
CHAPTER16
Graphics

In this chapter, you will:

Learn about the paint() and repaint() methods

Use the drawString() method to draw Strings using
various fonts and colors

Draw lines and shapes

Learn more about fonts

Draw with Java 2D graphics

Unless noted otherwise, all images are © 2014 Cengage Learning

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Learning About the paint() and repaint() Methods
When you run a Java program that contains graphics, such as the JFrame applications in
the previous chapters, the display surface frequently must be redisplayed, or rerendered.
Redisplaying a surface also is called painting. Painting operations fall into two broad
categories based on what causes them:

l System-triggered painting operations occur when the system asks a component to render
its contents. This happens when the component is first made visible, if it is resized, or if
it is damaged. For example, a component becomes damaged when another component
that previously covered part of it has been moved, revealing a portion that was not visible.

l Application-triggered painting operations occur when the internal state of a component
has changed. For example, when a user clicks a button, a “pressed” version of the button
must be rendered.

Whether a paint request is triggered by the system or by an application, a Component’s
paint() method is invoked. The header for the paint() method is:

public void paint(Graphics g)

The parameter to the method is a Graphics object. The Graphics class is an abstract
class that descends directly from Object and holds data about graphics operations and
methods for drawing shapes, text, and images. When AWT invokes the paint() method,
the Graphics object parameter is preconfigured with the appropriate values for drawing
on the component:

l The Graphics object’s color is set to the component’s foreground property.

l The Graphics object’s font is set to the component’s font property.

l The Graphics object’s translation is set such that the coordinates 0, 0 represent the
upper-left corner of the component.

l The Graphics object’s clip rectangle is set to the area of the component that needs
repainting.

Programs must use this Graphics object (or one derived from it) to render graphic output.
They can change the values of the Graphics object as necessary.

You override the paint() method in your programs when you want specific actions to take
place when components must be rendered. You don’t usually call the paint() method
directly. Instead, you call the repaint()method, which you can use when a window needs to
be updated, such as when it contains new images or you have moved a new object onto the
screen. The Java system calls the repaint() method when it needs to update a window, or
you can call it yourself—in either case, repaint() creates a Graphics object for you that
becomes the paint() method parameter. The repaint() method calls another method
named update(), which clears its Component’s content pane and calls the paint() method.
The series of events is best described with an example. Figure 16-1 shows a JDemoPaint class
that extends JFrame. The frame contains a JButton. The constructor sets a title, layout
manager, and default close operation, and it adds the button to the frame. The button is
designated as a source for actions to which the frame can respond.

CH A P T E R 1 6 Graphics

880

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
public class JDemoPaint extends JFrame implements ActionListener
{

JButton pressButton = new JButton("Press");
public JDemoPaint()
{

setTitle("Paint Demo");
setLayout(new FlowLayout());
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
add(pressButton);
pressButton.addActionListener(this);

}
public void actionPerformed(ActionEvent e)
{

System.out.print("Button pressed. ");
repaint();

}
public void paint(Graphics g)
{

super.paint(g);
System.out.println("In paint method.");

}
public static void main(String[] args)
{

JDemoPaint frame = new JDemoPaint();
frame.setSize(150, 100);
frame.setVisible(true);

}
}

Figure 16-1 The JDemoPaint class

In Figure 16-1, the shaded first line of code in the paint() method is super.paint(g);. This statement
is a call to the paint() method that is part of JDemoPaint’s parent class (JFrame), and it passes the
local Graphics object (named g) to this method. Although this program and others in this chapter will work
without this statement, omitting it causes errors in more complicated applications. For now, get in the habit
of including this method call as the first statement in any JFrame’s paint() method, using whatever local
name you have declared for your paint() method’s Graphics argument.

In the JDemoPaint class in Figure 16-1, the actionPerformed() method executes when the
user presses the JButton. The method contains a call to repaint(), which is unseen in the
class and which automatically calls the paint() method.

The paint() method in the JDemoPaint class overrides the automatically supplied paint()
method. The paint() method displays a line of output at the command line—it announces
that the paint() method is executing. Figure 16-2 shows a typical execution of the program.
The JFrame is first drawn when it is constructed, and the message “In paint method.” appears

Learning About the paint() and repaint() Methods

881

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

at the command line. When the user clicks the button on the frame, two messages are
displayed: “Button pressed.” from the actionPerformed() method, and “In paint method.”
from the paint() method that is called by repaint(). When the user minimizes and
restores the frame, paint() is called automatically, and the “In paint method.” message is
displayed again.

If you call repaint() alone in a class that is a container, then the entire container is repainted.
(The call to repaint() in Figure 16-1 is actually this.repaint();.) Repainting the entire
container might be unnecessary and waste time if only part of the container has changed.
If you call repaint() with a component, as in pressButton.repaint(), then only that
component is repainted.

The repaint() method only requests that Java repaint the screen. If a second request to repaint()
occurs before Java can carry out the first request, Java executes only the last repaint() method.

Before the built-in paint() method is called, the entire container is filled with its background color.
Then the paint() method redraws the contents. The effect is that components are “erased” before
being redrawn.

Using the setLocation() Method
The setLocation() method allows you to place a component at a specific location within
a JFrame’s content pane. In Chapter 15, you learned that a window or frame consists of a
number of pixels on the screen, and that any component you place on the screen has a
horizontal, or x-axis, position as well as a vertical, or y-axis, position. The horizontal
position number increases from left to right across the screen, and the vertical position
number increases from top to bottom.

When you allow a layout manager to position components, specific positions are selected
automatically for each component. You can change the position of a component by using the
setLocation() method and passing it x- and y-coordinate positions. For example, to position
a JLabel object named someLabel at the upper-left corner of a JFrame, you write the
following within the JFrame class:

someLabel.setLocation(0, 0);

Figure 16-2 Typical execution of the JDemoPaint program

CH A P T E R 1 6 Graphics

882

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

If a window is 200 pixels wide by 100 pixels tall, you can place a Button named pressMe in the
approximate center of the window with the following statement:

pressMe.setLocation(100, 50);

The coordinate arguments can be numeric constants or variables.

When you use setLocation(), the upper-left corner of the component is placed at the
specified x- and y-coordinates. In other words, if a window is 100 by 100 pixels,
aButton.setLocation(100,100); places the JButton outside the window, where you
cannot see the component.

Figure 16-3 shows a JDemoLocation class that uses a call to the setLocation() method in the
actionPerformed()method. The values of the x- and y-coordinates passed to setLocation()
are initialized to 0, and then each is increased by 30 every time the user clicks the JButton.
The JButton moves 30 pixels down and to the right every time it is clicked.

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
public class JDemoLocation extends JFrame implements ActionListener
{

JButton pressButton = new JButton("Press");
int x = 0, y = 0;
final int GAP = 30;
public JDemoLocation()
{

setTitle("Location Demo");
setLayout(new FlowLayout());
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
add(pressButton);
pressButton.addActionListener(this);

}
public void actionPerformed(ActionEvent e)
{

pressButton.setLocation(x, y);
x += GAP;
y += GAP;

}
public static void main(String[] args)
{

JDemoLocation frame = new JDemoLocation();
frame.setSize(150, 150);
frame.setVisible(true);

}
}

Figure 16-3 The JDemoLocation class

Learning About the paint() and repaint() Methods

883

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 16-4 shows the JFrame in four positions: when it starts with the JButton in its
default position; after the user clicks the JButton once, moving it to position 0, 0; after the
user clicks it a second time, moving it to position 30, 30; and after the user clicks it a third
time, moving it to position 60, 60. If the user continues to click the JButton, it moves off
the frame surface. You could add a decision to prevent continued progression of the
setLocation() coordinates.

The setLocation() method works correctly only when it is used after the layout manager
has finished positioning all the application’s components (or in cases where no layout
manager is functioning). If you try to use setLocation() on a component within its
container’s constructor, the component will not be repositioned because the layout
manager will not be finished placing components.

Creating Graphics Objects
When you call the paint() method from an application, you can use the automatically
created Graphics object that is passed to it, but you can also instantiate your own Graphics
objects. For example, you might want to use a Graphics object when some action occurs,
such as a mouse event. Because the actionPerformed() method does not supply you with a
Graphics object automatically, you can create your own.

To display a string when the user clicks a JButton, you can code an actionPerformed()
method such as the following:

public void actionPerformed(ActionEvent e)
{

Graphics draw = getGraphics();
draw.drawString("You clicked the button!", 50, 100);

}

This method instantiates a Graphics object named draw. (You can use any legal Java
identifier.) The getGraphics() method provides the draw object with Graphics capabilities.
Then the draw object can employ Graphics methods such as setFont(), setColor(), and
drawString().

Notice that when you create the draw object, you are not calling the Graphics constructor
directly. (The name of the Graphics constructor is Graphics(), not getGraphics().)

Figure 16-4 Execution of the JDemoLocation program

CH A P T E R 1 6 Graphics

884

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

This operation is similar to the way you call getContentPane(). You are not allowed to call
the Graphics or ContentPane constructors because those classes are abstract classes.

If you call getGraphics() in a frame that is not visible, you receive a NullPointerException, and
the program will not execute.

Watch the video Using paint() and repaint().

TWO TRUTHS & A LIE

Learning About the paint() and repaint() Methods

1. Painting can be system triggered (for example, when a component is resized) or
application triggered (for example, when a user clicks a button).

2. When the paint() method is called, the Graphics object parameter is
preconfigured with the appropriate state for drawing on the component,
including the color and font.

3. You override the repaint() method in your programs when you want specific
actions to take place when components must be rendered. You usually call the
paint() method directly, and it calls repaint().

.)(tniaperll ac uoy —yl t ceri d doht e m)(tniap eht ll ac yll ausut’ nod
uoY. der edner ebt su mst nenop moc nehwecal p ekat ot snoi t ca cifi ceps t nawuoy
nehws mar gor pr uoy ni doht e m)(tniap eht edi rr evo uoY. 3# si t ne met at s esl af ehT

Using the drawString() Method
The drawString()method allows you to draw a String in a JFrame or other component. The
drawString() method requires three arguments: a String, an x-axis coordinate, and a y-axis
coordinate.

You are already familiar with x- and y-axis coordinates because you used them with the
setLocation() method for components. However, there is a minor difference in how you
place components using the setLocation() method and how you place Strings using the
drawString() method. When you use x- and y-coordinates with components, such as
JButtons or JLabels, the upper-left corner of the component is placed at the coordinate
position. When you use x- and y-coordinates with drawString(), the lower-left corner of the

Using the drawString() Method

885

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

String appears at the coordinates. Figure 16-5 shows the positions of a JLabel placed at the
coordinates 30, 10 and a String placed at the coordinates 10, 30.

The drawString() method is a member of the Graphics class, so you need to use a Graphics
object to call it. Recall that the paint() method header shows that the method receives a
Graphics object from the update() method. If you use drawString() within paint(),
the Graphics object you name in the header is available to you. For example, if you write a
paint() method with the header public void paint(Graphics brush), you can draw a
String within your paint() method by using a statement such as:

brush.drawString("Hi", 50, 80);

Interestingly, when you use the drawString() method with a negative font size, the string
appears upside down. The coordinates then indicate the lower-right corner of the string.

