
CHAPTER15
Advanced GUI Topics

In this chapter, you will:

Use content panes

Use color

Learn more about layout managers

Use JPanels to increase layout options

Create JScrollPanes

Understand events and event handling more thoroughly

Use the AWTEvent class methods

Handle mouse events

Use menus

Unless noted otherwise, all images are © 2014 Cengage Learning

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Understanding the Content Pane
The JFrame class is a top-level container Java Swing class. (The other two top-level container
classes are JDialog and JApplet.) Every GUI component that appears on the screen must be
part of a containment hierarchy. A containment hierarchy is a tree of components that has a
top-level container as its root (that is, at its uppermost level). Every top-level container has a
content pane that contains all the visible components in the container’s user interface. The
content pane can directly contain components like JButtons, or it can hold other containers,
like JPanels, that in turn contain such components.

A top-level container can contain a menu bar. A menu bar is a horizontal strip that
conventionally is placed at the top of a container and contains user options. The menu
bar, if there is one, is just above (and separate from) the content pane. A glass pane resides
above the content pane. Figure 15-1 shows the relationship between a JFrame and its root,
content, and glass panes.

The glass pane is a powerful container feature. Tool tips, which you learned about in Chapter 14, reside on
the glass pane. You also can draw your own graphics on the glass pane “on top of” components on a
JFrame or JApplet. (You will learn about drawing in the Graphics chapter, and about JApplets in the
chapter Applets, Images, and Sound.) If you add a MouseListener to the glass pane, it prevents the
mouse from triggering events on the components below the glass pane on the JFrame.

An additional layered pane exists above the root pane, but it is not often used explicitly by Java programmers.
For more details, see the Java Web site.

Whenever you create a JFrame (or other top-level container), you can get a reference to its
content pane using the getContentPane() method. In Chapter 14, you added and removed
components from JFrames and set their layout managers without understanding you were
using the content pane. You had this ability because Java automatically converts add(),

JFrame

Root pane
Menu bar
Content pane

Glass pane

Figure 15-1 Parts of a JFrame

CH A P T E R 1 5 Advanced GUI Topics

802

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

remove(), and setLayoutManager() statements to more complete versions. For example, the
following three statements are equivalent within a class that descends from JFrame:

this.getContentPane().add(aButton);
getContentPane().add(aButton);
add(aButton);

In the first statement, this refers to the JFrame class in which the statement appears,
and getContentPane() provides a reference to the content pane. In the second statement,
the this reference is implied. In the third statement, both the this reference and the
getContentPane() call are implied.

Although you do not need to worry about the content pane if you only add components to,
remove components from, or set the layout manager of a JFrame, you must refer to the
content pane for all other actions, such as setting the background color.

When you write an application that adds multiple components to a content pane, it is
more efficient to declare an object that represents the content pane than to keep calling the
getContentPane() method. For example, consider the following code in a JFrame class
that adds three buttons:

getContentPane().add(button1);
getContentPane().add(button2);
getContentPane().add(button3);

You might prefer to write the following statements. The call to getContentPane() is made
once, its reference is stored in a variable, and the reference name is used repeatedly with the
call to the add() method:

Container con = getContentPane();
con.add(button1);
con.add(button2);
con.add(button3);

As an example, the class in Figure 15-2 creates a JFrame like the ones you created throughout
Chapter 14, although to keep the example simple, the default close operation was not set and
the button was not assigned any tasks.

import java.awt.*;
import javax.swing.*;
public class JFrameWithExplicitContentPane extends JFrame
{

private final int SIZE = 180;
private Container con = getContentPane();
private JButton button = new JButton("Press Me");

Figure 15-2 The JFrameWithExplicitContentPane class (continues)

Understanding the Content Pane

803

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public JFrameWithExplicitContentPane()
{

super("Frame");
setSize(SIZE, SIZE);
con.setLayout(new FlowLayout());
con.add(button);

}
public static void main(String[] args)
{

JFrameWithExplicitContentPane frame =
new JFrameWithExplicitContentPane();

frame.setVisible(true);
}

}

Figure 15-2 The JFrameWithExplicitContentPane class

In Figure 15-2, the getContentPane() method assigns a reference to a Container named
con, and the Container reference is used later with the setLayout() and add() methods.
Figure 15-3 shows the result. The frame constructed from the class in Figure 15-2 is identical
to the one that would be constructed if the shaded parts were omitted.

When you want to use methods other than add(), remove(), or setLayout(), you must use a
content pane. In the next sections you will learn about methods such as setBackground(),
which is used to change a JFrame’s background color, and setLayout(), which is used to
change a JFrame’s layout manager. If you use these methods with a JFrame instead of its
content pane, the user will not see the results.

(continued)

Figure 15-3 Output of the JFrameWithExplicitContentPane application

CH A P T E R 1 5 Advanced GUI Topics

804

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Understanding the Content Pane

1. Every Java component has a content pane that contains all the visible parts a
user sees.

2. Whenever you create a JFrame, you can get a reference to its content pane
using the getContentPane() method.

3. When you change the background color or layout of a JFrame, you should
change the content pane and not the JFrame directly.

Using Color
The Color class defines colors for you to use in your applications. The Color class can be
used with the setBackground() and setForeground() methods of the Component class to
make your applications more attractive and interesting. When you use the Color class, you
include the statement import java.awt.Color; at the top of your class file.

The statement import java.awt.* uses the wildcard to import all of the types in the java.awt
package, but it does not import java.awt.Color, java.awt.Font, or any other packages within
awt. If you plan to use the classes from java.awt and from java.awt.Color, you must use both
import statements.

The Color class defines named constants that represent 13 colors, as shown in Table 15-1.
Java constants are usually written in all uppercase letters, as you learned in Chapter 2.
However, Java’s creators declared two constants for every color in the Color class—an
uppercase version, such as BLUE, and a lowercase version, such as blue. Earlier versions of
Java contained only the lowercase Color constants. (The uppercase Color constants use an
underscore in DARK_GRAY and LIGHT_GRAY; the lowercase versions are a single word: darkgray
and lightgray.)

Thefalsestatementis#1.Everytop-levelcontainerhasacontentpanethatcontains
allthevisiblecomponentsinthecontainer’suserinterface.

Using Color

805

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You can also create your own Color object with the following statement:

Color someColor = new Color(r, g, b);

In this statement, r, g, and b are numbers representing the intensities of red, green, and blue
you want in your color. The numbers can range from 0 to 255. For example, the color black is
created using r, g, and b values 0, 0, 0, and white is created by 255, 255, 255. The following
statement produces a dark purple color that has red and blue components, but no green.

Color darkPurple = new Color(100, 0, 100);

You can create more than 16 million custom colors using this approach. Some computers
cannot display each of the 16 million possible colors; each computer displays the closest
color it can to the requested color.

You can discover the red, green, or blue components of any existing color with the
methods getRed(), getGreen(), and getBlue(). Each of these methods returns an integer.
For example, you can discover the amount of red in MAGENTA by displaying the value of
Color.MAGENTA.getRed();.

Figure 15-4 shows a short application that sets the background color of a JFrame’s content
pane and sets both the foreground and background colors of a JButton. Figure 15-5 shows
the output.

import java.awt.*;
import javax.swing.*;
import java.awt.Color;
public class JFrameWithColor extends JFrame
{

private final int SIZE = 180;
private Container con = getContentPane();
private JButton button =

new JButton("Press Me");

Figure 15-4 The JFrameWithColor class (continues)

BLACK GREEN RED

BLUE LIGHT_GRAY WHITE

CYAN MAGENTA YELLOW

DARK_GRAY ORANGE

GRAY PINK

Table 15-1 Color class constants

CH A P T E R 1 5 Advanced GUI Topics

806

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public JFrameWithColor()
{

super("Frame");
setSize(SIZE, SIZE);
con.setLayout(new FlowLayout());
con.add(button);
con.setBackground(Color.YELLOW);
button.setBackground(Color.RED);
button.setForeground(Color.WHITE);

}
public static void main(String[] args)
{

JFrameWithColor frame =
new JFrameWithColor();

frame.setVisible(true);
}

}

Figure 15-4 The JFrameWithColor class

Because this book is printed in only two colors, you can’t see the full effect of setting applications’ colors in
the figures. However, when you work through the “You Do It” exercises later in this chapter, you can observe
the effect of color changes on your own monitor.

Figure 15-5 Execution of the JFrameWithColor application

(continued)

Using Color

807

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Using Color

1. The Color class can be used with the setBackground() and setForeground()
methods of the Component class to make your applications more attractive and
interesting.

2. The Color class defines named constants that represent 256 colors.

3. You can create your own Color object using values that represent the
intensities of red, green, and blue you want in your color.

. sr ol oc 31t neser per
t aht st nat snoc de man senif ed ssal c roloC ehT. 2# si t ne met at s esl af ehT

Learning More About Layout Managers
A layout manager is an object that controls the size and position (that is, the layout) of
components inside a Container object. The layout manager that you assign to a Container
determines how its components are sized and positioned. Layout managers are interface
classes that are part of the JDK; they align your components so the components neither
crowd each other nor overlap. For example, you have already learned that the FlowLayout
layout manager positions components in rows from left to right across their container.
Other layout managers arrange components in equally spaced columns and rows or center
components within their container. Each component you place within a Container can also
be a Container itself, so you can assign layout managers within layout managers. The Java
platform supplies layout managers that range from the very simple (FlowLayout and
GridLayout) to the special purpose (BorderLayout and CardLayout) to the very flexible
(GridBagLayout and BoxLayout). Table 15-2 lists each layout manager and situations in
which each is commonly used.

CH A P T E R 1 5 Advanced GUI Topics

808

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using BorderLayout
The BorderLayout manager is the default manager class for all content panes. You can use
the BorderLayout class with any container that has five or fewer components. (However,
any of the components could be a container that holds even more components.) When you
use the BorderLayout manager, the components fill the screen in five regions: north, south,
east, west, and center. Figure 15-6 shows a JFrame that uses BorderLayout; each of the five
regions in the content pane contains a JButton object with descriptive text.

When you add a component to a container that uses BorderLayout, the add() method uses
two arguments: the component and the region to which the component is added. The
BorderLayout class provides five named constants for the regions—BorderLayout.NORTH,
.SOUTH, .EAST, .WEST, and .CENTER—or you can use the Strings those constants represent:

Layout Manager When to Use
BorderLayout Use when you add components to a maximum of five sections arranged

in north, south, east, west, and center positions.

FlowLayout Use when you need to add components from left to right; FlowLayout
automatically moves to the next row when needed, and each component
takes its preferred size.

GridLayout Use when you need to add components into a grid of rows and columns; each
component is the same size.

CardLayout Use when you need to add components that are displayed one at a time.

BoxLayout Use when you need to add components into a single row or a single column.

GridBagLayout Use when you need to set size, placement, and alignment constraints for
every component that you add.

