items; an expression that contains a relational operator
has a Boolean value.

A comparison operator is another name for a relational operator.

A floating-point number contains decimal positions.

A float data type can hold a floating-point value of up to six or seven significant digits of
accuracy.

A double data type can hold a floating-point value of up to 14 or 15 significant digits of
accuracy.

Significant digits refers to the mathematical accuracy of a value.

Scientific notation is a display format that more conveniently expresses large or small
numeric values; a multidigit number is converted to a single-digit number and multiplied by
10 to a power.

A double-precision floating-point number is stored in a double.

A single-precision floating-point number is stored in a float.

The char data type is used to hold any single character.

String is a built-in Java class that provides you with the means for storing and manipulating
character strings.

An escape sequence begins with a backslash followed by a character; the pair represents a
single character.

The standard input device normally is the keyboard.

A token is a unit of data separated with whitespace.

A prompt is a message that requests and describes user input.

Echoing the input means to repeat the user’s entry as output so the user can visually confirm
the entry’s accuracy.

The keyboard buffer is a small area of memory where keystrokes are stored before they are
retrieved into a program.

The type-ahead buffer is the keyboard buffer.

To consume an entry is to retrieve and discard it without using it.

Key Terms

107

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

An input dialog box asks a question and provides a text field in which the user can enter a
response.

The showInputDialog() method creates an input dialog box.

Type-wrapper classes, contained in the java.lang package, include methods that can
process primitive type values.

To parse means to break into component parts.

A confirm dialog box displays the options Yes, No, and Cancel; you can create one using the
showConfirmDialog() method in the JOptionPane class.

Standard arithmetic operators are used to perform calculations with values.

An operand is a value used in an arithmetic statement.

Binary operators require two operands.

Floating-point division is the operation in which two values are divided and either or both are
floating-point values.

Integer division is the operation in which two values are divided and both are integers; the
result contains no fractional part.

The remainder operator is the percent sign; when it is used with two integers, the result is an
integer with the value of the remainder after division takes place.

The modulus operator, sometimes abbreviated asmod, is an alternate name for the remainder
operator.

Operator precedence is the rules for the order in which parts of a mathematical expression
are evaluated.

Type conversion is the process of converting one data type to another.

A unifying type is a single data type to which all operands in an expression are converted.

An implicit conversion is the automatic transformation of one data type to another.

Promotion is an implicit conversion.

Type casting forces a value of one data type to be used as a value of another type.

A cast operator performs an explicit type conversion; it is created by placing the desired
result type in parentheses before the expression to be converted.

An explicit conversion is the data type transformation caused using a cast operator.

The unary cast operator is a more complete name for the cast operator that performs explicit
conversions.

A unary operator uses only one operand.

CH A P T E R 2 Using Data

108

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter Summary
l Variables are named memory locations in which programs store values; the value of a

variable can change. You must declare all variables you want to use in a program by
providing a data type and a name. Java provides for eight primitive types of data: boolean,
byte, char, double, float, int, long, and short. A named constant is a memory location
that holds a value that can never be changed; it is preceded by the keyword final.

l A variable of type int can hold any whole number value from –2,147,483,648 to
+2,147,483,647. The types byte, short, and long are all variations of the integer type.

l A boolean type variable can hold a true or false value. Java supports six relational
operators: >, <, ==, >=, <=, and !=.

l A floating-point number contains decimal positions. Java supports two floating-point data
types: float and double.

l You use the char data type to hold any single character. You type constant character
values in single quotation marks. You type String constants that store more than one
character between double quotation marks. You can store some characters using an
escape sequence, which always begins with a backslash.

l You can use the Scanner class and the System.in object to accept user input from the
keyboard. Several methods are available to convert input to usable data, including
nextDouble(), nextInt(), and nextLine().

l You can accept input using the JOptionPane class. The showInputDialog() method
returns a String, which must be converted to a number using a type-wrapper class before
you can use it as a numeric value.

l There are five standard arithmetic operators: +, −, *, /, and %. Operator precedence is the
order in which parts of a mathematical expression are evaluated. Multiplication, division,
and remainder always take place prior to addition or subtraction in an expression. Right
and left parentheses can be added within an expression when exceptions to this rule are
required. When multiple pairs of parentheses are added, the innermost expression
surrounded by parentheses is evaluated first.

l When you perform mathematical operations on unlike types, Java implicitly converts the
variables to a unifying type. You can explicitly override the unifying type imposed by Java
by performing a type cast.

Review Questions
1. When data cannot be changed after a class is compiled, the data is .

a. constant
b. variable

c. volatile
d. mutable

Review Questions

109

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. Which of the following is not a primitive data type in Java?

a. boolean

b. byte

c. int

d. sector

3. Which of the following elements is not required in a variable declaration?

a. a type
b. an identifier

c. an assigned value
d. a semicolon

4. The assignment operator in Java is .

a. =
b. ==

c. :=
d. ::

5. Assuming you have declared shoeSize to be a variable of type int, which of the
following is a valid assignment statement in Java?

a. shoeSize = 9;

b. shoeSize = 9.5;

c. shoeSize = '9';

d. shoeSize = "nine";

6. Which of the following data types can store a value in the least amount of memory?

a. short

b. long

c. int

d. byte

7. A boolean variable can hold .

a. any character
b. any whole number
c. any decimal number
d. the value true or false

8. The value 137.68 can be held by a variable of type .

a. int

b. float

c. double

d. Two of the preceding answers are correct.