Using the setFont() and setColor() Methods
You can improve the appearance of strings drawn using Graphics objects by using the
setFont() method. The setFont() method requires a Font object, which, as you may recall
from Chapter 14, you can create with a statement such as:

Font someFont = new Font("Arial", Font.BOLD, 16);

Then you can instruct a Graphics object to use the font by inserting the font as the argument
in a setFont() method. For example, if a Graphics object is named artist and a Font object
is named smallFont, the font is set to smallFont with the following:

artist.setFont(smallFont);

Figure 16-6 shows an application that uses the setFont() method with a Graphics object
named brush.

This String is at 10, 30

This Label is at 30, 10

x

y 0

10

20

30

40

50

0 10 20 30 40 50 60

Figure 16-5 Placement of String and JLabel objects on a frame

CH A P T E R 1 6 Graphics

886

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

import javax.swing.*;
import java.awt.*;
public class JDemoFont extends JFrame
{

Font bigFont = new Font("Serif", Font.ITALIC, 48);
String hello = "Hello";
public void paint(Graphics brush)
{

super.paint(brush);
brush.setFont(bigFont);
brush.drawString(hello, 10, 100);

}
public static void main(String[] args)
{

JDemoFont frame = new JDemoFont();
frame.setSize(180, 150);
frame.setVisible(true);

}
}

Figure 16-6 The JDemoFont class

When the paint() method executes in the JDemoFont example, bigFont is assigned to the
automatically created brush object. Then the brush object is used to draw the hello string at
position 10, 100. Figure 16-7 shows the output.

Using Color
You can designate a Graphics color with the setColor() method. As you learned in Chapter
15, the Color class contains 13 constants; you can use any of these constants as an argument
to the setColor() method. For example, you can instruct a Graphics object named brush to
apply green paint by using the following statement:

brush.setColor(Color.GREEN);

Until you change the color, subsequent graphics output appears as green.

Figure 16-7 Output of the JDemoFont program

Using the drawString() Method

887

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Using the drawString() Method

1. The drawString() method requires three arguments: a String, an x-axis
coordinate, and a y-axis coordinate.

2. When you use x- and y-coordinates with components such as JButtons or
JLabels, the lower-left corner of the component is placed at the coordinate
position, but when you use x- and y-coordinates with drawString(), the upper-
left corner of the String appears at the coordinates.

3. The drawString() method is a member of the Graphics class, so you need to
use a Graphics object to call it.

. set ani dr ooc eht t a sr aeppa gnirtS eht f or enr octf el- r ewol eht
,)(gnirtSward hti wset ani dr ooc- y dna- x esu uoy nehwt ub, noi ti sop et ani dr ooc
eht t a decal p si t nenop moc eht f o r enr octf el- r eppu eht , slebaLJ r o snottuBJ sa

hcus, st nenop moc hti wset ani dr ooc- y dna- x esu uoy neh W. 2#si t ne met at s esl af ehT
You Do It

Using the drawString() Method

In the next steps, you write a class that extends JFrame and uses the drawString()
method.

1. Open a new text file, and begin a class definition for a JDemoGraphics class by
typing the following:

import javax.swing.*;
import java.awt.*;
public class JDemoGraphics extends JFrame
{

2. Declare a String by typing the following:

String movieQuote = new String("You talkin’ to me?");

3. Add a constructor to set the default close operation:

public JDemoGraphics()
{

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
} (continues)

CH A P T E R 1 6 Graphics

888

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4. Type the following paint() method that calls the super() method and uses a
Graphics object to draw the movieQuote String.

public void paint(Graphics gr)
{

super.paint(gr);
gr.drawString(movieQuote, 30, 100);

}

5. Add a main() method that instantiates a JDemoGraphics object and sets its size
and visibility. Then add the closing curly brace for the class:

public static void main(String[] args)
{

JDemoGraphics frame = new JDemoGraphics();
frame.setSize(280, 200);
frame.setVisible(true);

}
}

6. Save the file as JDemoGraphics.java, and then compile and execute it. The
program’s output appears in Figure 16-8.

7. Close the JFrame to end the application.

Using Fonts and Colors

Next, you use your knowledge of fonts and colors to set the color and font style of a
drawn String.

Figure 16-8 Output of the JDemoGraphics program

(continued)

(continues)

Using the drawString() Method

889

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

1. Open the JDemoGraphics.java text file in your text editor, and immediately
save it as JDemoGraphics2.java. Change the class name, the constructor
name, and the two references in the main() method to match.

2. Add a new import statement to the current list so that the application can
use color:

import java.awt.Color;

3. Just after the movieQuote declaration, add a Font object by typing
the following:

Font bigFont = new Font("Boopee", Font.ITALIC, 30);

4. Within the paint() method after the call to super(), type the following
statements so the gr object uses the bigFont object and the color magenta:

gr.setFont(bigFont);
gr.setColor(Color.MAGENTA);

5. Following the existing drawString() method call, type the following lines to
change the color and add another call to the drawString() method:

gr.setColor(Color.BLUE);
gr.drawString(movieQuote, 60, 140);

6. Save the file, compile it, and execute it. The program’s output appears in
Figure 16-9. Although the figure is shown in black and white in this book,
notice that the Strings on your screen are displayed as magenta and blue
text. The font that appears in your program might be different from the one
shown in the figure, depending on your computer’s installed fonts. (Later in
this chapter, you will learn how to view a list of all the available fonts on your
computer.)

(continued)

Figure 16-9 Output of the JDemoGraphics2 program
(continues)

CH A P T E R 1 6 Graphics

890

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

7. Close the JFrame to end the application.

Creating Your Own Graphics Object

Next, you create a Graphics object named pen and use the object to draw a
String on the screen. The text of the String will appear to move each time a
JButton is clicked.

1. Open a new text file in your text editor, and type the following import statements
for the program:

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.awt.Color;

2. Start typing the following class that extends JFrame and uses the mouse. The
class defines a String, a JButton, a Font, and four integers: two to hold x- and y-
coordinates, one to act as a constant size to measure the gap between lines
displayed on the screen, and one to hold the size of the JFrame:

public class JDemoCreateGraphicsObject extends JFrame
implements ActionListener

{
String movieQuote = new String("Here’s looking at you, kid");
JButton moveButton = new JButton("Move It");
Font broadwayFont = new Font("Broadway", Font.ITALIC, 12);
int x = 10, y = 50;
final int GAP = 20;
final int SIZE = 400;

3. Type the following constructor; it changes the background color and sets the
layout of the Container, adds the JButton, prepares the JFrame to listen for
JButton events, sets the close operation, and sets the size of the frame:

public JDemoCreateGraphicsObject()
{

Container con = getContentPane();
con.setBackground(Color.YELLOW);
con.setLayout(new FlowLayout());
con.add(moveButton);
moveButton.addActionListener(this);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setSize(SIZE, SIZE);

}

(continued)

(continues)

Using the drawString() Method

891

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4. Within the actionPerformed() method, you can create a Graphics object
and use it to draw the String on the screen. Each time a user clicks the
JButton, the x- and y-coordinates both increase, so a copy of the movie
quote appears slightly below and to the right of the previous one. Type the
following actionPerformed() method to accomplish this processing:

public void actionPerformed(ActionEvent e)
{

Graphics pen = getGraphics();
pen.setFont(broadwayFont);
pen.setColor(Color.MAGENTA);
pen.drawString(movieQuote, x += GAP, y += GAP);

}

5. Add a main() method to instantiate a JDemoCreateGraphicsObject object
and give it visibility. Add a closing curly brace for the class.

public static void main(String[] args)
{

JDemoCreateGraphicsObject frame = new
JDemoCreateGraphicsObject();

frame.setVisible(true);
}

}

6. Save the file as JDemoCreateGraphicsObject.java, and then compile and
run the program. Click the Move It button several times to see the String
message appear and move on the screen.

7. When you finish clicking the button, close the JFrame to end the application.

Examining Screen Coordinates

If you run JDemoCreateGraphicsObject and click the JButton enough times, the
movie quote String appears to march off the bottom of the JFrame. Every time you
click the JButton, the x- and y-coordinates used by drawString() increase, and
there is no limit to their value. You can prevent this error by checking the screen
coordinates’ values to see if they exceed the JFrame’s dimensions.

1. Open the JDemoCreateGraphicsObject file, and immediately save it as
JDemoCreateGraphicsObject2. Change the class name, constructor name,
and the two references to the class in the main() method to match.

(continued)

(continues)

CH A P T E R 1 6 Graphics

892

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. Because the screen size is 400 by 400, you can ensure that at least part of
the String appears in the frame by preventing the y-coordinate from
exceeding a value that is slightly less than 400. Create a constant to hold
this limit by adding the following just after the declaration of SIZE:

final int LIMIT = SIZE - 50;

3. In the actionPerformed() method, replace the stand-alone call to drawString()
with one that depends on LIMIT as follows:

if(y < LIMIT)
pen.drawString(movieQuote, x += GAP, y += GAP);

4. Add an else clause that disables the JButton after the x-coordinate becomes
too large:

else
moveButton.setEnabled(false);

5. Save the file, compile it, and execute it. Now when you click the Move It button,
the movie quote moves until the y-coordinate reaches 350. At that point, the
JButton is disabled, and the movie quote no longer violates the frame’s size
limits.

6. Close the frame to end the program.

Drawing Lines and Shapes
Just as you can draw Strings using a Graphics object and the drawString() method, Java
provides you with several methods for drawing a variety of lines and geometric shapes. Any
line or shape is drawn in the current color you set with the setColor() method. When you
do not set a color, lines are drawn in black by default.

It is almost impossible to draw a picture of any complexity without sketching it first on a piece of graph paper
to help you determine correct coordinates.

Drawing Lines
You can use the drawLine() method to draw a straight line between any two points on the
screen. The drawLine() method takes four arguments: the x- and y-coordinates of the line’s
starting point and the x- and y-coordinates of the line’s ending point. For example, if you create

(continued)

Drawing Lines and Shapes

893

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

a Graphics object named pen, then the following statement draws a straight line that slants
down and to the right, from position 50, 50 to position 100, 200, as shown in Figure 16-10.

pen.drawLine(50, 50, 100, 200);

Because you can start at either end when you draw a line, an identical line is created with
the following:

pen.drawLine(100, 200, 50, 50);

Your downloadable student files contain a JDemoLine.java file with a working program that draws the line
shown in Figure 16-10.

Drawing Rectangles
You could draw a rectangle by drawing four lines. Alternatively, you can use the drawRect()
method and fillRect()method, respectively, to draw the outline of a rectangle or to draw a
solid, or filled, rectangle. Each of these methods requires four arguments. The first two
arguments represent the x- and y-coordinates of the upper-left corner of the rectangle.
The last two arguments represent the width and height of the rectangle. For example, the
following statement draws a short, wide rectangle that begins at position 20, 100, and is 200
pixels wide by 10 pixels tall:

drawRect(20, 100, 200, 10);

The clearRect()method also requires four arguments and draws a rectangle. The difference
between using the drawRect() and fillRect() methods and the clearRect() method is that

Figure 16-10 A line created with pen.drawLine(50, 50, 100, 200)

CH A P T E R 1 6 Graphics

894

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

the first two methods use the current drawing color, whereas the clearRect() method draws
what appears to be an empty or “clear” rectangle. A rectangle created with the clearRect()
method is not really “clear”; in other words, it is not transparent. When you create a rectangle,
you do not see objects that might be hidden behind it. Instead, the clearRect() method
clears anything drawn from view, showing the original content pane.