Table 15-2 Java layout managers

Figure 15-6 Output of the JDemoBorderLayout application

Learning More About Layout Managers

809

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

“North”, “South”, “East”, “West”, or “Center”. Figure 15-7 shows the class that creates the
output in Figure 15-6.

import javax.swing.*;
import java.awt.*;
public class JDemoBorderLayout extends JFrame
{

private JButton nb = new JButton("North Button");
private JButton sb = new JButton("South Button");
private JButton eb = new JButton("East Button");
private JButton wb = new JButton("West Button");
private JButton cb = new JButton("Center Button");
private Container con = getContentPane();
public JDemoBorderLayout()
{

con.setLayout(new BorderLayout());
con.add(nb, BorderLayout.NORTH);
con.add(sb, BorderLayout.SOUTH);
con.add(eb, BorderLayout.EAST);
con.add(wb, BorderLayout.WEST);
con.add(cb, BorderLayout.CENTER);
setSize(400, 150);

}
public static void main(String[] args)
{

JDemoBorderLayout frame = new JDemoBorderLayout();
frame.setVisible(true);

}
}

Figure 15-7 The JDemoBorderLayout class

When using BorderLayout, you can use the constants PAGE_START, PAGE_END, LINE_START,
LINE_END, and CENTER instead of NORTH, SOUTH, EAST, WEST, and CENTER. Rather than using
geographical references, these constants correspond to positions as you might picture them on a printed
page. Also, if you add the following import statement at the top of your file, you can simply refer to CENTER
instead of BorderLayout.CENTER:

import static java.awt.BorderLayout.*;

When you place exactly five components in a container and use BorderLayout, each
component fills one entire region, as illustrated in Figure 15-6. When the application runs,
Java determines the exact size of each component based on the component’s contents. When
you resize a Container that uses BorderLayout, the regions also change in size. If you drag
the Container’s border to make it wider, the north, south, and center regions become wider,
but the east and west regions do not change. If you increase the Container’s height, the east,
west, and center regions become taller, but the north and south regions do not change.

CH A P T E R 1 5 Advanced GUI Topics

810

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In Figure 15-7, an anonymous BorderLayout object is created when the constructor is called
from within the setLayout() method. Instead, you could declare a named BorderLayout
object and use its identifier in the setLayout() call. However, it’s not necessary to use either
technique to specify BorderLayout because it is the default layout manager for all content
panes; that’s why, in many examples in the last chapter, you had to specify FlowLayout to
acquire the easier-to-use manager.

When you use BorderLayout, you are not required to add components into each of the five
regions. If you add fewer components, any empty component regions disappear, and the
remaining components expand to fill the available space. If any or all of the north, south, east,
or west areas are left out, the center area spreads into the missing area or areas. However, if
the center area is left out, the north, south, east, or west areas do not change. A common
mistake when using BorderLayout is to add a Component to a content pane or frame without
naming a region. This can result in some of the components not being visible.

Using FlowLayout
Recall from the last chapter, Introduction to Swing Components, that you can use the
FlowLayout manager class to arrange components in rows across the width of a Container.
With FlowLayout, each Component that you add is placed to the right of previously added
components in a row; or, if the current row is filled, the Component is placed to start a
new row.

When you use BorderLayout, the Components you add fill their regions—that is, each
Component expands or contracts based on its region’s size. However, when you use
FlowLayout, each Component retains its default size, or preferred size. For example, a
JButton’s preferred size is the size that is large enough to hold the JButton’s text. When you
use BorderLayout and then resize the window, the components change size accordingly
because their regions change. When you use FlowLayout and then resize the window, each
component retains its size, but it might become partially obscured or change position.

The FlowLayout class contains three constants you can use to align Components with a
Container:

l FlowLayout.LEFT

l FlowLayout.CENTER

l FlowLayout.RIGHT

If you do not specify alignment, Components are center-aligned in a FlowLayout Container
by default. Figure 15-8 shows an application that uses the FlowLayout.LEFT and
FlowLayout.RIGHT constants to reposition JButtons. In this example, a FlowLayout object
named layout is used to set the layout of the content pane. When the user clicks a button,
the shaded code in the actionPerformed() method changes the alignment to left or right
using the FlowLayout class setAlignment() method. Figure 15-9 shows the application when
it starts, how the JButton Components are repositioned after the user clicks the “L” button,
and how the Components are repositioned after the user clicks the “R” button.

Learning More About Layout Managers

811

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
public class JDemoFlowLayout extends JFrame implements ActionListener
{

private JButton lb = new JButton("L Button");
private JButton rb = new JButton("R Button");
private Container con = getContentPane();
private FlowLayout layout = new FlowLayout();
public JDemoFlowLayout()
{

con.setLayout(layout);
con.add(lb);
con.add(rb);
lb.addActionListener(this);
rb.addActionListener(this);
setSize(500, 100);

}
public void actionPerformed(ActionEvent event)
{

Object source = event.getSource();
if(source == lb)

layout.setAlignment(FlowLayout.LEFT);
else

layout.setAlignment(FlowLayout.RIGHT);
con.invalidate();
con.validate();

}
public static void main(String[] args)
{

JDemoFlowLayout frame = new JDemoFlowLayout();
frame.setVisible(true);

}
}

Figure 15-8 The JDemoFlowLayout application

The last statements in the JDemoFlowLayout class call invalidate() and validate().
The invalidate() call marks the container (and any of its parents) as needing to be laid out. The
validate() call causes the components to be rearranged based on the newly assigned layout.

CH A P T E R 1 5 Advanced GUI Topics

812

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using GridLayout
If you want to arrange components into equal rows and columns, you can use the GridLayout
manager class. When you create a GridLayout object, you indicate the numbers of rows and
columns you want, and then the container surface is divided into a grid, much like the screen
you see when using a spreadsheet program. For example, the following statement establishes
an anonymous GridLayout with four horizontal rows and five vertical columns in a
Container named con:

con.setLayout(new GridLayout(4, 5));

Specifying rows and then columns when you use GridLayout might seem natural to you,
because this is the approach you take when defining two-dimensional arrays.

As you add new Components to a GridLayout, they are positioned in sequence from left to
right across each row. Unfortunately, you can’t skip a position or specify an exact position for
a component. (However, you can add a blank label to a grid position to give the illusion of
skipping a position.) You also can specify a vertical and horizontal gap measured in pixels,
using two additional arguments. For example, Figure 15-10 shows a JDemoGridLayout
program that uses the shaded statement to establish a GridLayout with three horizontal rows
and two vertical columns, and horizontal and vertical gaps of five pixels each. Five JButton
Components are added to the JFrame’s automatically retrieved content pane.

Figure 15-9 The JDemoFlowLayout application as it first appears on the screen, after the user
chooses the “L” Button, and after the user chooses the “R” Button

Learning More About Layout Managers

813

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

import javax.swing.*;
import java.awt.*;
public class JDemoGridLayout extends JFrame
{

private JButton b1 = new JButton("Button 1");
private JButton b2 = new JButton("Button 2");
private JButton b3 = new JButton("Button 3");
private JButton b4 = new JButton("Button 4");
private JButton b5 = new JButton("Button 5");
private GridLayout layout = new GridLayout(3, 2, 5, 5);
private Container con = getContentPane();
public JDemoGridLayout()
{

con.setLayout(layout);
con.add(b1);
con.add(b2);
con.add(b3);
con.add(b4);
con.add(b5);
setSize(200, 200);

}
public static void main(String[] args)
{

JDemoGridLayout frame = new JDemoGridLayout();
frame.setVisible(true);

}
}

Figure 15-10 The JDemoGridLayout class

Figure 15-11 shows the output of the JDemoGridLayout application. The Components are
placed into the pane across the three rows. Because there are six positions but only five
Components, one spot remains unused.

CH A P T E R 1 5 Advanced GUI Topics

814

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

With GridLayout, you can specify the number of rows and use 0 for the number of
columns to let the layout manager determine the number of columns, or you can use 0 for
the number of rows, specify the number of columns, and let the layout manager calculate
the number of rows.

When trying to decide whether to use GridLayout or FlowLayout, remember the following:

l Use GridLayout when you want components in fixed rows and columns and you want the
components’ size to fill the available space.

l Use FlowLayout if you want Java to determine the rows and columns, do not want a rigid
row and column layout, and want components to retain their “natural” size so their
contents are fully visible.

Using CardLayout
The CardLayout manager generates a stack of containers or components, one on top of
another, much like a blackjack dealer reveals playing cards one at a time from the top of
a deck. Each component in the group is referred to as a card, and each card can be any
component type—for example, a JButton, JLabel, or JPanel. You use a CardLayout when
you want multiple components to share the same display space.

A card layout is created from the CardLayout class using one of two constructors:

l CardLayout() creates a card layout without a horizontal or vertical gap.

l CardLayout(int hgap, int vgap) creates a card layout with the specified horizontal and
vertical gaps. The horizontal gaps are placed at the left and right edges. The vertical gaps
are placed at the top and bottom edges.

Figure 15-11 Output of the JDemoGridLayout program

Learning More About Layout Managers

815

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

For example, Figure 15-12 shows a JDemoCardLayout class that uses a CardLayout manager
to create a stack of JButtons that contain the labels “Ace of Hearts”, “Three of Spades”,
and “Queen of Clubs”. In the class constructor, you need a slightly different version of the
add() method to add a component to a content pane whose layout manager is CardLayout.
The format of the method is:

add(aString, aContainer);

In this statement, aString represents a name you want to use to identify the Component
card that is added.

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
public class JDemoCardLayout extends JFrame

implements ActionListener
{

private CardLayout cards = new CardLayout();
private JButton b1 = new JButton("Ace of Hearts");
private JButton b2 = new JButton("Three of Spades");
private JButton b3 = new JButton("Queen of Clubs");
private Container con = getContentPane();
public JDemoCardLayout()
{

con.setLayout(cards);
con.add("ace", b1);
b1.addActionListener(this);
con.add("three", b2);
b2.addActionListener(this);
con.add("queen", b3);
b3.addActionListener(this);
setSize(200, 100);

}
public void actionPerformed(ActionEvent e)
{

cards.next(getContentPane());
}
public static void main(String[] args)
{

JDemoCardLayout frame = new JDemoCardLayout();
frame.setVisible(true);

}
}

Figure 15-12 The JDemoCardLayout class

CH A P T E R 1 5 Advanced GUI Topics

816

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In a program that has a CardLayout manager, a change of cards is usually triggered by a user’s
action. For example, in the JDemoCardLayout program, each JButton can trigger the
actionPerformed() method. Within this method, the statement next(getContentPane())
flips to the next card of the container. (The order of the cards depends on the order in
which you add them to the container.) You also can use previous(getContentPane());,
first(getContentPane());, and last(getContentPane()); to flip to the previous, first, and
last card, respectively. You can go to a specific card by using the String name assigned in
the add() method call. For example, in the application in Figure 15-12, the following
statement would display “Three of Spades” because "three" is used as the first argument
when the b2 object is added to the content pane in the JDemoCardLayout constructor:

cards.show(getContentPane(), "three");

Figure 15-13 shows the output of the JDemoCardLayout program when it first appears on the
screen, after the user clicks the button once, and after the user clicks the button a second
time. Because each JButton is a card, each JButton consumes the entire viewing area in the
container that uses the CardLayout manager. If the user continued to click the card buttons
in Figure 15-13, the cards would continue to cycle in order.