9. An escape sequence always begins with a(n) .

a. e
b. forward slash

c. backslash
d. equal sign

CH A P T E R 2 Using Data

110

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10. Which Java statement produces the following output?

w
xyz

a. System.out.println("wxyz");

b. System.out.println("w" + "xyz");

c. System.out.println("w\nxyz");

d. System.out.println("w\nx\ny\nz");

11. The remainder operator .

a. is represented by a forward slash
b. must follow a division operation
c. provides the quotient of integer division
d. is none of the above

12. According to the rules of operator precedence, when division occurs in the same
arithmetic statement as , the division operation always takes place
first.

a. multiplication
b. remainder
c. subtraction
d. Answers a and b are correct.

13. The “equal to” relational operator is .

a. =
b. ==

c. !=
d. !!

14. When you perform arithmetic with values of diverse types, Java .

a. issues an error message
b. implicitly converts the values to a unifying type
c. requires you to explicitly convert the values to a unifying type
d. implicitly converts the values to the type of the first operand

15. If you attempt to add a float, an int, and a byte, the result will be
a(n) .

a. float

b. int

c. byte

d. error message

16. You use a to explicitly override an implicit type.

a. mistake
b. type cast

c. format
d. type set

Review Questions

111

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

17. In Java, what is the value of 3 + 7 * 4 + 2?

a. 21
b. 33

c. 42
d. 48

18. Which assignment is correct in Java?

a. int value = (float) 4.5;

b. float value = 4 (double);

c. double value = 2.12;

d. char value = 5c;

19. Which assignment is correct in Java?

a. double money = 12;

b. double money = 12.0;

c. double money = 12.0d;

d. All of the above are correct.

20. Which assignment is correct in Java?

a. char aChar = 5.5;

b. char aChar = "W";

c. char aChar = '*';

d. Two of the preceding answers are correct.

Exercises

Programming Exercises

1. What is the numeric value of each of the following expressions as evaluated by Java?

a. 3 + 7 * 2
b. 18 / 3 + 4
c. 9 / 3 + 12 / 4
d. 15 / 2
e. 14 / 3
f. 29 / 10
g. 14 % 2

h. 15 % 2
i. 31 % 7
j. 6 % 4 + 1
k. (5 + 6) * 3
l. 25 / (3 + 2)
m. 13 % 15

2. What is the value of each of the following Boolean expressions?

a. 5 < 8
b. 4 <= 9
c. 3 == 4
d. 12 >= 12
e. 3 + 4 == 8

f. 7 < 9 – 2
g. 5 != 5
h. 15 != 3 * 5
i. 9 != –9
j. 3 + 5 * 2 == 16

CH A P T E R 2 Using Data

112

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. Choose the best data type for each of the following so that any reasonable value is
accommodated but no memory storage is wasted. Give an example of a typical value
that would be held by the variable, and explain why you chose the type you did.

a. the number of siblings you have
b. your final grade in this class
c. the population of Earth
d. the population of a U.S. county
e. the number of passengers on a bus

f. one player’s score in a Scrabble game
g. one team’s score in a Major League

Baseball game
h. the year an historical event occurred
i. the number of legs on an animal

4. a. Write a Java class that declares a named constant that holds the number of feet in
a mile: 5,280. Also declare a variable to represent the distance in miles between
your house and your uncle’s house. Assign an appropriate value to the variable—
for example, 8.5. Compute and display the distance to your uncle’s house in both
miles and feet. Display explanatory text with the values—for example, The
distance to my uncle's house is 8.5 miles or 44880.0 feet. Save the class as
MilesToFeet.java.

b. Convert the MilesToFeet class to an interactive application. Instead of assigning
a value to the distance, accept the value from the user as input. Save the revised
class as MilesToFeetInteractive.java.

5. a. Write a Java class that declares a named constant that represents next year’s
anticipated 10 percent increase in sales for each division of a company. (You can
represent 10 percent as 0.10.) Also declare variables to represent this year’s sales
total in dollars for the North and South divisions. Assign appropriate values to
the variables—for example, 4000 and 5500. Compute and display, with
explanatory text, next year’s projected sales for each division. Save the class as
ProjectedSales.java.

b. Convert the ProjectedSales class to an interactive application. Instead of
assigning values to the North and South current year sales variables, accept them
from the user as input. Save the revised class as ProjectedSalesInteractive.java.

6. a. Write a class that declares a variable named inches that holds a length in inches,
and assign a value. Display the value in feet and inches; for example, 86 inches
becomes 7 feet and 2 inches. Be sure to use a named constant where appropriate.
Save the class as InchesToFeet.java.

b. Write an interactive version of the InchesToFeet class that accepts the inches
value from a user. Save the class as InchesToFeetInteractive.java.