For example, the constructor in the JDemoRectangles program shown in Figure 16-11 sets
the background color of the content pane to blue and sets the layout manager.

import javax.swing.*;
import java.awt.*;
import java.awt.Color;
public class JDemoRectangles extends JFrame
{

Container con = getContentPane();
public JDemoRectangles()
{

con.setBackground(Color.BLUE);
con.setLayout(new FlowLayout());

}
public void paint(Graphics gr)
{

super.paint(gr);
gr.setColor(Color.RED);
gr.fillRect(40, 40, 120, 120);
gr.setColor(Color.YELLOW);
gr.fillRect(80, 80, 160, 160);
gr.clearRect(50, 60, 50, 50);

}
public static void main(String[] args)
{

JDemoRectangles frame = new JDemoRectangles();
frame.setSize(200, 200);
frame.setVisible(true);

}
}

Figure 16-11 The JDemoRectangles class

In the paint() method in Figure 16-11, the drawing color is set to red, and a filled rectangle
is drawn. Then the drawing color is changed to yellow and a second filled rectangle is
drawn to overlap the first. Finally, a smaller, “clear” rectangle is drawn that overlaps the
other rectangles. As Figure 16-12 shows, you cannot see the boundaries of the original
rectangles in the “clear” area—you simply see that portions of the filled rectangles have
been removed from the drawing.

Drawing Lines and Shapes

895

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You can create rectangles with rounded corners when you use the drawRoundRect()method.
The drawRoundRect() method requires six arguments. The first four arguments match the
four arguments required to draw a rectangle: the x- and y-coordinates of the upper-left
corner, the width, and the height. The two additional arguments represent the arc width and
height associated with the rounded corners (an arc is a portion of a circle). If you assign zeros
to the arc coordinates, the rectangle is not rounded; instead, the corners are square. At the
other extreme, if you assign values to the arc coordinates that are at least the width and height
of the rectangle, the rectangle is so rounded that it is a circle. The paint() method in Figure
16-13 draws four rectangles with increasingly large corner arcs. The first rectangle is drawn at
coordinates 20, 40, and the horizontal coordinate is increased by 100 for each subsequent
rectangle. Each rectangle is the same width and height, but each set of arc values becomes
larger, producing rectangles that are not rounded, slightly rounded, very rounded, and
completely rounded in sequence. Figure 16-14 shows the program’s output.

import javax.swing.*;
import java.awt.*;
public class JDemoRoundRectangles extends JFrame
{

public void paint(Graphics gr)
{

super.paint(gr);
int x = 20;
int y = 40;
final int WIDTH = 80, HEIGHT = 80;
final int HORIZONTAL_GAP = 100;
for(int arcSize = x; arcSize <= HEIGHT; arcSize += 20)
{

gr.drawRoundRect(x, y, WIDTH, HEIGHT, arcSize, arcSize);
x += HORIZONTAL_GAP;

}
}

Figure 16-13 The JDemoRoundRectangles class (continues)

Figure 16-12 Output of the JDemoRectangles program

CH A P T E R 1 6 Graphics

896

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public static void main(String[] args)
{

JDemoRoundRectangles frame = new JDemoRoundRectangles();
frame.setSize(420, 140);
frame.setVisible(true);

}
}

Figure 16-13 The JDemoRoundRectangles class

Java also contains a fillRoundRect() method that creates a filled rounded rectangle and a
clearRoundRect() method that creates a clear rounded rectangle.

Creating Shadowed Rectangles
The draw3DRect() method is a minor variation on the drawRect() method. You use the
draw3DRect() method to draw a rectangle that appears to have “shadowing” on two of its
edges—the effect is that of a rectangle that is lit from the upper-left corner and slightly raised
or slightly lowered. The draw3DRect() method requires a fifth argument in addition to the x-
and y-coordinates and width and height required by the drawRect() method. The fifth
argument is a Boolean value, which is true if you want the raised rectangle effect (darker on
the right and bottom) and false if you want the lowered rectangle effect (lighter on the right
and bottom). There is also a fill3DRect()method for creating filled three-dimensional (3D)
rectangles; this method is used in the program in Figure 16-15.

Figure 16-14 Output of the JDemoRoundRectangles program

(continued)

Drawing Lines and Shapes

897

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

import javax.swing.*;
import java.awt.*;
import java.awt.Color;
public class JDemo3DRectangles extends JFrame
{

public void paint(Graphics gr)
{

super.paint(gr);
final int WIDTH = 60, HEIGHT = 80;
gr.setColor(Color.PINK);
gr.fill3DRect(20, 40, WIDTH, HEIGHT, true);
gr.fill3DRect(100, 40, WIDTH, HEIGHT, false);

}
public static void main(String[] args)
{

JDemo3DRectangles frame = new JDemo3DRectangles();
frame.setSize(180, 150);
frame.setVisible(true);

}
}

Figure 16-15 The JDemo3DRectangles class

The program in Figure 16-15 creates two filled 3D rectangles in pink. (The 3D methods work
best with lighter drawing colors.) You can see that the shadowing effect on the output in
Figure 16-16 is very subtle; the shadowing is only one pixel wide.

Drawing Ovals
You can draw an oval using the drawRoundRect() or fillRoundRect() method, but it is
usually easier to use the drawOval() and fillOval() methods. The drawOval() and
fillOval() methods both draw ovals using the same four arguments that rectangles use.
When you supply drawOval() or fillOval() with x- and y-coordinates for the upper-left
corner and width and height measurements, you can picture an imaginary rectangle that uses

Figure 16-16 Output of the JDemo3DRectangles program

CH A P T E R 1 6 Graphics

898

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

the four arguments. The oval is then placed within the rectangle so it touches the rectangle
at the center of each of the rectangle’s sides. For example, suppose that you create a Graphics
object named tool and draw a rectangle with the following statement:

tool.drawRect(50, 50, 100, 60);

Suppose that then you create an oval with the same coordinates as follows:

tool.drawOval(50, 50, 100, 60);

The output appears as shown in Figure 16-17, with the oval edges just skimming the
rectangle’s sides.

Your downloadable student files contain a JDemoOval.java file that produces the frame in Figure 16-17.

If you draw a rectangle with identical height and width, you draw a square. If you draw an oval
with identical height and width, you draw a circle.

Drawing Arcs
In Java, you can draw an arc using the Graphics drawArc() method. To use the drawArc()
method, you provide six arguments:

l The x- and y-coordinates of the upper-left corner of an imaginary rectangle that
represents the bounds of the imaginary circle that contains the arc

l The width and height of the imaginary rectangle that represents the bounds of the
imaginary circle that contains the arc

l The beginning arc position and the arc angle

Arc positions and angles are measured in degrees; there are 360 degrees in a circle. The 0°
position for any arc is the three o’clock position, as shown in Figure 16-18. The other 359
degree positions increase as you move counterclockwise around an imaginary circle, so 90°

Figure 16-17 Demonstration of the drawOval() method

Drawing Lines and Shapes

899

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

is at the top of the circle in the 12 o’clock position, 180° is opposite the starting position at
nine o’clock, and 270° is at the bottom of the circle in the six o’clock position.

The arc angle is the number of degrees over which you want to draw the arc, traveling
counterclockwise from the starting position. For example, you can draw a half circle by
indicating an arc angle of 180° or a quarter circle by indicating an arc angle of 90°. If you want
to travel clockwise from the starting position, you express the degrees as a negative number.
Just as when you draw a line, when drawing any arc you can take one of two approaches:
either start at point A and travel to point B, or start at point B and travel to point A. For
example, to create an arc object using a Graphics object named g that looks like the top half
of a circle, the following statements produce identical results:

g.drawArc(x, y, w, h, 0, 180);
g.drawArc(x, y, w, h, 180, -180);

The first statement starts an arc at the three o’clock position and travels 180 degrees
counterclockwise to the nine o’clock position. The second statement starts at nine o’clock and
travels clockwise to three o’clock.

The fillArc()method creates a solid arc. The arc is drawn, and two straight lines are drawn
from the arc endpoints to the center of the imaginary circle whose perimeter the arc occupies.
For example, assuming you have declared a Graphics object named g, the following two
statements together produce the output shown in Figure 16-19:

g.fillArc(20, 50, 100, 100, 20, 320);
g.fillArc(60, 50, 100, 100, 340, 40);

180 degrees

270 degrees

90 degrees

0 degrees

Figure 16-18 Arc positions

CH A P T E R 1 6 Graphics

900

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Each of the two arcs is in a circle that has a size of 100 by 100. The first arc almost completes a
full circle, starting at position 20 (near two o’clock) and ending 320 degrees around the circle
(at position 340, near four o’clock). The second filled arc more closely resembles a pie slice,
starting at position 340 and extending 40 degrees to end at position 20.

Your downloadable student files contain a program named JDemoFillArc.java that produces Figure 16-19.

Creating Polygons
When you want to create a shape that is more complex than a rectangle, you can use a
sequence of calls to the drawLine() method, or you can use the drawPolygon() method to
draw complex shapes. The drawPolygon() method requires three arguments: two integer
arrays and a single integer.

The first integer array holds a series of x-coordinate positions, and the second array holds a
series of corresponding y-coordinate positions. These positions represent points that are
connected to form the polygon. The third integer argument is the number of pairs of points
you want to connect. If you don’t want to connect all the points represented by the array
values, you can assign this third argument integer a value that is smaller than the number of
elements in each array. However, an error occurs if the third argument is a value higher than
the available number of coordinate pairs.

For example, examine the code shown in Figure 16-20, which is a JFrame application that has
one task: to draw a star-shaped polygon.

Figure 16-19 Two filled arcs

Drawing Lines and Shapes

901

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

import javax.swing.*;
import java.awt.*;
public class JStar extends JFrame
{

public void paint(Graphics gr)
{

super.paint(gr);
int xPoints[] = {42, 52, 72, 52, 60, 40, 15, 28, 9, 32, 42};
int yPoints[] = {38, 62, 68, 80, 105, 85, 102, 75, 58, 60, 38};
gr.drawPolygon(xPoints, yPoints, xPoints.length);

}
public static void main(String[] args)
{

JStar frame = new JStar();
frame.setSize(80, 150);
frame.setVisible(true);

}
}

Figure 16-20 The JStar class

In the JStar program, two parallel arrays are assigned x- and y-coordinates. It is almost
impossible to create a program like this without sketching the desired shape on a piece of
graph paper to discover appropriate coordinate values. The drawPolygon() method uses the
two arrays and the length of one of the arrays for the number of points. The program’s output
appears in Figure 16-21.

You can use the fillPolygon()method to draw a solid shape. The major difference between
the drawPolygon() and fillPolygon() methods is that if the beginning and ending points
used with the fillPolygon() method are not identical, the two endpoints are connected by a
straight line before the polygon is filled with color.