The JTabbedPane class operates like a container with a CardLayout, but folder-type tabs
are in place for the user to select the various components. You can find out more about the class
at www.oracle.com/technetwork/java/index.html.

Using Advanced Layout Managers
Just as professional Java programmers are constantly creating new Components, they also
create new layout managers. You are certain to encounter new and interesting layout
managers during your programming career; you might even create your own.

For example, when GridLayout is not sophisticated enough for your purposes, you can use
GridBagLayout. The GridBagLayout manager allows you to add Components to precise
locations within the grid, as well as to indicate that specific Components should span multiple
rows or columns within the grid. For example, if you want to create a JPanel with six
JButtons, in which two of the JButtons are twice as wide as the others, you can use
GridBagLayout. This class is difficult to use because you must set the position and size for

Figure 15-13 Output of JDemoCardLayout when it first appears on the screen, after the user
clicks once, and after the user clicks twice

Learning More About Layout Managers

817

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.oracle.com/technetwork/java/index.html

each component, and more than 20 methods are associated with the class. Visit the Java
Web site for details on how to use this class.

Another layout manager option is the BoxLayout manager, which allows multiple
components to be laid out either vertically or horizontally. The components do not wrap, so a
vertical arrangement of components, for example, stays vertically arranged when the frame
is resized. The Java Web site can provide you with details.

Watch the video Layout Managers.

TWO TRUTHS & A LIE

Learning More About Layout Managers

1. The FlowLayout manager is the default manager class for all content panes.

2. The BorderLayout manager can directly hold only up to five components.

3. The GridLayout manager arranges components in rows and columns.
. senapt net nocll a r of ssal c

r egana mtl uaf ed eht si r egana mtuoyaLredroB ehT. 1# si t ne met at s esl af ehT

You Do It

Using BorderLayout

Using layout managers in the containers in your applications allows flexibility in
arranging the components that users see on the screen. In this section, you create
a JFrame that uses a BorderLayout and place components in each region. In the
following sections, you will observe how the same components appear when other
layout managers are used.

1. Open a new file in your text editor, and then type the following first few lines
of a program that demonstrates BorderLayout with five objects:

import javax.swing.*;
import java.awt.*;
public class JBorderLayout extends JFrame
{

(continues)

CH A P T E R 1 5 Advanced GUI Topics

818

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. Instantiate five JButton objects, each with a label that is the name of one of the
regions used by BorderLayout:

private JButton nb = new JButton("North");
private JButton sb = new JButton("South");
private JButton eb = new JButton("East");
private JButton wb = new JButton("West");
private JButton cb = new JButton("Center");

3. Write the constructor that sets the JFrame’s layout manager and adds each of
the five JButtons to the appropriate region. Also set the default close operation
for the JFrame.

public JBorderLayout()
{

setLayout(new BorderLayout());
add(nb, BorderLayout.NORTH);
add(sb, BorderLayout.SOUTH);
add(eb, BorderLayout.EAST);
add(wb, BorderLayout.WEST);
add(cb, BorderLayout.CENTER);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

}

4. Add a main() method that instantiates a JBorderLayout object and sets its size
and visibility, and include a closing curly brace for the class:

public static void main(String[] args)
{

JBorderLayout jbl = new JBorderLayout();
jbl.setSize(250, 250);
jbl.setVisible(true);

}
}

5. Save the file as JBorderLayout.java, and then compile and execute it.
The output looks like Figure 15-14. Each JButton entirely fills its region.
(If you click the JButtons, they appear to be pressed, but because you have
not implemented ActionListener, no other action is taken.)

(continues)

(continued)

Learning More About Layout Managers

819

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6. So you can observe the effects of changing the size of the viewing area,
use your mouse to drag the right border of the JFrame to increase the width
to approximately that shown in Figure 15-15. Notice that the center region
expands, while the east and west regions retain their original size.

Figure 15-15 Output of the JBorderLayout program after the user drags the right
border to increase the width

(continued)

Figure 15-14 Output of the JBorderLayout program

(continues)

CH A P T E R 1 5 Advanced GUI Topics

820

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

7. Experiment with resizing both the width and height of the JFrame. Close the
JFrame when you finish.

Using Fewer than Five Components with the BorderLayout Manager

When you use JBorderLayout, you are not required to place components in every
region. For example, you might use only four components, leaving the north region
empty. Next, you remove one of the objects from the JBorderLayout JFrame to
observe the effect.

1. Open the JBorderLayout.java file in your text editor. Immediately save it as
JBorderLayoutNoNorth.java.

2. Change the class name to JBorderLayoutNoNorth. Also change the constructor
name and the two instances of the class name in the main() method.

3. Remove the declaration of the “North” button, and within the constructor,
remove the statement that adds the “North” button to the JFrame.

4. Save the file, compile it, and then run the program. The output appears as
shown in Figure 15-16. The center region occupies the space formerly held
by the north region.

5. Experiment with removing some of the other components from the
JBorderLayoutNoNorth program.

(continued)

Figure 15-16 Output of the JBorderLayoutNoNorth program

(continues)

Learning More About Layout Managers

821

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using FlowLayout

Next, you modify the JBorderLayout program to demonstrate how the same
components appear when using FlowLayout.

1. Open the JBorderLayout.java file in your text editor, and immediately save it as
JFlowLayoutRight.java.

2. Change the class name from JBorderLayout to JFlowLayoutRight. Also change
the constructor name and the references to the name in the main() method.

3. Within the constructor, change the setLayout() statement to use FlowLayout
and right alignment:

setLayout(new FlowLayout(FlowLayout.RIGHT));

4. Alter each of the five add() statements so that just the button name appears
within the parentheses and the region is omitted. For example, add(nb,
BorderLayout.NORTH); becomes the following:

add(nb);

5. Save the file, and then compile and execute it. Your output should look like
Figure 15-17. The components have their “natural” size (or preferred size)—the
minimum size the buttons need to display their labels. The buttons flow across the
JFrame surface in a row until no more can fit; in Figure 15-17 the last two buttons
added cannot fit in the first row, so they appear in the second row, right-aligned.

(continued)

Figure 15-17 Output of the JFlowLayoutRight program

(continues)

CH A P T E R 1 5 Advanced GUI Topics

822

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6. Experiment with widening and narrowing the JFrame, and observe how the
components realign. Then close the JFrame.

Using GridLayout

Next, you modify a JFrame to demonstrate GridLayout.

1. Open the JFlowLayoutRight.java file in your text editor, and save the file as
JGridLayout.java.

2. Change the class name from JFlowLayoutRight to JGridLayout. Change the
constructor name and the two references to the class in the main() method.

3. Within the constructor, change the setLayout() statement to establish a
GridLayout with two rows, three columns, a horizontal space of two pixels, and
a vertical space of four pixels:

setLayout(new GridLayout(2, 3, 2, 4));

4. Save the file, and then compile and execute it. The components are arranged
in two rows and three columns from left to right across each row, in the order
they were added to their container. Because there are only five components,
one grid position still is available. See Figure 15-18.

5. Close the program.

(continued)

Figure 15-18 Output of the JGridLayout program

(continues)

Learning More About Layout Managers

823

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using CardLayout

Next, you create a CardLayout with five cards, each holding one of the JButtons used
in the previous examples.

1. Open the JGridLayout.java file in your text editor, and save the file as
JCardLayout.java.

2. Change the class name from JGridLayout to JCardLayout. Also change
the constructor name and the two references in the main() method.

3. Within the constructor, change the setLayout() statement to establish a
CardLayout:

setLayout(new CardLayout());

4. Change the five add() statements that add the buttons to the content pane
so that each includes a String that names the added component, as follows:

add("north", nb);
add("south", sb);
add("east", eb);
add("west", wb);
add("center", cb);

5. Save the file, and then compile and execute it. The output looks like
Figure 15-19. You see only the “North” JButton because, as the first
one added, it is the top card. You can click the button, but no actions take
place because you have not implemented ActionListener.

(continued)

Figure 15-19 Output of the JCardLayout program

(continues)

CH A P T E R 1 5 Advanced GUI Topics

824

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6. Close the program.

Viewing All the Cards in CardLayout

Next, you modify the JCardLayout program so that its buttons can initiate events that
allow you to view all five JButtons you add to the content pane.

1. Open the JCardLayout.java file in your text editor, and save the file as
JCardLayout2.java.

2. Change the class name, constructor name, and two main() method references
from JCardLayout to JCardLayout2.

3. At the top of the file, add the import statement that adds the classes and
methods that allow the class to respond to events:

import java.awt.event.*;

4. At the end of the class header, insert the following phrase so the JFrame can
respond to button clicks:

implements ActionListener

5. Instead of an anonymous layout manager, you need to create a CardLayout
manager with an identifier that you can use with the next() method when the
user clicks a button. Immediately after the five JButton declaration statements,
insert the following statement:

CardLayout cardLayout = new CardLayout();

6. Within the constructor, change the setLayout() statement so it uses the named
layout manager:

setLayout(cardLayout);

7. At the end of the constructor, add five statements that allow each of the buttons
to initiate an ActionEvent:

nb.addActionListener(this);
sb.addActionListener(this);
eb.addActionListener(this);
wb.addActionListener(this);
cb.addActionListener(this);

(continued)

(continues)

Learning More About Layout Managers

825

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8. After the constructor’s closing curly brace, add an actionPerformed() method
that responds to user clicks. The method uses the next() method to display the
next card (next button) in the collection.

public void actionPerformed(ActionEvent e)
{

cardLayout.next(getContentPane());
}

9. Save, compile, and run the program. The output looks the same as in
Figure 15-19: you see only the “North” JButton. However, when you click it,
the button changes to “South”, “East”, “West”, and “Center” in succession.
Close the JFrame when you finish.

Using the JPanel Class
Using the BorderLayout, FlowLayout, GridLayout, and CardLayout managers would provide
a limited number of screen arrangements if you could place only one Component in a section
of the layout. Fortunately, you can greatly increase the number of possible component
arrangements by using the JPanel class. A JPanel is a plain, borderless surface that can hold
lightweight UI components. Figure 15-20 shows the inheritance hierarchy of the JPanel class.
You can see that every JPanel is a Container; you use a JPanel to hold other UI components,
such as JButtons, JCheckBoxes, or even other JPanels. By using JPanels within JPanels, you
can create an infinite variety of screen layouts. The default layout manager for every JPanel is
FlowLayout.

To add a component to a JPanel, you call the container’s add() method, using the
component as the argument. For example, Figure 15-21 shows the code that creates a
JFrameWithPanels class that extends JFrame. A JButton is added to a JPanel named panel1,
and two more JButtons are added to another JPanel named panel2. Then panel1 and
panel2 are added to the JFrame’s content pane.