7. Write a class that declares variables to hold your three initials. Display the three
initials with a period following each one, as in J.M.F. Save the class as Initials.java.

Exercises

113

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8. Meadowdale Dairy Farm sells organic brown eggs to local customers. They charge
$3.25 for a dozen eggs, or 45 cents for individual eggs that are not part of a dozen.
Write a class that prompts a user for the number of eggs in the order and then
display the amount owed with a full explanation. For example, typical output might
be, “You ordered 27 eggs. That’s 2 dozen at $3.25 per dozen and 3 loose eggs at 45.0
cents each for a total of $7.85.” Save the class as Eggs.java.

9. The Happy Yappy Kennel boards dogs at a cost of 50 cents per pound per day. Write
a class that accepts a dog’s weight and number of days to be boarded and displays the
total price for boarding. Save the class as DogBoarding.java.

10. Write a class that calculates and displays the conversion of an entered number of dollars
into currency denominations—20s, 10s, 5s, and 1s. Save the class as Dollars.java.

11. Write a program that accepts a temperature in Fahrenheit from a user and converts
it to Celsius by subtracting 32 from the Fahrenheit value and multiplying the result
by 5/9. Display both values. Save the class as FahrenheitToCelsius.java.

12. Travel Tickets Company sells tickets for airlines, tours, and other travel-related
services. Because ticket agents frequently mistype long ticket numbers, Travel
Tickets has asked you to write an application that indicates invalid ticket number
entries. The class prompts a ticket agent to enter a six-digit ticket number. Ticket
numbers are designed so that if you drop the last digit of the number, then divide the
number by 7, the remainder of the division will be identical to the last dropped digit.
This process is illustrated in the following example:

Accept the ticket number from the agent and verify whether it is a valid number.
Test the application with the following ticket numbers:

l 123454; the comparison should evaluate to true

l 147103; the comparison should evaluate to true

l 154123; the comparison should evaluate to false

Save the program as TicketNumber.java.

Step 1 Enter the ticket number; for example, 123454.

Step 2 Remove the last digit, leaving 12345.

Step 3 Determine the remainder when the ticket number is divided by 7. In this
case, 12345 divided by 7 leaves a remainder of 4.

Step 4 Assign the Boolean value of the comparison between the remainder and
the digit dropped from the ticket number.

Step 5 Display the result—true or false—in a message box.

CH A P T E R 2 Using Data

114

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Debugging Exercises

1. Each of the following files in the Chapter02 folder of your downloadable student files
has syntax and/or logic errors. In each case, determine the problem and fix the
application. After you correct the errors, save each file using the same filename
preceded with Fix. For example, DebugTwo1.java will become FixDebugTwo1.java.

a. DebugTwo1.java
b. DebugTwo2.java

c. DebugTwo3.java
d. DebugTwo4.java

When you change a filename, remember to change every instance of the class name within the file so that it
matches the new filename. In Java, the filename and class name must always match.

Game Zone

1. Mad Libs is a children’s game in which the players provide a few words that are then
incorporated into a silly story. The game helps children understand different parts of
speech because they are asked to provide specific types of words. For example, you
might ask a child for a noun, another noun, an adjective, and a past-tense verb. The
child might reply with such answers as table, book, silly, and studied. The newly
created Mad Lib might be:

Mary had a little table
Its book was silly as snow
And everywhere that Mary studied
The table was sure to go.

Create a Mad Libs program that asks the user to provide at least four or five words,
and then create and display a short story or nursery rhyme that uses them. Save the
file as MadLib.java.

2. In the “Game Zone” section in Chapter 1, you learned how to obtain a random
number. For example, the following statement generates a random number between
the constants MIN and MAX inclusive and assigns it to a variable named random:

random = 1 + (int)(Math.random() * MAX);

Write a program that selects a random number between 1 and 5 and asks the
user to guess the number. Display a message that indicates the difference
between the random number and the user’s guess. Display another message
that displays the random number and the Boolean value true or false depending
on whether the user’s guess equals the random number. Save the file as
RandomGuessMatch.java.

Exercises

115

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Case Problems

1. Carly’s Catering provides meals for parties and special events. Write a program that
prompts the user for the number of guests attending an event and then computes the
total price, which is $35 per person. Display the company motto with the border that
you created in the CarlysMotto2 class in Chapter 1, and then display the number of
guests, price per guest, and total price. Also display a message that indicates true
or false depending on whether the job is classified as a large event—an event with
50 or more guests. Save the file as CarlysEventPrice.java.

2. Sammy’s Seashore Supplies rents beach equipment such as kayaks, canoes, beach
chairs, and umbrellas to tourists. Write a program that prompts the user for the
number of minutes he rented a piece of sports equipment. Compute the rental
cost as $40 per hour plus $1 per additional minute. (You might have surmised
already that this rate has a logical flaw, but for now, calculate rates as described
here. You can fix the problem after you read the chapter on decision making.)
Display Sammy’s motto with the border that you created in the SammysMotto2
class in Chapter 1. Then display the hours, minutes, and total price. Save the
file as SammysRentalPrice.java.

CH A P T E R 2 Using Data

116

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