Figure 16-21 Output of the JStar program

CH A P T E R 1 6 Graphics

902

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Rather than providing the fillPolygon() method with three arguments, you can also create
a Polygon object and pass the constructed object as a single argument to the fillPolygon()
method. The Polygon constructor requires an array of x-coordinates, an array of y-
coordinates, and a size. For example, you can create a filled polygon using the following
statements:

Polygon someShape = new Polygon(xPoints, yPoints, xPoints.length);
gr.fillPolygon(someShape);

The Polygon class also has a default constructor, so you can instantiate an empty Polygon
object (with no points) using the following statement:

Polygon someFutureShape = new Polygon();

Whether you use the default constructor or not, you can add points to a polygon after
construction. For example, you might want to add points that are determined by user input or
mathematical calculations. You use the addPoint() method in statements such as the
following to add points to the polygon later:

someFutureShape.addPoint(100, 100);
someFutureShape.addPoint(150, 200);
someFutureShape.addPoint(50, 250);

Points can be added to a polygon indefinitely.

Copying an Area
After you create a graphics image, you might want to create copies of the image. For example,
you might want a company logo to appear several times in an application. Of course, you can
redraw the picture, but you can also use the copyArea()method to copy any rectangular area
to a new location. The copyArea() method requires six parameters:

l The x- and y-coordinates of the upper-left corner of the area to be copied

l The width and height of the area to be copied

l The horizontal and vertical displacement of the destination of the copy

For example, the following line of code causes a Graphics object named gr to copy an area
20 pixels wide by 30 pixels tall from the upper-left corner of your JFrame (coordinates 0, 0) to
an area that begins 100 pixels to the right and 50 pixels down:

gr.copyArea(0, 0, 20, 30, 100, 50);

Using the paintComponent() Method with JPanels
When you create drawings on a JPanel (or other JComponent) instead of on a JFrame, you
should use the paintComponent() method rather than the paint() method. A JFrame’s
paint() method automatically calls paintComponent() for its components, but JFrame is not
a child of JComponent, so it does not have its own paintComponent() method.

Drawing Lines and Shapes

903

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

For example, Figure 16-22 shows a JGraphicsPanel class that overrides JPanel. Its
constructor accepts a color to use as a background color. Its only method is a
paintComponent() method that overrides the paintComponent() method in the JPanel class.
The parameter Graphics object is passed to the parent class constructor, the drawing color is
set to yellow, and two small circles are drawn.

import javax.swing.*;
import java.awt.*;
import java.awt.Color;
public class JGraphicsPanel extends JPanel
{

public JGraphicsPanel(Color color)
{

setBackground(color);
}
public void paintComponent(Graphics g)
{

super.paintComponent(g);
g.setColor(Color.YELLOW);
g.fillOval(10, 5, 40, 40);
g.fillOval(60, 5, 40, 40);

}
}

Figure 16-22 The JGraphicsPanel class

Figure 16-23 contains a program that adds two JGraphicsPanel objects to a JFrame—one
with a blue background and the other with a red background. Figure 16-24 shows the output,
which displays two JPanels that are placed side by side using a GridLayout.

import javax.swing.*;
import java.awt.*;
import java.awt.Color;
public class JGraphicsPanelFrame extends JFrame
{

Container con = null;
JGraphicsPanel p1 = new JGraphicsPanel(Color.BLUE);
JGraphicsPanel p2 = new JGraphicsPanel(Color.RED);

public JGraphicsPanelFrame ()
{

con = this.getContentPane();
con.setLayout(new GridLayout(2,1));
con.add(p1);
con.add(p2);

Figure 16-23 The JGraphicsPanelFrame class (continues)

CH A P T E R 1 6 Graphics

904

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

setSize(250, 250);
setVisible(true);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

}
public static void main(String args[])
{

JGraphicsPanelFrame app = new JGraphicsPanelFrame();
app.setVisible(true);
app.setSize(140, 140);

}
}

Figure 16-23 The JGraphicsPanelFrame class

Watch the video Drawing Lines and Shapes.

Figure 16-24 Output of the JGraphicsPanelFrame program

(continued)

Drawing Lines and Shapes

905

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Drawing Lines and Shapes

1. You can use the drawLine() method to draw a straight line between any two
points on the screen.

2. You can use methods named drawRect(), fillRect(), clearRect(),
drawOval(), and fillOval() to create a variety of shapes.

3. When you draw an arc, the zero-degree position is at 12 o’clock on an imaginary
clock, and the 90-degree position is at three o’clock.

. kcol c’ o 21t a si noi ti sop eer ged- 09 eht os, el cri c eer ged- 063 a ni
esi wkcol cr et nuoc evo muoy sa esaer cni seul av eer ged eht dna, kcol c’ o eer ht

t a si noi ti sop eer ged- or ez eht , cr a na war d uoy neh W. 3# si t ne met at s esl af ehT

You Do It

Creating a Drawing

Next, you add a simple line drawing to the JDemoCreateGraphicsObject2 program.
The drawing appears after the user clicks the JButton enough times to disable
the JButton.

1. Open the JDemoCreateGraphicsObject2 file, and immediately save it as
JDemoCreateGraphicsObject3.java. Change the class name, constructor
name, and two references in the main() method to match.

2. Replace the current if…else structure that tests whether y is less than LIMIT
in the actionPerformed() method. Instead, use the following code, which
tests the value of y and either draws the quote or disables the JButton and
draws a picture. Set the drawing color to black, and create a simple drawing
of a stick person that includes a head, torso, and two legs:

if(y < LIMIT)
pen.drawString(movieQuote, x += GAP, y += GAP);

else
{

moveButton.setEnabled(false);
pen.setColor(Color.BLACK);

(continues)

CH A P T E R 1 6 Graphics

906

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

pen.drawOval(50, 170, 70, 70);
pen.drawLine(85, 240, 90, 280);
pen.drawLine(90, 280, 60, 380);
pen.drawLine(90, 280, 110, 380);

}

3. Save the file, compile it, and execute it. After the movie quote moves to the
LIMIT value, the JButton is disabled and the drawing appears, as shown
in Figure 16-25.

4. Close the application.

5. Modify the application so the drawing has more details, such as arms, feet,
and a simple face. Save the revised application as
JDemoCreateGraphicsObject4.java.

(continued)

Figure 16-25 The JDemoCreateGraphicsObject3 program after
the JButton is disabled

(continues)

Drawing Lines and Shapes

907

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copying an Area

Next, you learn how to copy an area containing a shape that you want to appear
several times on a JFrame. By copying, you do not have to re-create the shape
each time.

1. Open a new text file in your text editor, and then enter the beginning
statements for a JFrame that uses the copyArea() method:

import javax.swing.*;
import java.awt.*;
import java.awt.Color;
public class JThreeStars extends JFrame
{

2. Add the following statements, which create a polygon in the shape of a star:

int xPoints[] = {42, 52, 72, 52,
60, 40, 15, 28, 9, 32, 42};

int yPoints[] = {38, 62, 68, 80,
105, 85, 102, 75, 58, 60, 38};

Polygon aStar = new Polygon(xPoints, yPoints, xPoints.length);

3. Add a constructor that sets the default close operation:

public JThreeStars()
{

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
}

4. Add the following paint() method, which sets a color, draws a star, and then
draws two additional identical stars:

public void paint(Graphics star)
{

super.paint(star);
star.setColor(Color.BLUE);
star.drawPolygon(aStar);
star.copyArea(0, 0, 75, 105, 80, 40);
star.copyArea(0, 0, 75, 105, 40, 150);

}

5. Add a main() method that instantiates a JThreeStars object and sets its
size and visibility. Add a closing brace to end the class:

public static void main(String[] args)
{

JThreeStars frame = new JThreeStars();
frame.setSize(200, 300);
frame.setVisible(true);

}
}

(continued)

(continues)

CH A P T E R 1 6 Graphics

908

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6. Save the file as JThreeStars.java, and then compile the program. When you
run the program, the output looks like Figure 16-26.

7. Close the frame to end the application.

8. Modify the program to add two more stars in any location you choose, save
and compile the program, and confirm that the stars are copied to your
desired locations.

Learning More About Fonts
As you add more components in your GUI applications, positioning becomes increasingly
important. In particular, when you draw Strings using different fonts, it is difficult to place
them correctly so they don’t overlap, making them difficult or impossible to read. In addition,
the number of available fonts varies greatly across operating systems, so even when you define
a font using a string argument such as “Arial” or “Courier”, you have no guarantee that the
font will be available on every computer that runs your application. If a user’s computer does
not have the requested font loaded, Java chooses a default replacement font, so you can never
be completely certain how your output will look. Fortunately, Java provides many useful
methods for obtaining information about the fonts you use.

You can discover the fonts that are available on your system by using the
getAvailableFontFamilyNames() method, which is part of the GraphicsEnvironment class
defined in the java.awt package. The GraphicsEnvironment class describes the collection
of Font objects and GraphicsDevice objects available to a Java application on a particular

(continued)

Figure 16-26 Output of the JThreeStars program with one star

Learning More About Fonts

909

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

platform. The getAvailableFontFamilyNames() method returns an array of String objects
that are the names of available fonts. For example, the following statements declare a
GraphicsEnvironment object named ge, and then use the object with the
getAvailableFontFamilyNames() method to store the font names in a string array:

GraphicsEnvironment ge =
GraphicsEnvironment.getLocalGraphicsEnvironment();

String[] fontnames = ge.getAvailableFontFamilyNames();

Notice in the preceding example that you can’t instantiate the GraphicsEnvironment object
directly. Instead, you must get a reference object to the current computer environment by
calling the static getLocalGraphicsEnvironment() method. Figure 16-27 shows a JFrame
that lists all the available font names on the computer on which the program was executed.
After the GraphicsEnvironment object is created and the getAvailableFontFamilyNames()
method is used to retrieve the array of font names, the names are displayed on the screen
using a for loop in which the horizontal coordinate where each font String is drawn is
increased by a fixed value so that five columns are displayed equally spaced across the JFrame
surface. After five items are displayed, the horizontal coordinate is set back to 10 and the
vertical coordinate is increased so that the next five-column row is displayed below the
previous one. Typical output is shown in Figure 16-28.

import javax.swing.*;
import java.awt.*;
public class JFontList extends JFrame
{

public void paint(Graphics gr)
{

super.paint(gr);
int i, x, y = 40;
final int VERTICAL_SPACE = 10;
final int HORIZONTAL_SPACE = 160;
GraphicsEnvironment ge =

GraphicsEnvironment.getLocalGraphicsEnvironment();
String[] fontnames = ge.getAvailableFontFamilyNames();
for(i = 0; i < fontnames.length; i += 5)
{

x = 10;
gr.setFont(new Font("Arial", Font.PLAIN, 10));
gr.drawString(fontnames[i], x, y);
if(i + 1 < fontnames.length)

gr.drawString(fontnames[i + 1], x += HORIZONTAL_SPACE, y);
if(i + 2 < fontnames.length)

gr.drawString(fontnames[i + 2], x += HORIZONTAL_SPACE, y);
if(i + 3 < fontnames.length)

gr.drawString(fontnames[i + 3], x += HORIZONTAL_SPACE, y);

Figure 16-27 The JFontList class (continues)

CH A P T E R 1 6 Graphics

910

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

if(i + 4 < fontnames.length)
gr.drawString(fontnames[i + 4], x += HORIZONTAL_SPACE, y);

y = y + VERTICAL_SPACE;
}

}
public static void main(String[] args)
{

JFontList frame = new JFontList();
frame.setSize(820, 620);
frame.setVisible(true);

}
}

Figure 16-27 The JFontList class

Figure 16-28 Typical output of the JFontList program

(continued)

Learning More About Fonts

911

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Discovering Screen Statistics Using the Toolkit Class
Frequently, before you can determine the best Font size to use, it is helpful to know statistics
about the screen on which the Font will be displayed. For example, you can discover the
resolution and screen size on your system by using the getScreenResolution() and
getScreenSize() methods, which are part of the Toolkit class.