(continued)

Figure 15-20 The inheritance hierarchy of the JPanel class

CH A P T E R 1 5 Advanced GUI Topics

826

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

import javax.swing.*;
import java.awt.*;
import java.awt.Color;
public class JFrameWithPanels extends JFrame
{

private final int WIDTH = 250;
private final int HEIGHT = 120;
private JButton button1 = new JButton("One");
private JButton button2 = new JButton("Two");
private JButton button3 = new JButton("Three");
public JFrameWithPanels()
{

super("JFrame with Panels");
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
JPanel panel1 = new JPanel();
JPanel pane12 = new JPanel();
Container con = getContentPane();
con.setLayout(new FlowLayout());
con.add(panel1);
con.add(panel2);
panel1.add(button1);
panel1.setBackground(Color.BLUE);
panel2.add(button2);
panel2.add(button3);
panel2.setBackground(Color.BLUE);
setSize(WIDTH, HEIGHT);

}
public static void main(String[] args)
{

JFrameWithPanels frame = new JFrameWithPanels();
frame.setVisible(true);

}
}

Figure 15-21 The JFrameWithPanels class

Figure 15-22 shows the output of the JFrameWithPanels program. Two JPanels have been
added to the JFrame. Because this application uses the setBackground() method to make
each JPanel’s background blue, you can see where one panel ends and the other begins. The
first JPanel contains a single JButton, and the second one contains two JButtons.

Using the JPanel Class

827

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

When you create a JPanel object, you can use one of four constructors. The different
constructors allow you to use default values or to specify a layout manager and whether
the JPanel is double buffered. If you indicate double buffering, which is the default buffering
strategy, you specify that additional memory space will be used to draw the JPanel offscreen
when it is updated. With double buffering, a redrawn JPanel is displayed only when it is
complete; this provides the viewer with updated screens that do not flicker while being
redrawn. The four constructors are as follows:

l JPanel() creates a JPanel with double buffering and a flow layout.

l JPanel(LayoutManager layout) creates a JPanel with the specified layout manager and
double buffering.

l JPanel(Boolean isDoubleBuffered) creates a JPanel with a flow layout and the
specified double-buffering strategy.

l JPanel(LayoutManager layout, Boolean isDoubleBuffered) creates a JPanel with the
specified layout manager and the specified buffering strategy.

When you employ double buffering, the visible screen surface is called the primary surface, and the
offscreen image is called the back buffer. The act of copying the contents from one surface to another is
frequently referred to as a block line transfer, or blitting, because of the acronym blt, pronounced blit.
Double buffering prevents “tearing,” the visual effect that occurs when you see parts of different images
because the redrawing rate is not fast enough. As with most beneficial features, double buffering has a cost:
additional memory requirements.

As with many aspects of Java, there are multiple ways to achieve the same results. For
example, each of the following techniques creates a JPanel that uses a BorderLayout
manager:

l You can create a named layout and use it as an argument in a JPanel constructor:

BorderLayout border = new BorderLayout();
JPanel myPanel = new JPanel(border);

l You can use an anonymous layout manager in the JPanel constructor:

JPanel myPanel = new JPanel(new BorderLayout());

Figure 15-22 Output of the JFrameWithPanels application

CH A P T E R 1 5 Advanced GUI Topics

828

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

l You can create a JPanel and then set its layout manager using the setLayout() method:

JPanel myPanel = new JPanel();
myPanel.setLayout(new BorderLayout());

When a JPanel will have a layout other than FlowLayout, specifying the layout manager
when you create the JPanel is preferable for performance reasons. If you create the JPanel
first and change its layout later, you automatically create an unnecessary FlowLayout object
for the original instantiation.

You add components to a JPanel with the add() method. Figure 15-23 shows a
JDemoManyPanels program in which the JFrame contains four JPanels and 12 JButtons
that each display a single spelled-out number so you can better understand their positions.
The automatically supplied content pane for the JFrame is assigned a BorderLayout, and
each JPanel is assigned either a GridLayout or FlowLayout and placed in one of the regions
(leaving the north region empty). One or more JButtons are then placed on each JPanel.
Figure 15-24 shows the output as the user adjusts the borders of the JFrame to change its
size. Using the code as a guide, be certain you understand why each JButton appears as
it does in the JFrame.

import javax.swing.*;
import java.awt.*;
public class JDemoManyPanels extends JFrame
{
// Twelve buttons

private JButton button01 = new JButton("One");
private JButton button02 = new JButton("Two");
private JButton button03 = new JButton("Three");
private JButton button04 = new JButton("Four");
private JButton button05 = new JButton("Five");
private JButton button06 = new JButton("Six");
private JButton button07 = new JButton("Seven");
private JButton button08 = new JButton("Eight");
private JButton button09 = new JButton("Nine");
private JButton button10 = new JButton("Ten");
private JButton button11 = new JButton("Eleven");
private JButton button12 = new JButton("Twelve");

// Four panels
private JPanel panel01 = new JPanel(new GridLayout(2, 0));
private JPanel panel02 = new JPanel(new FlowLayout());
private JPanel panel03 = new JPanel(new FlowLayout());
private JPanel panel04 = new JPanel(new GridLayout(2, 0));

Figure 15-23 The JDemoManyPanels class (continues)

Using the JPanel Class

829

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public JDemoManyPanels()
{

setLayout(new BorderLayout());
add(panel01, BorderLayout.WEST);
add(panel02, BorderLayout.CENTER);
add(panel03, BorderLayout.SOUTH);
add(panel04, BorderLayout.EAST);

panel01.add(button01);
panel01.add(button02);
panel01.add(button03);

panel02.add(button04);
panel02.add(button05);
panel02.add(button06);

panel03.add(button07);

panel04.add(button08);
panel04.add(button09);
panel04.add(button10);
panel04.add(button11);
panel04.add(button12);

setSize(400, 250);
}
public static void main(String[] args)
{

JDemoManyPanels frame = new JDemoManyPanels();
frame.setVisible(true);

}
}

Figure 15-23 The JDemoManyPanels class

If you were creating a program with as many buttons and panels as the one in Figure 15-23, you might prefer
to create arrays of the components instead of so many individually named ones. This example does not use
an array so you can more easily see how each component is placed.

(continued)

CH A P T E R 1 5 Advanced GUI Topics

830

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 15-24 Output of the JDemoManyPanels program: three views as the user adjusts the
JFrame borders

Using the JPanel Class

831

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Swing containers other than JPanel and content panes generally provide Application Program Interface
(API) methods that you should use instead of the add() method. See the Java Web site for details.

GridLayout provides you with rows and columns that are similar to a two-dimensional array.
Therefore, it particularly lends itself to displaying arrays of objects. For example, Figure 15-25
contains a Checkerboard class that displays a pattern of eight rows and columns in alternating
colors. The JPanel placed in the content pane has a GridLayout of eight by eight. Sixty-four
JPanels are declared, and in a loop, one by one, they are instantiated and assigned to a section
of the grid (see shaded statements). After each set of eight JPanels is assigned to the grid
(when x is evenly divisible by 8), the first and second color values are reversed, so that the first
row starts with a blue square, the second row starts with a white square, and so on. Within
each row, all the even-positioned squares are filled with one color, and the odd-positioned
squares are filled with the other. Figure 15-26 shows the output.

import java.awt.*;
import javax.swing.*;
import java.awt.Color;
public class Checkerboard extends JFrame
{

private final int ROWS = 8;
private final int COLS = 8;
private final int GAP = 2;
private final int NUM = ROWS * COLS;
private int x;
private JPanel pane = new JPanel

(new GridLayout(ROWS, COLS, GAP, GAP));
private JPanel[] panel = new JPanel[NUM];
private Color color1 = Color.WHITE;
private Color color2 = Color.BLUE;
private Color tempColor;
public Checkerboard()
{

super("Checkerboard");
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
add(pane);
for(x = 0; x < NUM; ++x)
{

panel[x] = new JPanel();
pane.add(panel[x]);
if(x % COLS == 0)
{

tempColor = color1;
color1 = color2;
color2 = tempColor;

}

Figure 15-25 The Checkerboard class (continues)

CH A P T E R 1 5 Advanced GUI Topics

832

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

if(x % 2 == 0)
panel[x].setBackground(color1);

else
panel[x].setBackground(color2);

}
}
public static void main(String[] args)
{

Checkerboard frame = new Checkerboard();
final int SIZE = 300;
frame.setSize(SIZE, SIZE);
frame.setVisible(true);

}
}

Figure 15-25 The Checkerboard class

Figure 15-26 Output of the Checkerboard application

(continued)

Using the JPanel Class

833

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

When creating the Checkerboard class, you might be tempted to create just two JPanels,
one blue and one white, and add them to the content pane multiple times. However, each
GUI component can be contained only once. If a component is already in a container and you
try to add it to another container, the component will be removed from the first container
and then added to the second.

Watch the video The JPanel Class.

TWO TRUTHS & A LIE

Using the JPanel Class

1. A JPanel is a plain, borderless surface that can hold lightweight UI components.

2. To add a component to a JPanel, you call the component’s add() method,
using the JPanel as the argument.

3. Different JPanel constructors allow you to use default values or to specify a
layout manager and whether the JPanel is double buffered.

.t ne mugr a eht sat nenop moc eht gni su, doht e m)(dda
s’ r eni at noc eht ll ac uoy, lenaPJ a ot t nenop moc a dda oT. 2# si t ne met at s esl af ehT

Creating JScrollPanes
When components in a Swing UI require more display area than they have been allocated,
you can use a JScrollPane container to hold the components in a way that allows a user to
scroll initially invisible parts of the pane into view. A JScrollPane provides scroll bars along
the side or bottom of a pane, or both, with a viewable area called a viewport. Figure 15-27
displays the inheritance hierarchy of the JScrollPane class.

Figure 15-27 The inheritance hierarchy of the JScrollPane class

CH A P T E R 1 5 Advanced GUI Topics

834

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The JScrollPane constructor takes one of four forms:

l JScrollPane() creates an empty JScrollPane in which both horizontal and vertical
scroll bars appear when needed.

l JScrollPane(Component) creates a JScrollPane that displays the contents of the
specified component.

l JScrollPane(Component, int, int) creates a JScrollPane that displays the specified
component and includes both vertical and horizontal scroll bar specifications.

l JScrollPane(int, int) creates a JScrollPane with both vertical and horizontal scroll
bar specifications.

When you create a simple scroll pane using the constructor that takes no arguments, as in the
following example, horizontal and vertical scroll bars appear only if they are needed, that is, if
the contents of the pane cannot be fully displayed without them:

JScrollPane aScrollPane = new JScrollPane();

To force the display of a scroll bar, you can use class variables defined in the
ScrollPaneConstants class, as follows:

ScrollPaneConstants.HORIZONTAL_SCROLLBAR_AS_NEEDED
ScrollPaneConstants.HORIZONTAL_SCROLLBAR_ALWAYS
ScrollPaneConstants.HORIZONTAL_SCROLLBAR_NEVER
ScrollPaneConstants.VERTICAL_SCROLLBAR_AS_NEEDED
ScrollPaneConstants.VERTICAL_SCROLLBAR_ALWAYS
ScrollPaneConstants.VERTICAL_SCROLLBAR_NEVER

For example, the following code creates a scroll pane that displays an image named picture, a
vertical scroll bar, and no horizontal scroll bar:

JScrollPane scroll = new JScrollPane(picture,
ScrollPaneConstants.VERTICAL_SCROLLBAR_ALWAYS,
ScrollPaneConstants.HORIZONTAL_SCROLLBAR_NEVER);

Figure 15-28 shows a JScrollDemo class in which a label with a large font is added to a panel.
The scroll pane named scroll includes the panel and two scroll bars.

import javax.swing.*;
import java.awt.*;
public class JScrollDemo extends JFrame
{

private JPanel panel = new JPanel();
private JScrollPane scroll = new JScrollPane(panel,

ScrollPaneConstants.VERTICAL_SCROLLBAR_ALWAYS,
ScrollPaneConstants.HORIZONTAL_SCROLLBAR_ALWAYS);

Figure 15-28 The JScrollDemo application (continues)

Creating JScrollPanes

835

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

private JLabel label = new JLabel("Four score and seven");
private Font bigFont = new Font("Arial", Font.PLAIN, 20);
private Container con;
public JScrollDemo()
{

super("JScrollDemo");
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
con = getContentPane();
label.setFont(bigFont);
con.add(scroll);
panel.add(label);

}
public static void main(String[] args)
{

final int WIDTH = 180;
final int HEIGHT = 100;
JScrollDemo aFrame = new JScrollDemo();
aFrame.setSize(WIDTH, HEIGHT);
aFrame.setVisible(true);

}
}

Figure 15-28 The JScrollDemo application

The JScrollDemo object in the program in Figure 15-28 is purposely set small enough
(180 × 100) so that only part of the label it contains is visible at a time. A user can slide
the scroll bars to view the entire label. Figure 15-29 shows the output with the scroll bar
in two positions.

Figure 15-29 Output of the JScrollDemo application

(continued)

CH A P T E R 1 5 Advanced GUI Topics

836

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Creating JScrollPanes

1. A JScrollPane can provide scroll bars along the side or bottom of a pane,
or both.

2. When you create a simple scroll pane using the constructor that takes no
arguments, horizontal and vertical scroll bars appear only if they are needed.

3. You cannot force the display of a scroll bar in a JScrollPane unless the
components it contains require too much room.

.r abll or cs af o yal psi d eht ecr of ot ssal c stnatsnoCenaPllorcS
eht ni denif ed sel bai r av ssal c esu nac uoY. 3# si t ne met at s esl af ehT

A Closer Look at Events and Event Handling
In the chapter Introduction to Swing Components, you worked with ActionEvents and
ItemEvents that are generated when a user works with a control that is included in one of
your programs. The parent class for all events is EventObject, which descends from the
Object class. EventObject is the parent of AWTEvent, which in turn is the parent of specific
event classes such as ActionEvent and ItemEvent. The abstract class AWTEvent is contained
in the package java.awt.event. Although you might think it would have been logical for the
developers to name the event base class Event, there is no currently active, built-in Java class
named Event (although there was one in Java 1.0). Figure 15-30 illustrates the inheritance
hierarchy of these relationships.

Figure 15-30 The inheritance hierarchy of event classes

A Closer Look at Events and Event Handling

837

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You can see in Figure 15-30 that ComponentEvent is a parent to several event classes,
including InputEvent, which is a parent of KeyEvent and MouseEvent. The family tree for
events has roots that go fairly deep, but the class names are straightforward, and they share
basic roles within your programs. For example, ActionEvents are generated by components
that users can click, such as JButtons and JCheckBoxes, and TextEvents are generated by
components into which the user enters text, such as a JTextField. MouseEvents include
determining the location of the mouse pointer and distinguishing between a single- and
double-click. Table 15-3 lists some common user actions and the events that are generated
from them.

Because ActionEvents involve the mouse, it is easy to confuse ActionEvents and
MouseEvents. If you are interested in ActionEvents, you focus on changes in a component
(for example, a JButton on a JFrame being pressed); if you are interested in MouseEvents,
your focus is on what the user does manually with the mouse (for example, clicking the left
mouse button).

When you write programs with GUIs, you are always handling events that originate with the
mouse or keys on specific Components or Containers. Just as your telephone notifies you
when you have a call, the computer’s operating system notifies the user when an AWTEvent
occurs, for example, when the mouse is clicked. Just as you can ignore your phone when
you’re not expecting or interested in a call, you can ignore AWTEvents. If you don’t care about
an event, such as when your program contains a component that produces no effect when
clicked, you simply don’t look for a message to occur.

When you care about events—that is, when you want to listen for an event—you can
implement an appropriate interface for your class. Each event class shown in Table 15-3 has a
listener interface associated with it, so that for every event class, <name>Event, there is a
similarly named <name>Listener interface. For example, ActionEvent has an
ActionListener interface. (The MouseEvent class has an additional listener besides
MouseListener: MouseMotionListener.)

User Action Resulting Event Type

Click a button ActionEvent

Click a component MouseEvent

Click an item in a list box ItemEvent

Click an item in a check box ItemEvent

Change text in a text field TextEvent

Open a window WindowEvent

Iconify a window WindowEvent

Press a key KeyEvent

Table 15-3 Examples of user actions and their resulting event types

CH A P T E R 1 5 Advanced GUI Topics

838

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Remember that an interface contains only abstract methods, so all interface methods are empty. If you
implement a listener, you must provide your own methods for all the methods that are part of the interface.
Of course, you can leave the methods empty in your implementation, providing a header and curly braces but
no statements.

Every <name>Listener interface method has the return type void, and each takes one
argument: an object that is an instance of the corresponding <name>Event class. Thus, the
ActionListener interface has an event handler method named actionPerformed(), and its
header is void actionPerformed(ActionEvent e). When an action takes place, the
actionPerformed() method executes, and e represents an instance of that event. Instead of
implementing a listener class, you can extend an adapter class. An adapter class implements
all the methods in an interface, providing an empty body for each method. For example, the
MouseAdapter class provides an empty method for all the methods contained in
MouseListener. The advantage to extending an adapter class instead of implementing a
listener class is that you need to write only the methods you want to use, and you do not have
to bother creating empty methods for all the others. (If a listener has only one method, there
is no need for an adapter. For example, the ActionListener class has one method,
actionPerformed(), so there is no ActionAdapter class.)

Whether you use a listener or an adapter, you create an event handler when you write
code for the listener methods; that is, you tell your class how to handle the event. After
you create the handler, you must also register an instance of the class with the component
that you want the event to affect. For any <name>Listener, you must use the form
object.add<name>Listener(Component) to register an object with the Component that will
listen for objects emanating from it. The add<name>Listener() methods, such as
addActionListener() and addItemListener(), all work the same way. They register a
listener with a Component, return void, and take a <name>Listener object as an argument.
For example, if a JFrame is an ActionListener and contains a JButton named pushMe, then
the following statement registers this JFrame as a listener for the pushMe JButton:

pushMe.addActionListener(this);

Table 15-4 lists the events with their listeners and handlers.

A Closer Look at Events and Event Handling

839

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

An Event-Handling Example: KeyListener
You use the KeyListener interface when you are interested in actions the user initiates
from the keyboard. The KeyListener interface contains three methods: keyPressed(),
keyTyped(), and keyReleased(). For most keyboard applications in which the user must
press a keyboard key, it is probably not important whether you take resulting action when a

Event Listener(s) Handler(s)
ActionEvent ActionListener actionPerformed(ActionEvent)

ItemEvent ItemListener itemStateChanged(ItemEvent)

TextEvent TextListener textValueChanged(TextEvent)

AdjustmentEvent AdjustmentListener adjustmentValueChanged
(AdjustmentEvent)

ContainerEvent ContainerListener componentAdded(ContainerEvent)
componentRemoved(ContainerEvent)

ComponentEvent ComponentListener componentMoved(ComponentEvent)
componentHidden(ComponentEvent)
componentResized(ComponentEvent)
componentShown(ComponentEvent)

FocusEvent FocusListener focusGained(FocusEvent)
focusLost(FocusEvent)

MouseEvent MouseListener
MouseMotionListener

mousePressed(MouseEvent)
mouseReleased(MouseEvent)
mouseEntered(MouseEvent)
mouseExited(MouseEvent)
mouseClicked(MouseEvent)
mouseDragged(MouseEvent)
mouseMoved(MouseEvent)

KeyEvent KeyListener keyPressed(KeyEvent)
keyTyped(KeyEvent)
keyReleased(KeyEvent)

WindowEvent WindowListener windowActivated(WindowEvent)
windowClosing(WindowEvent)
windowClosed(WindowEvent)
windowDeiconified(WindowEvent)
windowIconified(WindowEvent)
windowOpened(WindowEvent)

MouseWheelEvent MouseWheelListener mouseWheelMoved(MouseWheelEvent)

Table 15-4 Events with their related listeners and handlers

CH A P T E R 1 5 Advanced GUI Topics

840

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

user first presses a key, during the key press, or upon the key’s release; most likely, these
events occur in quick sequence. However, on those occasions when you don’t want to take
action while the user holds down the key, you can place the actions in the keyReleased()
method. It is best to use the keyTyped() method when you want to discover which character
was typed. When the user presses a key that does not generate a character, such as a function
key (sometimes called an action key), keyTyped() does not execute. The methods
keyPressed() and keyReleased() provide the only ways to get information about keys that
don’t generate characters. The KeyEvent class contains constants known as virtual key codes
that represent keyboard keys that have been pressed. For example, when you type A, two
virtual key codes are generated: Shift and “a”. The virtual key code constants have names such
as VK_SHIFT and VK_ALT. See the Java Web site for a complete list of virtual key codes.
Figure 15-31 shows a JDemoKeyFrame class that uses the keyTyped() method to discover
which key the user typed last.

Java programmers call keyTyped() events “higher-level” events because they do not depend on the
platform or keyboard layout. (For example, the key that generates VK_Q on a U.S. keyboard layout
generates VK_A on a French keyboard layout.) In contrast, keyPressed() and keyReleased()
events are “lower-level” events and do depend on the platform and keyboard layout. According to the
Java documentation, using keyTyped() is the preferred way to find out about character input.

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
public class JDemoKeyFrame extends JFrame

implements KeyListener
{

private JLabel prompt = new JLabel("Type keys below:");
private JLabel outputLabel = new JLabel();
private JTextField textField = new JTextField(10);
public JDemoKeyFrame()
{

setTitle("JKey Frame");
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setLayout(new BorderLayout());
add(prompt, BorderLayout.NORTH);
add(textField, BorderLayout.CENTER);
add(outputLabel, BorderLayout.SOUTH);
addKeyListener(this);
textField.addKeyListener(this);

}
public void keyTyped(KeyEvent e)
{

char c = e.getKeyChar();
outputLabel.setText("Last key typed: " + c);

}

Figure 15-31 The JDemoKeyFrame class (continues)

A Closer Look at Events and Event Handling

841

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public void keyPressed(KeyEvent e)
{
}
public void keyReleased(KeyEvent e)
{
}
public static void main(String[] args)
{

JDemoKeyFrame keyFrame = new JDemoKeyFrame();
final int WIDTH = 250;
final int HEIGHT = 100;
keyFrame.setSize(WIDTH, HEIGHT);
keyFrame.setVisible(true);

}
}

Figure 15-31 The JDemoKeyFrame class

A prompt in the north border area asks the user to type in the text field in the center area.
With each key press by the user, the keyTyped() method changes the label in the south
border area of the frame to display the key that generated the most recent KeyEvent.
Figure 15-32 shows the output after the user has typed several characters into the text field.