The getDefaultToolkit() method provides information about the system in use. The
getScreenResolution() method returns the number of pixels as an integer. You can create
a Toolkit object and get the screen resolution using the following code:

Toolkit tk = Toolkit.getDefaultToolkit();
int resolution = tk.getScreenResolution();

The Dimension class is useful for representing the width and height of a user interface
component, such as a JFrame or a JButton. The Dimension class has three constructors:

l The Dimension() method creates an instance of Dimension with a width of 0 and a
height of 0.

l Dimension(Dimension d) creates an instance of Dimension whose width and height are
the same as for the specified dimension.

l Dimension(int width, int height) constructs a Dimension and initializes it to the
specified width and height.

The getScreenSize() method, a member of the Toolkit object, returns an object of type
Dimension, which specifies the width and height of the screen in pixels. Knowing the number
of pixels for the width and height of your display is useful to set the coordinates for the
position, width, and height of a window. For example, the following code stores the width and
height of a screen in separate variables:

Toolkit tk = Toolkit.getDefaultToolkit();
Dimension screen = tk.getScreenSize();
int width = screen.width;
int height = screen.height;

Discovering Font Statistics
Typesetters and desktop publishers measure the height of every font in three parts: ascent,
descent, and leading. Ascent is the height of an uppercase character from a baseline to the top
of the character. Descentmeasures the part of characters that “hang below” the baseline, such
as the tails on the lowercase letters g and j. Leading (pronounced ledding) is the amount of
space between the bottom of the descent of one line and the top of the characters in the
successive line of type. The height of a font is the sum of the leading, ascent, and descent.
Figure 16-29 labels each of these measurements.

CH A P T E R 1 6 Graphics

912

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You can discover a font’s statistics by first using the Graphics class getFontMetrics()method
to return a FontMetrics object, and then by using one of the following FontMetrics class
methods with the object to return one of a Font’s statistics:

l public int getLeading()

l public int getAscent()

l public int getDescent()

l public int getHeight()

Another method, getLineMetrics(), is more complicated to use but returns similar font statistics. For
more details, see the Java Web site.

Each of these methods returns an integer value representing the font size in points (one point
measures 1/72 of an inch) of the requested portion of the Font object. For example, if you
define a Font object named myFont and a Graphics object named paintBrush, you can set the
current font for the Graphics object by using the following statements:

paintBrush.setFont(myFont);
int heightOfFont = paintBrush.getFontMetrics().getHeight();

When you define a Font object, you use point size. However, when you use the FontMetrics get
methods, the sizes are returned in pixels.

Then the heightOfFont variable holds the total height of myFont characters.

A practical use for discovering the height of a font is to space Strings correctly as you display
them. For example, instead of placing every String in a series vertically equidistant from the
previous String with a statement such as the following:

pen.drawString("Some string", x, y += INCREASE);

AscentHeight

Leading

Baseline

Descent

B y
Figure 16-29 Parts of a font’s height

Learning More About Fonts

913

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

(where INCREASE has been defined as a constant), you can make the actual increase in the
vertical position dependent on the font. If you code the following, you are assured that
each String has enough room, regardless of which font is currently in use by the Graphics
pen object:

pen.drawString("Some string",
x, y += pen.getFontMetrics().getHeight());

When you create a String, you know how many characters are in the String. However, you
cannot be certain which font Java will use or substitute, and because fonts have different
measurements, it is difficult to know the exact width of the String that appears in a JFrame.
Fortunately, the FontMetrics class contains a stringWidth() method that returns the
integer width of a String. As an argument, the stringWidth() method requires the name
of a String. For example, if you create a String named myString, you can retrieve the
width of myString with the following code:

int width = gr.getFontMetrics().stringWidth(myString);

Watch the video Font Methods.

TWO TRUTHS & A LIE

Learning More About Fonts

1. Java is widely used partly because its fonts are guaranteed to look the
same on all computers.

2. You can discover the resolution and screen size on your system by using
the getScreenResolution() and getScreenSize() methods, which are part
of the Toolkit class.

3. Ascent is the height of an uppercase character from a baseline to the top
of the character, and descent measures the part of characters that “hang
below” the baseline, such as the tail on the lowercase letter y.

. kool lli wt upt uor uoy woh ni atr ec yl et el p moc
ebr even nac uoy os,t nof t ne mecal per tl uaf ed a sesoohc avaJ , det seuqer

evah uoy t nof a evaht on seodr et up moc s’ r esu afI . 1# si t ne met at s esl af ehT

CH A P T E R 1 6 Graphics

914

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You Do It

Using FontMetrics Methods to Compare Fonts

Next, you write a program to demonstrate FontMetrics methods. You will create
three Font objects and display their metrics.

1. Open a new text file in your text editor, and then enter the first few lines of the
JDemoFontMetrics program:

import javax.swing.*;
import java.awt.*;
public class JDemoFontMetrics extends JFrame
{

2. Type the following code to create a String and a few fonts to use for
demonstration purposes:

String movieQuote =
new String("Go ahead, make my day");

Font courierItalic = new Font("Courier New", Font.ITALIC, 16),
timesPlain = new Font("Times New Roman", Font.PLAIN, 16),
scriptBold = new Font("Freestyle Script", Font.BOLD, 16);

3. Add the following code to define four integer variables to hold the four font
measurements, and two integer variables to hold the current horizontal and
vertical output positions within the JFrame:

int ascent, descent, height, leading;
int x = 20, y = 50;

4. Within the JFrame, you will draw Strings positioned 40 pixels apart vertically.
After each of those Strings, the Strings that hold the statistics will be 15
pixels apart. Type the following statements to create constants to hold these
vertical increase values:

final int INCREASE_SMALL = 15;
final int INCREASE_LARGE = 40;

5. Add a constructor as follows:

public JDemoFontMetrics()
{

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
}

6. Add the following statements to start writing a paint() method. Within the
method, you set the Font to courierItalic, draw the phrase String to show
a working example of the font, and then call a displayMetrics() method

(continues)

Learning More About Fonts

915

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

that you will write in Step 7. Pass the Graphics object to the
displayMetrics() method, so the method can discover the sizes
associated with the current font. Perform the same three steps using the
timesPlain and scriptBold fonts.

public void paint(Graphics pen)
{

super.paint(pen);
pen.setFont(courierItalic);
pen.drawString(moviequote, x, y);
displayMetrics(pen);
pen.setFont(timesPlain);
pen.drawString(moviequote, x, y += INCREASE_LARGE);
displayMetrics(pen);
pen.setFont(scriptBold);
pen.drawString(moviequote, x, y += INCREASE_LARGE);
displayMetrics(pen);

}

7. Next, add the header and opening curly brace for the displayMetrics()
method. The method will receive a Graphics object from the paint() method.
Add the following statements to call the four getFontMetrics() methods to
obtain values for the leading, ascent, descent, and height variables:

public void displayMetrics(Graphics metrics)
{

leading = metrics.getFontMetrics().getLeading();
ascent = metrics.getFontMetrics().getAscent();
descent = metrics.getFontMetrics().getDescent();
height = metrics.getFontMetrics().getHeight();

8. Add the following four drawString() statements to display the values. Use
the expression y += INCREASE_SMALL to change the vertical position of each
String by the constant.

metrics.drawString("Leading is " + leading,
x, y += INCREASE_SMALL);

metrics.drawString("Ascent is " + ascent,
x, y += INCREASE_SMALL);

metrics.drawString("Descent is " + descent,
x, y += INCREASE_SMALL);

metrics.drawString("Height is " + height,
x, y += INCREASE_SMALL);

}

(continued)

(continues)

CH A P T E R 1 6 Graphics

916

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

9. Add a main() method, and include a closing curly brace for the class:

public static void main(String[] args)
{

JDemoFontMetrics frame = new JDemoFontMetrics();
frame.setSize(250, 350);
frame.setVisible(true);

}
}

10. Save the file as JDemoFontMetrics.java, and then compile it. When you
run the program, the output should look like Figure 16-30. Notice that even
though each Font object was constructed with a size of 16, the individual
statistics vary for each Font object.

11. Close the frame to end the program.

(continued)

Figure 16-30 Output of the JDemoFontMetrics program

(continues)

Learning More About Fonts

917

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using FontMetrics Methods to Place a Border Around a String

Next, you use the FontMetrics methods to draw a rectangle around a String.
Instead of guessing at appropriate pixel positions, you can use the height and width
of the String to create a box with borders placed symmetrically around the String.

1. Open a new file in your text editor, and enter the first few lines of a JBoxAround
JFrame:

import javax.swing.*;
import java.awt.*;
public class JBoxAround extends JFrame
{

2. Enter the following statements to add a String, a Font, and variables to hold
the font metrics and x- and y-coordinates:

String movieQuote =
new String("An offer he can’t refuse");

Font serifItalic = new Font("Serif", Font.ITALIC, 20);
int leading, ascent, height, width;
int x = 40, y = 60;

3. Create the following named constant that holds a number indicating the
dimensions in pixels of the rectangle that you draw around the String:

static final int BORDER = 5;

4. Add a constructor as follows:

public JBoxAround()
{

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
}

5. Add the following paint() method, which sets the font, draws the String,
and obtains the font metrics:

public void paint(Graphics gr)
{

super.paint(gr);
gr.setFont(serifItalic);
gr.drawString(movieQuote, x, y);
leading = gr.getFontMetrics().getLeading();
ascent = gr.getFontMetrics().getAscent();
height = gr.getFontMetrics().getHeight();
width = gr.getFontMetrics().stringWidth(movieQuote);

(continued)

(continues)

CH A P T E R 1 6 Graphics

918

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6. Draw a rectangle around the String using the following drawRect() method.
In Figure 16-31, the x- and y-coordinates of the upper-left edge are set at
x - BORDER, y - (ascent + leading + BORDER). The proper width and
height are then determined to draw a uniform rectangle around the string.

The values of the x- and y-coordinates used in the drawString() method
indicate the left side of the baseline of the first character in the String. You
want to position the upper-left corner of the rectangle five pixels to the left
of the String, so the first argument to drawRect() is five less than x, or
x - BORDER. The second argument to drawRect() is the y-coordinate of the
String minus the ascent of the String, minus the leading of the String,
minus five, or y - (ascent + leading + BORDER). The final two arguments
to drawRect() are the width and height of the rectangle. The width is
the String’s width plus five pixels on the left and five pixels on the right.
The height of the rectangle is the String’s height, plus five pixels above the
String and five pixels below the String.

gr.drawRect(x - BORDER, y - (ascent + leading + BORDER),
width + 2 * BORDER, height + 2 * BORDER);

}

7. Add the following main() method and a closing brace for the class:

public static void main(String[] args)
{

JBoxAround frame = new JBoxAround();
frame.setSize(330, 100);
frame.setVisible(true);

}
}

8. Save the file as JBoxAround.java. Compile and execute it. Your output
should look like Figure 16-31.

9. Experiment with changing the contents of the String, the x and y starting
coordinates, and the value of the BORDER constant. Confirm that the rectangle
is drawn symmetrically around any String object.