Watch the video Event Handling.

(continued)

Figure 15-32 Output of the JDemoKeyFrame application after the user has typed several characters

CH A P T E R 1 5 Advanced GUI Topics

842

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

A Closer Look at Events and Event Handling

1. ActionEvents are generated by components that users can click, TextEvents
are generated by components into which the user enters text, and MouseEvents
are generated by mouse actions.

2. Every <name>Listener interface method has a return type that refers to an
instance of the corresponding <name>Event class.

3. An adapter class implements all the methods in an interface, providing an empty
body for each method.

. ssal c tnevE>eman< gni dnopserr oc
eht f o ecnat sni na si t aht t cej bo na:t ne mugr a eno sekat hcae dna, diov epyt

nr ut er eht sah doht e mecafr et ni renetsiL>eman< yr evE. 2# si t ne met at s esl af ehT

Using AWTEvent Class Methods
In addition to the handler methods included with the event listener interfaces, the AWTEvent
classes themselves contain many other methods that return information about an event. For
example, the ComponentEvent class contains a getComponent() method that allows you to
determine which of multiple Components generates an event. The WindowEvent class contains
a similar method, getWindow(), that returns the Window that is the source of an event.
Table 15-5 lists some useful methods for many of the event classes. All Components have
these methods:

l addComponentListener()

l addFocusListener()

l addMouseListener()

l addMouseMotionListener()

Using AWTEvent Class Methods

843

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You can call any of the methods listed in Table 15-5 by using the object-dot-method format
that you use with all class methods. For example, if you have a KeyEvent named inputEvent
and an integer named unicodeVal, the following statement is valid:

unicodeVal = inputEvent.getKeyChar();

When you use an event, you can use any of the event’s methods, and through the power of
inheritance, you can also use methods that belong to any superclass of the event. For example,

Class Method Purpose
EventObject Object getSource() Returns the Object involved in the event

ComponentEvent Component getComponent() Returns the Component involved in the event

WindowEvent Window getWindow() Returns the Window involved in the event

ItemEvent Object getItem() Returns the Object that was selected or
deselected

ItemEvent int getStateChange() Returns an integer named
ItemEvent.SELECTED or
ItemEvent.DESELECTED

InputEvent int getModifiers() Returns an integer to indicate which mouse
button was clicked

InputEvent int getWhen() Returns a time indicating when the event
occurred

InputEvent boolean isAltDown() Returns whether the Alt key was pressed when
the event occurred

InputEvent boolean isControlDown() Returns whether the Ctrl key was pressed
when the event occurred

InputEvent boolean isShiftDown() Returns whether the Shift key was pressed
when the event occurred

KeyEvent int getKeyChar() Returns the Unicode character entered from
the keyboard

MouseEvent int getClickCount() Returns the number of mouse clicks; lets you
identify the user’s double-clicks

MouseEvent int getX() Returns the x-coordinate of the mouse pointer

MouseEvent int getY() Returns the y-coordinate of the mouse pointer

MouseEvent Point getPoint() Returns the Point Object that contains the x-
and y-coordinates of the mouse location

Table 15-5 Useful event class methods

CH A P T E R 1 5 Advanced GUI Topics

844

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

any KeyEvent has access to the InputEvent, ComponentEvent, AWTEvent, EventObject, and
Object methods, as well as to the KeyEvent methods.

Understanding x- and y-Coordinates
Table 15-5 refers to x- and y-coordinates of a mouse pointer. A window or frame consists of
a number of horizontal and vertical pixels on the screen. Any component you place on the
screen has a horizontal, or x-axis, position as well as a vertical, or y-axis, position in the
window. The upper-left corner of any display is position 0, 0. The first, or x-coordinate,
value increases as you travel from left to right across the window. The second, or
y-coordinate, value increases as you travel from top to bottom. Figure 15-33 illustrates
some screen coordinate positions.

TWO TRUTHS & A LIE

Using AWTEvent Class Methods

1. You use many of the AWTEvent class methods to determine the nature of and
facts about an event.

2. The getSource() method returns the Object involved in an event, and the
getComponent() method returns the Component involved in an event.

3. The methods isAltDown() and isShiftDown() are ActionEvent methods.

. sdoht e mtnevEyeK
er a)(nwoDtfihSsi dna)(nwoDtlAsi sdoht e mehT. 3# si t ne met at s esl af ehT

x

y
10, 10 100, 10

60, 80

Figure 15-33 Screen coordinate positions

Using AWTEvent Class Methods

845

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Handling Mouse Events
Even though Java program users sometimes type characters from a keyboard, when you
write GUI programs you probably expect users to spend most of their time operating a
mouse. The MouseMotionListener interface provides you with methods named
mouseDragged() and mouseMoved() that detect the mouse being rolled or dragged across a
component surface. The MouseListener interface provides you with methods named
mousePressed(), mouseClicked(), and mouseReleased() that are analogous to the keyboard
event methods keyPressed(), keyTyped(), and keyReleased(). With a mouse, however, you
are interested in more than its button presses; you sometimes simply want to know where a
mouse is pointing. The additional interface methods mouseEntered() and mouseExited()
inform you when the user positions the mouse over a component (entered) or moves the
mouse off a component (exited). The MouseInputListener interface implements all the
methods in both the MouseListener and MouseMotionListener interfaces; although it has no
methods of its own, it is a convenience when you want to handle many different types of
mouse events. Tables 15-6 and 15-7 show the methods of the MouseListener and
MouseMotionListener classes, respectively.

Many of the methods in Tables 15-6 and 15-7 also appear in tables earlier in this chapter. They are organized
by interface here so you can better understand the scope of methods that are available for mouse actions.
Don’t forget that because MouseListener, MouseMotionListener, and MouseInputListener
are interfaces, you must include each method in every program that implements them, even if you choose to
place no instructions within some of the methods.

Method Description
void mouseClicked(MouseEvent e) Invoked when the mouse button has been clicked

(pressed and released) on a component

void mouseEntered(MouseEvent e) Invoked when the mouse pointer enters a component

void mouseExited(MouseEvent e) Invoked when the mouse pointer exits a component

void mousePressed(MouseEvent e) Invoked when a mouse button has been pressed on a
component

void mouseReleased(MouseEvent e) Invoked when a mouse button has been released on a
component

Table 15-6 MouseListener methods

CH A P T E R 1 5 Advanced GUI Topics

846

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The MouseWheelListener interface contains just one method named mouseWheelMoved(), and it
accepts a MouseWheelEvent argument.

Each of the methods in Tables 15-6 and 15-7 accepts a MouseEvent argument. A MouseEvent
is the type of event generated by mouse manipulation. Figure 15-34 shows the inheritance
hierarchy of the MouseEvent class. From this diagram, you can see that a MouseEvent is a
type of InputEvent, which is a type of ComponentEvent. The MouseEvent class contains
many instance methods and fields that are useful in describing mouse-generated events.
Table 15-8 lists some of the more useful methods of the MouseEvent class, and Table 15-9
lists some fields.

Method Description
int getButton() Returns which, if any, of the mouse buttons has changed state; uses fields

NOBUTTON, BUTTON1, BUTTON2, and BUTTON3

int getClickCount() Returns the number of mouse clicks associated with the current event

int getX() Returns the horizontal x-position of the event relative to the source
component

int getY() Returns the vertical y-position of the event relative to the source component

Table 15-8 Some useful MouseEvent methods

Figure 15-34 The inheritance hierarchy of the MouseEvent class

Method Description
void mouseDragged(MouseEvent e) Invoked when a mouse button is pressed on a

component and then dragged

void mouseMoved(MouseEvent e) Invoked when the mouse pointer has been moved
onto a component but no buttons have been pressed

Table 15-7 MouseMotionListener methods

Handling Mouse Events

847

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 15-35 shows a JMouseActionFrame application that demonstrates several of the
mouse listener and event methods. JMouseActionFrame extends JFrame, and because it
implements the MouseListener interface, it must include all five methods—mouseClicked(),
mouseEntered(), mouseExited(), mousePressed(), and mouseReleased()—even though no
actions are included in the mousePressed() or mouseReleased() methods.

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
public class JMouseActionFrame extends JFrame implements MouseListener
{

private int x, y;
private JLabel label= new JLabel("Do something with the mouse");
String msg = "";

public JMouseActionFrame()
{

setTitle("Mouse Actions");
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setLayout(new FlowLayout());
addMouseListener(this);
add(label);

}

Figure 15-35 The JMouseActionFrame application (continues)

Field Description
static int BUTTON1 Indicates mouse button #1; used by getButton()

static int BUTTON2 Indicates mouse button #2; used by getButton()

static int BUTTON3 Indicates mouse button #3; used by getButton()

static int NOBUTTON Indicates no mouse buttons; used by getButton()

static int MOUSE_CLICKED The “mouse clicked” event

static int MOUSE_DRAGGED The “mouse dragged” event

static int MOUSE_ENTERED The “mouse entered” event

static int MOUSE_EXITED The “mouse exited” event

Table 15-9 Some useful MouseEvent fields

CH A P T E R 1 5 Advanced GUI Topics

848

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public void mouseClicked(MouseEvent e)
{

int whichButton = e.getButton();
msg = "You pressed mouse ";
if(whichButton == MouseEvent.BUTTON1)

msg += "button 1.";
else

if(whichButton == MouseEvent.BUTTON2)
msg += "button 2.";

else
msg += "button 3.";

msg += " You are at position " +
e.getX() + ", " + e.getY() + ".";

if(e.getClickCount() == 2)
msg += " You double-clicked.";

else
msg += " You single-clicked.";

label.setText(msg);
}
public void mouseEntered(MouseEvent e)
{

msg = "You entered the frame.";
label.setText(msg);

}
public void mouseExited(MouseEvent e)
{

msg = "You exited the frame.";
label.setText(msg);

}

public void mousePressed(MouseEvent e)
{
}

public void mouseReleased(MouseEvent e)
{
}
public static void main(String[] args)
{

JMouseActionFrame mFrame = new JMouseActionFrame();
final int WIDTH = 750;
final int HEIGHT = 300;
mFrame.setSize(WIDTH, HEIGHT);
mFrame.setVisible(true);

}
}

Figure 15-35 The JMouseActionFrame application

(continued)

Handling Mouse Events

849

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The JMouseActionFrame application in Figure 15-35 displays messages as the user generates
mouse actions. At the start of the class, two integers are declared to hold the mouse
position x- and y-coordinates. A JLabel and a String are also declared to hold messages
that inform the user of the mouse actions taken. In the first shaded section of Figure 15-35,
the constructor sets a frame title by passing it to the parent of JMouseActionFrame, sets a
close operation, sets the layout manager, enables the frame to listen for mouse events, and
adds the JLabel to the JFrame.

In Figure 15-35, most of the action occurs in the mouseClicked() method (the second
unshaded area in the figure). The method builds a String that is ultimately assigned to
the JLabel. The same actions could have been placed in the mousePressed() or
mouseReleased() method because the statements could be placed in the frame just as well
at either of those times. Within the mouseClicked() method, the MouseEvent object named
e is used several times. It is used with the getButton() method to determine which mouse
button the user clicked, getX() and getY() are used to retrieve the mouse position, and
getClickCount() is used to distinguish between single- and double-clicks.

In Figure 15-35, different messages also are generated in the mouseEntered() and
mouseExited() methods, so the user is notified when the mouse pointer has “entered”—that
is, passed over the surface area of—the JFrame, the component that is listening for actions.

The main() method at the end of the class creates one instance of the JMouseActionFrame
class and sets its size and visibility.

Figure 15-36 shows the JMouseActionFrame application during execution. At this point, the
user has just clicked the left mouse button near the upper-right corner of the frame. Of
course, in your own applications you might not want only to notify users of their mouse
actions; instead, you might want to perform calculations, create files, or generate any other
programming tasks.

Figure 15-36 Typical execution of the JMouseActionFrame application

CH A P T E R 1 5 Advanced GUI Topics

850

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Handling Mouse Events

1. The MouseMotionListener interface provides you with methods that detect the
mouse being rolled or dragged across a component surface.

2. The MouseListener interface provides you with methods that are analogous to
the keyboard event methods keyPressed(), keyTyped(), and keyReleased().

3. The MouseListener interface implements all the methods in the
MouseInputListener interface.

. secafr et ni renetsiLnoitoMesuoM dna renetsiLesuoM eht ht ob ni sdoht e m
eht ll a st ne mel p mi ecafr et ni renetsiLtupnIesuoM ehT. 3# si t ne met at s esl af ehT

Using Menus
Menus are lists of user options; they are commonly added features in GUI programs.
Application users are used to seeing horizontal menu bars across the tops of frames, and
they expect to be able to click those options to produce drop-down lists that display more
choices. The horizontal list of JMenus is a JMenuBar. Each JMenu can contain options, called
JMenuItems, or can contain submenus that also are JMenus. For example, Figure 15-37 shows
a JFrame that illustrates the use of the following components:

l A JMenuBar that contains two JMenus named File and Colors.

l Three items within the Colors JMenu: Bright, Dark, and White. Dark and White are
JMenuItems. Bright is a JMenu that holds a submenu. You can tell that Bright is a
submenu because an arrow sits to the right of its name, and when the mouse hovers over
Bright, two additional JMenuItems appear: Pink and Yellow.

Using Menus

851

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

To create the output shown in Figure 15-37, a series of JMenuBar, JMenu, and JMenuItem
objects were created and put together in stages. You can create each of the components you
see in the menus in Figure 15-37 as follows:

l You can create a JMenuBar much like other objects—by using the new operator and a call
to the constructor, as follows:

JMenuBar mainBar = new JMenuBar();

l You can create the two JMenus that are part of the JMenuBar:

JMenu menu1 = new JMenu("File");
JMenu menu2 = new JMenu("Colors");

l The three components within the Colors JMenu are created as follows:

JMenu bright = new JMenu("Bright");
JMenuItem dark = new JMenuItem("Dark");
JMenuItem white = new JMenuItem("White");

l The two JMenuItems that are part of the Bright JMenu are created as follows:

JMenuItem pink = new JMenuItem("Pink");
JMenuItem yellow = new JMenuItem("Yellow");

Once all the components are created, you assemble them.

l You add the JMenuBar to a JFrame using the setJMenuBar() method as follows:

setJMenuBar(mainBar);

Submenu

Menu items

Menu bar

Menu

Figure 15-37 A JFrame with a horizontal JMenuBar that holds two JMenus

CH A P T E R 1 5 Advanced GUI Topics

852

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using the setJMenuBar() method assures that the menu bar is anchored to the top of the
frame and looks like a conventional menu bar. Notice that the JMenuBar is not added to a
JFrame’s content pane; it is added to the JFrame itself.

l The JMenus are added to the JMenuBar using the add() method. For example:

mainBar.add(menu1);
mainBar.add(menu2);

l A submenu and two JMenuItems are added to the Colors menu as follows:

menu2.add(bright);
menu2.add(dark);
menu2.add(white);

l A submenu can contain its own JMenuItems. For example, the Bright JMenu that is part of
the Colors menu in Figure 15-37 contains its own two JMenuItem objects:

bright.add(pink);
bright.add(yellow);

Figure 15-38 shows a complete working program that creates a frame with a greeting and the
JMenu shown in Figure 15-37.

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.awt.Color;
public class JMenuFrame extends JFrame implements

ActionListener
{

private JMenuBar mainBar = new JMenuBar();
private JMenu menu1 = new JMenu("File");
private JMenu menu2 = new JMenu("Colors");
private JMenuItem exit = new JMenuItem("Exit");
private JMenu bright = new JMenu("Bright");
private JMenuItem dark = new JMenuItem("Dark");
private JMenuItem white = new JMenuItem("White");
private JMenuItem pink = new JMenuItem("Pink");
private JMenuItem yellow = new JMenuItem("Yellow");
private JLabel label = new JLabel("Hello");

Figure 15-38 The JMenuFrame class (continues)

Using Menus

853

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public JMenuFrame()
{

setTitle("Menu Demonstration");
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setLayout(new FlowLayout());
setJMenuBar(mainBar);
mainBar.add(menu1);
mainBar.add(menu2);
menu1.add(exit);
menu2.add(bright);
menu2.add(dark);
menu2.add(white);
bright.add(pink);
bright.add(yellow);
exit.addActionListener(this);
dark.addActionListener(this);
white.addActionListener(this);
pink.addActionListener(this);
yellow.addActionListener(this);
add(label);
label.setFont(new Font("Arial", Font.BOLD, 26));

}
public void actionPerformed(ActionEvent e)
{

Object source = e.getSource();
Container con = getContentPane();
if(source == exit)

System.exit(0);
else if(source == dark)

con.setBackground(Color.BLACK);
else if(source == white)

con.setBackground(Color.WHITE);
else if(source == pink)

con.setBackground(Color.PINK);
else con.setBackground(Color.YELLOW);

}

public static void main(String[] args)
{

JMenuFrame mFrame = new JMenuFrame();
final int WIDTH = 250;
final int HEIGHT = 200;
mFrame.setSize(WIDTH, HEIGHT);
mFrame.setVisible(true);

}
}

Figure 15-38 The JMenuFrame class

(continued)

CH A P T E R 1 5 Advanced GUI Topics

854

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In the application in Figure 15-38, each JMenuItem becomes a source for an ActionEvent, and
the JFrame is assigned the role of listener for each. The actionPerformed() method
determines the source of any generated event. If the user selects the Exit option from the File
menu, the application ends. If the user selects any of the colors from the Colors menu, the
background color of the JFrame is altered accordingly.

Using JCheckBoxMenuItem and
JRadioButtonMenuItem Objects
The JCheckBoxMenuItem and JRadioButtonMenuItem classes derive from the JMenuItem
class. Each provides more specific menu items as follows:

l JCheckBoxMenuItem objects appear with a check box next to them. An item can be
selected (displaying a check mark in the box) or not. Usually, you use check box items to
turn options on or off.

l JRadioButtonMenuItem objects appear with a round radio button next to them. Users
usually expect radio buttons to be mutually exclusive, so you usually make radio buttons
part of a ButtonGroup. Then, when any radio button is selected, the others are all
deselected.

The state of a JCheckBoxMenuItem or JRadioButtonMenuItem can be determined with the
isSelected() method, and you can alter the state of the check box with the setSelected()
method.

Figure 15-39 shows a JMenuFrame2 application in which two JCheckBoxMenuItems and
three JRadioButtonMenuItems have been added to a JMenu. The controls have not yet been
assigned any tasks, but Figure 15-40 shows how the menu looks when the application
executes.

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
public class JMenuFrame2 extends JFrame
{

private JMenuBar mainBar = new JMenuBar();
private JMenu menu1 = new JMenu("File");
private JCheckBoxMenuItem check1 = new

JCheckBoxMenuItem("Check box A");
private JCheckBoxMenuItem check2 = new

JCheckBoxMenuItem("Check box B");

Figure 15-39 The JMenuFrame2 application (continues)

Using Menus

855

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

private JRadioButtonMenuItem radio1 = new
JRadioButtonMenuItem("Radio option 1");

private JRadioButtonMenuItem radio2 = new
JRadioButtonMenuItem("Radio option 2");

private JRadioButtonMenuItem radio3 = new
JRadioButtonMenuItem("Radio option 3");

private ButtonGroup group = new ButtonGroup();

public JMenuFrame2()
{

setTitle("Menu Demonstration");
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setLayout(new FlowLayout());
setJMenuBar(mainBar);
mainBar.add(menu1);
menu1.add(check1);
menu1.add(check2);
menu1.addSeparator();
menu1.add(radio1);
menu1.add(radio2);
menu1.add(radio3);
group.add(radio1);
group.add(radio2);
group.add(radio3);

}

public static void main(String[] args)
{

JMenuFrame2 frame = new JMenuFrame2();
final int WIDTH = 150;
final int HEIGHT = 200;
frame.setSize(WIDTH, HEIGHT);
frame.setVisible(true);

}
}

Figure 15-39 The JMenuFrame2 application

(continued)

CH A P T E R 1 5 Advanced GUI Topics

856

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using addSeparator()
The shaded statement in Figure 15-39 calls the addSeparator() method. This method adds a
horizontal line to menus in order to visually separate groups for your users. In Figure 15-40,
you can see that the separator falls between the JCheckBoxMenuItems and the
JRadioButtonMenuItems because that’s the order in which the shaded addSeparator()
method call was made. The separator does not change the functionality of the menu; it simply
makes the menu more visually organized for the user.

Using setMnemonic()
A mnemonic is a key that causes an already visible menu item to be chosen. You can use the
setMnemonic() method to provide a shortcut menu key for any visible menu item. For
example, when you add the following statement to the JMenuFrame2 constructor in Figure 15-
39, the menu appears as in Figure 15-41:

menu1.setMnemonic('F');

The mnemonic for the File menu is set to F, so the F in File is underlined. When a user
presses Alt+F on the keyboard, the result is the same as if the user had clicked File on the
menu: the menu list is opened and displayed.

Figure 15-40 Execution of the JMenuFrame2 application

Using Menus

857

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Your downloadable student files contain a JMenuFrame3 application that includes the setMnemonic()
instruction that produces the output in Figure 15-41.

You should use a different mnemonic for each menu item that has one; if you use the same
mnemonic multiple times, only the first assignment works. Usually, you use the first letter of
the option—for example, F for File. If multiple menu items start with the same letter, the
convention is to choose the next most prominent letter in the name. For example, X is often
chosen as the mnemonic for Exit.

An accelerator is similar to a mnemonic. It is a key combination that causes a menu item to
be chosen whether or not it is visible. For example, many word-processing programs allow
you to press Ctrl+P to print from anywhere in the program. Only leaf menu items—menus
that don’t bring up other menus—can have accelerators. (They are called “leaves” because
they are at the end of a branch with no more branches extending from them.) See the Java
Web site for more details.