(continued)

Figure 16-31 Output of the JBoxAround program

Learning More About Fonts

919

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Drawing with Java 2D Graphics
Drawing operations earlier in this chapter were called using a Graphics object—either an
automatically generated one that was passed to the paint() method or one the programmer
instantiated. In addition, you can call drawing operations using an object of the Graphics2D
class. The advantage of using Java 2D objects is the higher-quality, two-dimensional (2D)
graphics, images, and text they provide.

Features of some of the 2D classes include:

l Fill patterns, such as gradients

l Strokes that define the width and style of a drawing stroke

l Anti-aliasing, a graphics technique for producing smoother screen graphics

Graphics2D is found in the java.awt package. A Graphics2D object is produced by casting, or
converting and promoting, a Graphics object. For example, in a paint() method that
automatically receives a Graphics object, you can cast the object to a Graphics2D object
using the following code to start the method:

public void paint(Graphics pen)
{

Graphics2D newpen = (Graphics2D)pen;

The process of drawing with Java 2D objects includes:

l Specifying the rendering attributes

l Setting a drawing stroke

l Creating objects to draw

Specifying the Rendering Attributes
The first step in drawing a 2D object is to specify how a drawn object is rendered. Whereas
drawings that are not 2D can only use the attribute Color, with 2D you can designate other
attributes, such as line width and fill patterns. You specify 2D colors by using the setColor()
method, which works like the Graphics method of the same name. Using a Graphics2D
object, you can set the color to black using the following code:

gr2D.setColor(Color.BLACK);

Fill patterns control how a drawing object is filled in. In addition to using a solid color, 2D
fill patterns can be a gradient fill, a texture, or even a pattern that you devise. A fill pattern
is created by using the setPaint() method of Graphics2D with a fill pattern object as the
only argument. Classes from which you can construct a fill pattern include Color,
TexturePaint, and GradientPaint.

A gradient fill is a gradual shift from one color at one coordinate point to a different color at
a second coordinate point. If the color shift occurs once between the points—for example,
slowly changing from yellow to red—you are using an acyclic gradient, one that does not

CH A P T E R 1 6 Graphics

920

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

cycle between the colors. If the shift occurs repeatedly, such as from yellow to red and back to
yellow again, you are using a cyclic gradient, one that does cycle between the colors.

Figure 16-32 shows an application that demonstrates acyclic and cyclic gradient fills. The
first shaded setPaint() method call sets a gradient that begins at coordinates 20, 40 in
LIGHT_GRAY and ends at coordinates 180, 100 in DARK_GRAY. The last argument to the
GradientPaint() constructor is false, indicating an acyclic gradient. After the Graphics2D
object’s paint is applied, a filled rectangle is drawn over the same area. These statements
produce the rectangle on the left in Figure 16-33, which gradually shifts from light gray to
dark gray, moving down and to the right. The second shaded setPaint() statement in Figure
16-32 establishes a new gradient beginning farther to the right. In this statement, the final
argument to GradientPaint() is true, creating a cyclic gradient. As you can see on the right
side in Figure 16-33, this rectangle’s shading changes gradually across its surface.

Later in this chapter, you will learn about the Rectangle2D.Double class used to create the rectangles
in this application.

import javax.swing.*;
import java.awt.*;
import java.awt.geom.*;
import java.awt.Color;
public class JGradient extends JFrame
{

public void paint(Graphics gr)
{

super.paint(gr);
int x = 20, y = 40, x2 = 180, y2 = 100;
Graphics2D gr2D = (Graphics2D)gr;
gr2D.setPaint(new GradientPaint(x, y, Color.LIGHT_GRAY,

x2, y2, Color.DARK_GRAY, false));
gr2D.fill(new Rectangle2D.Double(x, y, x2, y2));
x = 210;
gr2D.setPaint(new GradientPaint(x, y, Color.LIGHT_GRAY,

x2, y2, Color.DARK_GRAY, true));
gr2D.fill(new Rectangle2D.Double(x, y, x2, y2));

}
public static void main(String[] args)
{

JGradient frame = new JGradient();
frame.setSize(440, 180);
frame.setVisible(true);

}
}

Figure 16-32 The JGradient class

Drawing with Java 2D Graphics

921

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Setting a Drawing Stroke
All lines in non-2D graphics operations are drawn as solid, with square ends and a line width
of one pixel. With the 2D methods, the drawing line is a stroke, which represents a single
movement as if you were using a drawing tool, such as a pen or a pencil. In Java 2D, you can
change a stroke’s width using the setStroke() method. Stroke is actually an interface; the
class that defines line types and implements the Stroke interface is named BasicStroke. A
BasicStroke constructor takes three arguments:

l A float value representing the line width

l An int value determining the type of cap decoration at the end of a line

l An int value determining the style of juncture between two line segments

BasicStroke class variables determine the endcap and juncture style arguments. Endcap
styles apply to the ends of lines that do not join with other lines, and include CAP_BUTT,
CAP_ROUND, and CAP_SQUARE. Juncture styles, for lines that join, include JOIN_MITER,
JOIN_ROUND, and JOIN_BEVEL.

The following statements create a BasicStroke object and make it the current stroke:

BasicStroke aLine = new BasicStroke(1.0f,
BasicStroke.CAP_ROUND, BasicStroke.JOIN_ROUND);

Figure 16-34 shows a program that draws a rectangle using a very wide stroke.

Figure 16-33 Output of the JGradient application

CH A P T E R 1 6 Graphics

922

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

import javax.swing.*;
import java.awt.*;
import java.awt.geom.*;
public class JStroke extends JFrame
{

public void paint(Graphics gr)
{

super.paint(gr);
Graphics2D gr2D = (Graphics2D)gr;
BasicStroke aStroke = new BasicStroke(15.0f,

BasicStroke.CAP_ROUND, BasicStroke.JOIN_ROUND);
gr2D.setStroke(aStroke);
gr2D.draw(new Rectangle2D.Double(40, 40, 100, 100));

}
public static void main(String[] args)
{

JStroke frame = new JStroke();
frame.setSize(180, 180);
frame.setVisible(true);

}
}

Figure 16-34 The JStroke class

The shaded statement in the JStroke class sets the BasicStroke width to 15 pixels using
round endcap and juncture parameters. Notice that the line width value is followed by an f,
making the value a float instead of a double. Figure 16-35 shows the drawn rectangle.

Creating Objects to Draw
After you have created a Graphics2D object and specified the rendering attributes, you can
create different objects to draw. Objects that are drawn in Java 2D are first created by defining

Figure 16-35 Output of the JStroke program

Drawing with Java 2D Graphics

923

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

them as geometric shapes using the java.awt.geom package classes. You can define the shape
of lines, rectangles, ovals, and arcs; after you define the shape, you use it as an argument to the
draw() or fill() methods. The Graphics2D class does not have different methods for each
shape you can draw.

Lines

Lines are created using the Line2D.Float class or the Line2D.Double class. Each of these
classes has a constructor that takes four arguments, which are the x- and y-coordinates of the
line endpoints. For example, to create a line from the endpoint 60, 5 to the endpoint 13, 28,
you could write the following:

Line2D.Float line = new Line2D.Float(60F, 5F, 13F, 28F);

It also is possible to create lines based on points. You can use the Point2D.Float or Point2D.
Double class to create points that have both x- and y-coordinates. For example, you could
create two Point2D.Float points using the following code:

Point2D.Float pos1 = new Point2D.Float(60F, 5F);
Point2D.Float pos2 = new Point2D.Float(13F, 28F);

Then the code to create a line might be:

Line2D.Float line = new Line2D.Float(pos1, pos2);

Rectangles

You can create rectangles by using a Rectangle2D.Float or a Rectangle2D.Double class. As
with the Line and Point classes, these two classes are distinguished by the type of argument
used to call their constructors: float or double. Both Rectangle2D.Float and Rectangle2D.
Double can be created using four arguments representing the x-coordinate, y-coordinate,
width, and height. For example, the following code creates a Rectangle2D.Float object
named rect at 10, 10 with a width of 50 and height of 40:

Rectangle2D.Float rect = new Rectangle2D.Float(10F, 10F, 50F, 40F);

Ovals

You can create Oval objects with the Ellipse2D.Float or Ellipse2D.Double class. The
Ellipse2D.Float constructor requires four arguments representing the x-coordinate, y-
coordinate, width, and height. The following code creates an Ellipse2D.Float object named
ell at 10, 73 with a width of 40 and height of 20:

Ellipse2D.Float ell = new Ellipse2D.Float(10F, 73F, 40F, 20F);

CH A P T E R 1 6 Graphics

924

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Arcs

You can create arcs with the Arc2D.Float or Arc2D.Double class. The Arc2D.Float
constructor takes seven arguments. The first four arguments represent the x-coordinate, y-
coordinate, width, and height that apply to the ellipse of which the arc is a part. The
remaining three arguments are as follows:

l The starting position of the arc

l The number of degrees it travels

l An integer field indicating how it is closed

The starting position is expressed in degrees in the same way as in the Graphics class drawArc()
method; for example, 0 is the three o’clock position. The number of degrees traveled by the arc
is specified in a counterclockwise direction using positive numbers. The final argument uses one
of the three class fields:

l Arc2D.PIE connects the arc to the center of an ellipse and looks like a pie slice.

l Arc2D.CHORD connects the arc’s endpoints with a straight line.

l Arc2D.OPEN is an unclosed arc.

To create an Arc2D.Float object named ac at 10, 133 with a width of 30 and height of 33, a
starting degree of 30, 120 degrees traveled, and using the class variable Arc2D.PIE, you use the
following statement:

Arc2D.Float ac = new Arc2D.Float(10,133,30,33,30,120,Arc2D.PIE);

Polygons

You create a Polygon object by defining movements from one point to another. The
movement that creates a polygon is a GeneralPath object; the GeneralPath class is found in
the java.awt.geom package.

l The statement GeneralPath pol = new GeneralPath(); creates a GeneralPath object
named pol.

l The moveTo() method of GeneralPath is used to create the beginning point of the
polygon. Thus, the statement pol.moveTo(10F, 193F); starts the polygon named pol at
the coordinates 10, 193.

l The lineTo() method is used to create a line that ends at a new point. The statement
pol.lineTo(25F, 183F); creates a second point using the arguments of 25 and 183 as the
x- and y-coordinates of the new point.

l The statement pol.lineTo(100F, 223F); creates a third point. The lineTo() method
can be used to connect the current point to the original point. Alternatively, you can use
the closePath() method without any arguments.

Drawing with Java 2D Graphics

925

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Drawing with Java 2D Graphics

1. The advantage of using Java 2D objects is the higher-quality, 2D graphics,
images, and text they provide.

2. With Java’s 2D graphics, you can designate attributes such as color, line width,
and fill patterns.

3. With Java’s 2D methods, the drawing line is a brush that represents a single
movement as if you were using a drawing tool, such as a pen or a pencil.

.li cnep a r o nep a sa
hcus,l oot gni war d a gni su er ewuoy fi sat ne mevo mel gni s a st neser per t aht

ekort s a si enil gni war d eht , sdoht e mD2 s’ avaJ hti W. 3# si t ne met at s esl af ehT

You Do It

Using Drawing Strokes

Next, you create a line with a drawing stroke to illustrate how it can have different
end types and juncture types where lines intersect.

1. Open a new file in your text editor, and then enter the first few lines of a
J2DLine JFrame. (Note that you are importing the java.awt.geom package.)

import javax.swing.*;
import java.awt.*;
import java.awt.geom.*;
public class J2DLine extends JFrame
{

2. Add a constructor:

public J2DLine()
{

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
}

3. Enter the following statements to create a paint() method, create
a Graphics environment gr, and cast the Graphics environment to a
Graphics2D environment gr2D. Create x- and y-points with the
Point2D.Float class.

(continues)

CH A P T E R 1 6 Graphics

926

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public void paint(Graphics gr)
{

super.paint(gr);
Graphics2D gr2D = (Graphics2D)gr;
Point2D.Float pos1 = new Point2D.Float(80, 50);
Point2D.Float pos2 = new Point2D.Float(20, 100);

4. Create a BasicStroke object, and then create a drawing stroke named aStroke.
Note that the line width is set to 15 pixels, and the endcap style and juncture
style are set to CAP_ROUND and JOIN_MITER, respectively.

BasicStroke aStroke = new BasicStroke(15.0f,
BasicStroke.CAP_ROUND, BasicStroke.JOIN_MITER);

5. Add the following code to create a line between the points pos1 and pos2, and
draw the line:

gr2D.setStroke(aStroke);
Line2D.Float line = new Line2D.Float(pos1, pos2);
gr2D.draw(line);

}

6. Add a main() method and the closing curly brace for the class:

public static void main(String[] args)
{

J2DLine frame = new J2DLine();
frame.setSize(100, 120);
frame.setVisible(true);

}
}

7. Save the file as J2DLine.java, and then compile and execute it. Your output
should look like Figure 16-36.

(continued)

Figure 16-36 Output of the J2DLine program

(continues)

Drawing with Java 2D Graphics

927

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8. Experiment by making the JFrame size larger and adding more lines to create
an interesting design.

Working with Shapes

Next, you use the Java 2D drawing object types to create a JFrame that illustrates
sample rectangles, ovals, arcs, and polygons.

1. Open a new file in your text editor, and then enter the first few lines of a
JShapes2D JFrame:

import javax.swing.*;
import java.awt.*;
import java.awt.geom.*;
public class JShapes2D extends JFrame
{

2. Add a constructor that sets the default close operation as follows:

public JShapes2D()
{

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
}

3. Enter the following statements to create a paint() method, create a
Graphics environment gr, and cast the Graphics environment to
a Graphics2D environment gr2D:

public void paint(Graphics gr)
{

super.paint(gr);
Graphics2D gr2D = (Graphics2D)gr;

4. Create two Rectangle2D.Float objects named rect and rect2. Draw the
rect object and fill the rect2 object:

Rectangle2D.Float rect =
new Rectangle2D.Float(20F, 40F, 40F, 40F);

Rectangle2D.Float rect2 =
new Rectangle2D.Float(20F, 90F, 40F, 40F);

gr2D.draw(rect);
gr2D.fill(rect2);

(continued)

(continues)

CH A P T E R 1 6 Graphics

928

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5. Create two Ellipse2D.Float objects named ellipse and ellipse2. Draw
the ellipse object and fill the ellipse2 object:

Ellipse2D.Float ellipse = new
Ellipse2D.Float(20F, 140F, 40F, 40F);

Ellipse2D.Float ellipse2 = new
Ellipse2D.Float(20F, 190F, 40F, 40F);

gr2D.draw(ellipse);
gr2D.fill(ellipse2);

6. Create two Arc2D.Float objects named ac and ac2. Draw the ac object and
fill the ac2 object:

Arc2D.Float ac = new
Arc2D.Float(20, 240, 50, 50, 30, 120, Arc2D.PIE);

Arc2D.Float ac2 = new
Arc2D.Float(20, 290, 50, 50, 30, 120, Arc2D.PIE);

gr2D.draw(ac);
gr2D.fill(ac2);

7. Create a new GeneralPath object named pol. Set the starting point of the
polygon and create two additional points. Use the closePath() method to
close the polygon by connecting the current point to the starting point. Draw
the pol object, and then end the method with a curly brace:

GeneralPath pol = new GeneralPath();
pol.moveTo(20F,320F);
pol.lineTo(40F,380F);
pol.lineTo(100F,400F);
pol.closePath();
gr2D.draw(pol);

}

8. Add a main() method and the final curly brace for the class:

public static void main(String[] args)
{

JShapes2D frame = new JShapes2D();
frame.setSize(100, 420);
frame.setVisible(true);

}
}

9. Save the file as JShapes2D.java, and compile and execute the program.
Your output should look like Figure 16-37. When you are ready, close the
window, and then experiment with making changes to the program to
produce different shapes.

(continued)

(continues)

Drawing with Java 2D Graphics

929

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Don’t Do It
l Don’t forget to call super.paint() as the first statement in the paint() method when

you write a class that extends JFrame. Failing to do so can cause odd results, especially
when you combine GUI widgets with graphics.

l Don’t forget that the setLocation() method works correctly only when it is used after
the layout manager has finished positioning all the application’s components (or in cases
where no layout manager is functioning).

Figure 16-37 Output of the JShapes2D program

(continued)

CH A P T E R 1 6 Graphics

930

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

l Don’t forget that the lower-left corner of a String is placed at the coordinates used when
you call drawString().

l Don’t forget to use paintComponent() rather than paint() when creating graphics on a
JPanel.

Key Terms
To rerender a drawing is to repaint or redisplay it.

Painting is the act of redisplaying a surface.

System-triggered painting operations occur when the system requests a component to
render its contents.

Application-triggered painting operations occur when the internal state of a component has
changed.

The paint() method runs when Java displays a screen; you can write your own paint()
method to override the automatically supplied one whenever you want to paint graphics such
as shapes on the screen.

The Graphics class is an abstract class that descends directly from Object and holds data
about graphics operations and methods for drawing shapes, text, and images.

The repaint() method updates a window when it contains new images.

The setLocation() method allows you to place a component at a specific location within a
JFrame’s content pane.

The drawString() method allows you to draw a String in a JFrame or other component.

The drawLine() method draws a straight line between any two points on the screen.

The drawRect() method draws the outline of a rectangle.

The fillRect() method draws a solid, or filled, rectangle.

The clearRect() method draws a rectangle using the background color to create what
appears to be an empty or “clear” rectangle.

The drawRoundRect() method draws rectangles with rounded corners.

An arc is a portion of a circle.

The draw3DRect() method draws a rectangle that appears to have “shadowing” on two of its
edges—the effect is that of a rectangle that is lit from the upper-left corner and slightly raised
or slightly lowered.

The fill3DRect() method creates filled, 3D rectangles.

Key Terms

931

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The drawOval() method draws an oval.

The fillOval() method draws a solid, filled oval.

The drawArc() method draws an arc.

The fillArc() method creates a solid arc.

The drawPolygon() method draws complex shapes.

The fillPolygon() method draws a solid complex shape.

The addPoint() method adds points to a Polygon object.

The copyArea() method copies any rectangular area to a new location.

The getAvailableFontFamilyNames() method returns the fonts that are available on your
system.

The getDefaultToolkit() method provides information about the system in use.

The getScreenResolution() method returns the screen resolution on the current system.

The getScreenSize() method returns the screen size as a Dimension object.

Ascent is one of three measures of a Font’s height; it is the height of an uppercase character
from a baseline to the top of the character.

Descent is one of three measures of a Font’s height; it measures the part of characters that
“hang below” the baseline, such as the tails on the lowercase letters g and j.

Leading is one of three measures of a Font’s height; it is the amount of space between the
bottom of the descent of one line and the top of the characters in the successive line of type.

The height of a font is the sum of its leading, ascent, and descent.

The getFontMetrics() method in the Graphics class returns a FontMetrics object; with it
you can discover many characteristics of a Font object.

The stringWidth()method in the FontMetrics class contains the integer width of a String.

The Graphics2D class provides tools for 2D drawing.

Fill patterns control how a drawing object is filled in.

A gradient fill is a gradual shift from one color at one coordinate point to a different color at a
second coordinate point.

An acyclic gradient is a fill pattern in which a color shift occurs once between two points.

A cyclic gradient is a fill pattern in which a shift between colors occurs repeatedly between
two points.

A stroke is a line-drawing feature in Java 2D that represents a single movement as if you were
using a drawing tool, such as a pen or a pencil.

The setStroke() method changes a stroke’s width in Java 2D.

CH A P T E R 1 6 Graphics

932

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

BasicStroke is the class that defines line types and implements the Stroke interface.

Endcap styles apply to the ends of lines that do not join with other lines, and include
CAP_BUTT, CAP_ROUND, and CAP_SQUARE.

Juncture styles, for lines that join, include JOIN_MITER, JOIN_ROUND, and JOIN_BEVEL.

Chapter Summary
l Painting operations can be system triggered or application triggered. Painting operations

are performed by a Component’s paint() method, which takes a Graphics argument that
renders output. You override the paint() method in your programs when you want
specific actions to take place when components must be rendered. The setLocation()
method allows you to place a component at a specific location within a JFrame’s content
pane.

l The drawString() method allows you to draw a String. The method requires three
arguments: a String, an x-axis coordinate, and a y-axis coordinate. The drawString()
method is a member of the Graphics class, so you need to use a Graphics object to call it.
You can improve the appearance of strings drawn using Graphics objects by using the
setFont() and setColor() methods.

l Java provides you with several methods for drawing a variety of lines and geometric
shapes, such as drawLine(), drawRect(), drawOval(), drawPolygon(), and others. You
can also use the copyArea() method to copy any rectangular area to a new location.

l If a user’s computer does not have a requested font, Java chooses a default replacement
font. You can discover the fonts that are available on your system by using the
getAvailableFontFamilyNames() method, which is part of the GraphicsEnvironment
class. This class describes the collection of Font objects and GraphicsDevice objects
available to a Java application on a particular platform. You can discover the resolution and
screen size on your system by using the getScreenResolution() and getScreenSize()
methods, which are part of the Toolkit class. The height of every font is the sum of three
parts: ascent, descent, and leading.

l The advantage to using Graphics2D objects is the higher-quality 2D graphics, images, and
text they provide. With 2D you can designate attributes such as line width and fill
patterns.

Review Questions

1. Repainting of a visible surface is triggered by .

a. the operating system
b. the application

c. either of these
d. none of these

Review Questions

933

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. The method that calls the paint() method for you is .

a. callPaint()

b. repaint()

c. requestPaint()

d. draw()

3. The paint() method header requires a(n) argument.

a. void

b. integer

c. String

d. Graphics

4. The setLocation() method .

a. is used to position a JFrame on the screen
b. is used to set regional and national preferences for an application
c. takes two integer arguments that represent position coordinates
d. must be used with every component placed on a JFrame

5. The statement g.drawString(someString, 50, 100); places
someString’s corner at position 50, 100.

a. upper-left
b. lower-left

c. upper-right
d. lower-right

6. If you use the setColor() method to change a Graphics object’s color to
yellow, .

a. only the next output from the object appears in yellow
b. all output from the object for the remainder of the method always appears in

yellow
c. all output from the object for the remainder of the application always appears

in yellow
d. all output from the object appears in yellow until you change the color

7. The correct statement to instantiate a Graphics object named picasso
is .

a. Graphics picasso;

b. Graphics picasso = new Graphics();

c. Graphics picasso = getGraphics();

d. Graphics picasso = getGraphics(new);

8. The statement g.drawRoundRect(100, 100, 100, 100, 0, 0); draws a shape
that looks most like a .

a. square
b. round-edged rectangle

c. circle
d. straight line

CH A P T E R 1 6 Graphics

934

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

9. If you draw an oval with the same value for width and height, you draw
a(n) .

a. circle
b. square

c. rounded square
d. ellipsis

10. The zero-degree position for any arc is at the o’clock position.

a. three
b. six

c. nine
d. twelve

11. The method you use to create a solid arc is .

a. solidArc()

b. fillArc()

c. arcSolid()

d. arcFill()

12. You use the method to copy any rectangular area to a new location.

a. copyRect()

b. copyArea()

c. repeatRect()

d. repeatArea()

13. The measurement of an uppercase character from the baseline to the top of the
character is its .

a. ascent
b. descent

c. leading
d. height

14. To be certain that a vertical series of Strings has enough room to appear in a
frame, you use which of the following statements?

a. g.drawString("Some string",
x, y += g.getFontMetrics().getHeight());

b. g.drawString("Some string",
x, y += g.getFontMetrics().getLeading());

c. g.drawString("Some string", x,
y += g.getFontMetrics().getAscent());

d. g.drawString("Some string",
x, y += g.getFontMetrics().getDescent());

15. You can discover the fonts that are available on your system by using
the .

a. getAvailableFontFamilyNames() method of the GraphicsEnvironment class
b. getFonts() method of the Graphics class
c. getMyFonts() method of the GraphicsFonts class
d. getAllFonts() method of the Fonts class

Review Questions

935

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

16. The getScreenResolution() method and getScreenSize() method .

a. both return the number of pixels as an int type
b. respectively return the number of pixels as an int type and an object of type

Dimension

c. both return an object of type Dimension

d. respectively return the number of pixels as a double type and an object of type
Dimension

17. A Graphics2D object is produced by .

a. the setGraphics2D() method
b. the Graphics2D newpen = Graphics2D() statement
c. the Graphics2D = Graphics(g) statement
d. casting a Graphics object

18. The process of drawing with Java 2D objects includes .

a. specifying the rendering attributes
b. setting a drawing stroke
c. both of the above
d. none of the above

19. A gradient fill is a gradual change in .

a. color
b. font size

c. drawing style
d. line thickness

20. With the 2D methods, the drawing line is a .

a. brush
b. stroke

c. belt
d. draw

Exercises

Programming Exercises

1. Write an application that extends JFrame and that displays a phrase in every font
size from 6 through 20. Save the file as JFontSizes.java.

2. a. Write an application that extends JFrame and that displays a phrase in one color
the first time the user clicks a JButton. The next time the user clicks the
JButton, make the first phrase seem to disappear. (Hint: Redraw it using the
background color.) At the same time, draw the phrase again in a different color,

CH A P T E R 1 6 Graphics

936

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

size, and horizontal position. The third click should change the color, size, and
position of the phrase again. Save the file as JChangeSizeAndColor.java.

b. Modify the JChangeSizeAndColor application so that it continuously changes
the size, color, and location of a phrase as long as the user continues to click the
button. Save the application as JChangeSizeAndColor2.java.

3. Write an application that extends JFrame and that displays a phrase upside down
when the user clicks a button. The phrase is displayed normally when the user
clicks the button again. Save the application as JUpsideDown.java.

4. Write an application that extends JFrame and that displays eight nested rectangles,
like those in Figure 16-38. You may use only one drawRect() statement in the
program. (Hint: Use it in a loop.) Save the file as JNestedBoxes.java.

5. Write an application that extends JFrame and that displays 15 nested circles, like
those in Figure 16-39. You may use only one drawOval() statement in the
program. Save the file as JNestedCircles.java.

Figure 16-38 Output of the JNestedBoxes program

Exercises

937

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6. Write an application that extends JFrame and that displays diagonal lines in a
square, like those in Figure 16-40. Save the file as JDiagonalLines.java.

Figure 16-39 Output of the JNestedCircles program

Figure 16-40 Output of the JDiagonalLines program

CH A P T E R 1 6 Graphics

938

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

7. a. Write an application that extends JFrame and that displays a yellow smiling
face on the screen. Save the file as JSmileFace.java.

b. Add a JButton to the JSmileFace program so the smile changes to a frown
when the user clicks the JButton. Save the file as JSmileFace2.java.

8. a. Use polygons and lines to create a graphics image that looks like a fireworks
display. Write an application that extends JFrame and that displays the
fireworks. Save the file as JFireworks.java.

b. Add a JButton to the JFireworks program. Do not show the fireworks until
the user clicks the JButton. Save the file as JFireworks2.java.

9. a. Write an application that extends JFrame and that displays your name.
Place boxes around your name at intervals of 10, 20, 30, and 40 pixels. Save the
file as JBorders.java.

b. Modify the JBorders program so that each of the four borders is a different
color. Save the file as JBorders2.java.

10. Search the Web for the approximate value of the U.S. dollar in other currencies.
Write an application that extends JFrame and that prompts the user to enter a
value in U.S. dollars. Use Graphics2D methods to display the dollar amount as well
as the equivalent values of two other currencies of your choice. Save the file as
JCurrencies.java.

11. Write an application that extends JFrame and that uses the Graphics2D environ-
ment to create a GeneralPath object. Use the GeneralPath object to create the
outline of your favorite state. Display the state name at the approximate center of
the state boundaries. Save the file as JFavoriteState.java.

12. Write an application that extends JFrame and that draws a realistic-looking stop
sign. Save the file as JStopSign.java.

13. Write an application that displays a JFrame that does the following:

l Turns yellow when the user’s mouse enters the frame

l Turns black when the user’s mouse exits the frame

l Displays a larger circle at a point near where the user left-clicks

l Displays a smaller circle at a point near where the user right-clicks

At most, one circle should appear on the surface of the frame at a time. Save the
file as JMouseFrame.java.

Exercises

939

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

1. Each of the following files in the Chapter16 folder of your downloadable student
files has syntax and/or logic errors. In each case, determine the problem and fix
the program. After you correct the errors, save each file using the same filename
preceded with Fix. For example, DebugSixteen1.java will become
FixDebugSixteen1.java.

a. DebugSixteen1.java
b. DebugSixteen2.java

c. DebugSixteen3.java
d. DebugSixteen4.java

Game Zone

1. a. In Chapter 9, you created a Tic Tac Toe game in which you used a 2D array of
characters to hold Xs and Os for a player and the computer. Now create a
JFrame that uses an array of nine JButtons to represent the Tic Tac Toe grid.
When the user clicks a JButton that has not already been taken, place an X on
the button and then allow the computer to place an O on a different button.
Announce the winner when either the computer or the player achieves three
marks in sequence, or announce that the game was a tie. Figure 16-41 shows a
typical game in progress and after the player has won. Save the game as
JTicTacToe.java.

Debugging Exercises

Figure 16-41 Typical execution of the JTicTacToe program

CH A P T E R 1 6 Graphics

940

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

b. Add a graphic that displays a large letter representing the winning player of the
game in Game Zone exercise 1a. Draw a large X, O, or, in case of a tie, an
overlapping X and O in different colors. Save the game as JTicTacToe2.java.

2. Create an application that plays a card game named Lucky Seven. In real life, the
game can be played with seven cards, each containing a number from 1 through 7,
that are shuffled and dealt number-side down. To start the game, a player turns
over any card. The exposed number on the card determines the position (reading
from left to right) of the next card that must be turned over. For example, if the
player turns over the first card and its number is 7, the next card turned must be
the seventh card (counting from left to right). If the player turns over a card whose
number denotes a position that was already turned, the player loses the game. If the
player succeeds in turning over all seven cards, the player wins.

Instead of cards, you will use seven buttons labeled 1 through 7 from left to right.
Randomly associate one of the seven values 1 through 7 with each button. (In other
words, the associated value might or might not be equivalent to the button’s
labeled value.) When the player clicks a button, reveal the associated hidden
value. If the value represents the position of a button already clicked, the player
loses. If the revealed number represents an available button, force the user to click
it; that is, do not take any action until the user clicks the correct button. After a
player clicks a button, remove the button from play. (After you remove a button,
you can call repaint() to ensure that the image of the button is removed.)

For example, a player might click Button 7, revealing a 4. Then the player clicks
Button 4, revealing a 2. Then the player clicks Button 2, revealing a 7. The player
loses because Button 7 was already used. Save the game as JLuckySeven.java.

3. a. In Chapters 7 and 8, you created a game named Secret Phrase in which the user
guesses a randomly selected secret phrase by entering one letter at a time. Now
create a GUI application that plays the game, allowing users to choose a letter
by selecting one of 26 buttons. (Hint: Consider creating an array of buttons
rather than 26 individually named buttons.)

Disable a letter button once it has been guessed, and after the puzzle is
complete, disable all the letters. Figure 16-42 shows a typical execution (1) after
the user has guessed an A, which is in the phrase; (2) after the user has guessed
a D, which is not in the phrase; and (3) after the user has completed the puzzle.
Save the file as JSecretPhrase.java.

Exercises

941

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 16-42 Typical execution of the JSecretPhrase program

CH A P T E R 1 6 Graphics

942

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

b. Make the JSecretPhrase game more like the traditional letter-guessing game
Hangman by drawing a “hanged” person piece by piece with each missed letter.
For example, when the user chooses a correct letter, place it in the appropriate
position or positions in the phrase, but the first time the user chooses a letter
that is not in the target phrase, draw a head for the “hanged” man. The second
time the user makes an incorrect guess, add a torso. Continue with arms and
legs. If the complete body is drawn before the user has guessed all the letters in
the phrase, display a message indicating that the player has lost the game. If the
user completes the phrase before all the body parts are drawn, display a
message that the player has won. Save the game as JSecretPhrase2.java.

1. In Chapters 14 and 15, you developed an interactive GUI application for Carly’s
Catering. Now, design a JPanel that uses graphics to display a logo for the
company, and modify the GUI application to include it. Save the JPanel class as
JCarlysLogoPanel.java, and save the GUI application as JCarlysCatering.java.

2. In Chapters 14 and 15, you developed an interactive GUI application for Sammy’s
Seashore Rentals. Now, design a JPanel that uses graphics to display a logo for
the company, and modify the GUI application to include it. Save the JPanel
class as JSammysLogoPanel.java, and save the GUI application as
JSammysSeashore.java.

Case Problems

Exercises

943

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