Figure 15-41 The File menu with a mnemonic applied

CH A P T E R 1 5 Advanced GUI Topics

858

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Using Menus

1. The horizontal list of JMenus at the top of a JFrame is a JMenu.

2. Each JMenu can contain options, called JMenuItems, or it can contain submenus
that also are JMenus.

3. You add a JMenuBar to a JFrame using the setJMenuBar() method.

. raBuneMJ a
si emarFJ af o pot eht t a suneMJf ot sil l at nozi r oh ehT. 1# si t ne met at s esl af ehT

You Do It

Using a Menu Bar and JPanels

Next, you create an application for a party planning company that uses a menu bar
with multiple user options, and that uses separate JPanels with different layout
managers to organize components.

1. Open a new file in your text editor, and enter the following first few lines of
the EventSelector class. The class extends JFrame and implements
ActionListener because the JFrame contains potential user mouse
selections.

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.awt.Color;
public class EventSelector extends JFrame implements ActionListener
{

2. Create a JMenuBar and its two JMenus as follows:

private JMenuBar mainBar = new JMenuBar();
private JMenu menu1 = new JMenu("File");
private JMenu menu2 = new JMenu("Event types");

(continues)

Using Menus

859

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. Next, create the items that will appear within the menus. The File menu contains
an Exit option. The Event types menu contains two submenus: Adult and Child.
Each of those submenus contains more options. For example, Figure 15-42
shows the expanded Adult event types menu in the finished program.

private JMenuItem exit = new JMenuItem("Exit");
private JMenu adult = new JMenu("Adult");
private JMenu child = new JMenu("Child");
private JMenuItem adultBirthday = new JMenuItem("Birthday");
private JMenuItem anniversary = new JMenuItem("Anniversary");
private JMenuItem retirement = new JMenuItem("Retirement");
private JMenuItem adultOther = new JMenuItem("Other");
private JMenuItem childBirthday = new JMenuItem("Birthday");
private JMenuItem childOther = new JMenuItem("Other");

4. Declare several other components that will be used to show how JFrames are
composed:

private JPanel birthdayPanel = new JPanel();
private JPanel otherPanel = new JPanel();
private JLabel birthdayLabel = new

JLabel("Birthday events are our specialty");
private JLabel otherLabel = new

JLabel("We have lots of ideas for memorable events");
private JPanel buttonPanel = new JPanel();
private JRadioButton radButton1 = new

JRadioButton("Formal events");
private JRadioButton radButton2 = new

JRadioButton("Casual events");

(continued)

Figure 15-42 The Adult menu

(continues)

CH A P T E R 1 5 Advanced GUI Topics

860

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5. Write the constructor for the JFrame. Set the title, the default close operation,
and the layout. Call separate methods to compose the menu, to add the
necessary action listeners to the menu items, and to lay out the JFrame’s
components. These tasks could be performed directly within the constructor,
but you can place them in separate methods to better organize the application.

public EventSelector()
{

setTitle("Event Selector");
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setLayout(new FlowLayout());
composeMenus();
addActionListeners();
layoutComponents();

}

6. Add the composeMenus() method. Set the main menu bar, and add two menus to
it. Then add one option to the first menu and two submenus to the second menu.
Finally, add four items to the first submenu and two items to the other one.
public void composeMenus()
{

setJMenuBar(mainBar);
mainBar.add(menu1);
mainBar.add(menu2);
menu1.add(exit);
menu2.add(adult);
menu2.add(child);
adult.add(adultBirthday);
adult.add(anniversary);
adult.add(retirement);
adult.add(adultOther);
child.add(childBirthday);
child.add(childOther);

}

7. Add the addActionListeners() method, which makes the JFrame become a
listener for each menu item:
public void addActionListeners()
{

exit.addActionListener(this);
adultBirthday.addActionListener(this);
anniversary.addActionListener(this);
retirement.addActionListener(this);
adultOther.addActionListener(this);
childBirthday.addActionListener(this);
childOther.addActionListener(this);

}

(continues)

(continued)

Using Menus

861

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8. The layoutComponents() method arranges all the components that appear
in the content pane. The birthdayPanel object contains a single label. The
otherPanel object contains a label and another panel (buttonPanel) in a
grid. The buttonPanel contains two radio buttons. For this demonstration, the
radio buttons are not functional, but in a more complicated application, an
addActionListener() method could be applied to them. Also, in a more
complicated application, you could continue to place panels within another
panel to achieve complex designs.

public void layoutComponents()
{

birthdayPanel.setLayout(new FlowLayout());
otherPanel.setLayout(new GridLayout(2, 1, 3, 3));
birthdayPanel.add(birthdayLabel);
otherPanel.add("other", otherLabel);
otherPanel.add("buttons", buttonPanel);
buttonPanel.add(radButton1);
buttonPanel.add(radButton2);
add(birthdayPanel);
add(otherPanel);

}

9. Add an actionPerformed() method that responds to menu selections.
Different background colors are set depending on the user’s choices.

public void actionPerformed(ActionEvent e)
{

Object source = e.getSource();
Container con = getContentPane();
if(source == exit)

System.exit(0);
else if(source == childBirthday || source == childOther)

con.setBackground(Color.PINK);
else

con.setBackground(Color.WHITE);
if(source == adultBirthday || source == childBirthday)
{

birthdayPanel.setBackground(Color.YELLOW);
otherPanel.setBackground(Color.WHITE);

}
else
{

birthdayPanel.setBackground(Color.WHITE);
otherPanel.setBackground(Color.YELLOW);

}
}

(continued)

(continues)

CH A P T E R 1 5 Advanced GUI Topics

862

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10. Add the main() method, which instantiates an EventSelector object and sets its
size and visibility. Add a closing curly brace for the class.

public static void main(String[] args)
{

EventSelector frame = new EventSelector();
final int WIDTH = 400;
final int HEIGHT = 200;
frame.setSize(WIDTH, HEIGHT);
frame.setVisible(true);

}
}

11. Save the application as EventSelector.java, and then compile and run it.
Make various selections and observe the effects. Figure 15-43 shows the
running application after the user has made some selections. After you
experiment with the application, dismiss the frame.

12. Experiment by making changes to the EventSelector application. For example,
some menu selections could change the JFrame background to a different color,
and others could add a new JLabel to the JFrame content pane.

(continued)

Figure 15-43 The EventSelector application

Using Menus

863

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Don’t Do It
l Don’t forget that the content pane is operating behind the scenes when you use a top-level

container and that, depending on the operations you want to perform, you might need to
get a reference to it.

l Don’t forget that when you create a custom Color object, 0 represents the darkest shade
and 255 represents the lightest.

l Don’t forget to set a layout manager if you do not want to use the default one for a
container.

l Don’t use add() to place a JFrame’s menu bar. You must use the setMenuBar() method to
place a menu bar correctly.

l Don’t use the same mnemonic for multiple menu items.

Key Terms
A top-level container is one at the top of a containment hierarchy. The Java top-level
containers are JFrame, JDialog, and JApplet.

A containment hierarchy is a tree of components that has a top-level container as its root
(that is, at its uppermost level).

A content pane contains all the visible components in a top-level container’s user interface.

A menu bar is a horizontal strip that is placed at the top of a container and that contains user
options.

A glass pane resides above the content pane in a container. It can contain tool tips.

The getContentPane() method returns a reference to a container’s content pane.

The Color class defines colors for you to use in your applications.

The BorderLayout manager is the default manager class for all content panes. With the
BorderLayout manager, components fill the screen in five regions: north, south, east, west,
and center.

The FlowLayout manager arranges components in rows across the width of a Container;
when the current row is filled, additional Components are placed in new rows.

The preferred size of a Component is its default size.

The GridLayout manager divides a container surface into a grid.

CH A P T E R 1 5 Advanced GUI Topics

864

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The CardLayout manager generates a stack of containers or components, one on top of
another.

The GridBagLayout manager allows you to add Components to precise locations within the
grid, as well as to indicate that specific Components should span multiple rows or columns
within the grid.

The BoxLayout manager allows multiple components to be laid out either vertically or
horizontally. The components do not wrap, so a vertical arrangement of components, for
example, stays vertically arranged when the frame is resized.

A JPanel is a plain, borderless surface that can hold lightweight UI components.

Double buffering is the default buffering strategy in which JPanels are drawn offscreen when
they are updated and displayed only when complete.

The primary surface is the visible screen surface during double buffering.

The back buffer is the offscreen image during double buffering.

A block line transfer, or blitting, is the act of copying the contents from one surface to
another.

A JScrollPane provides scroll bars along the side or bottom of a pane, or both, so that the
user can scroll initially invisible parts of the pane into view.

The viewport is the viewable area in a JScrollPane.

An adapter class implements all the methods in an interface, providing an empty body for
each method.

The KeyListener interface contains methods that react to actions the user initiates from the
keyboard.

An action key is a keyboard key that does not generate a character.

Virtual key codes represent keyboard keys that have been pressed.

The x-axis is an imaginary horizontal line that indicates screen position.

The y-axis is an imaginary vertical line that indicates screen position.

The x-coordinate is a value that increases as you travel from left to right across a window.

The y-coordinate is a value that increases as you travel from top to bottom across a window.

The MouseMotionListener interface provides you with methods named mouseDragged()
and mouseMoved() that detect the mouse being rolled or dragged across a component surface.

The MouseListener interface provides you with methods named mousePressed(),
mouseClicked(), and mouseReleased() that are analogous to the keyboard event methods
keyPressed(), keyTyped(), and keyReleased().

The MouseInputListener interface implements all the methods in both the MouseListener
and MouseMotionListener interfaces.

Key Terms

865

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A MouseEvent is the type of event generated by mouse manipulation.

Menus are lists of user options.

A mnemonic is a key that causes an already visible menu item to be chosen.

An accelerator is a key combination that causes a menu item to be chosen, whether or not
the menu item is visible.

A leaf menu item is a menu item that does not bring up another menu.

Chapter Summary
l Every top-level container has a content pane that contains all the visible components in

the container’s user interface. The content pane can contain components and other
containers. Whenever you create a top-level container, you can get a reference to its
content pane using the getContentPane() method.

l The Color class defines 13 colors for you to use in your applications. It can be used with
the setBackground() and setForeground() methods of the Component class to make
your applications more attractive and interesting. You also can create more than 16
million custom colors.

l The layout manager assigned to a Container determines how the components are sized
and positioned within it. The BorderLayout manager is the default manager class for all
content panes; when you use it, the components fill the screen in five regions: north,
south, east, west, and center. The FlowLayout manager arranges components in rows
across the width of a Container. When you create a GridLayout object, you indicate the
numbers of rows and columns you want, and then the container surface is divided into a
grid. The CardLayout manager generates a stack of containers or components, one on top
of another.

l A JPanel is a plain, borderless surface that can hold lightweight UI components.

l A JScrollPane provides scroll bars along the side or bottom of a pane, or both, so that the
user can scroll initially invisible parts of the pane into view.

l ActionEvents are generated by components that users can click, such as JButtons and
JCheckBoxes, and TextEvents are generated by components into which the user enters
text, such as a JTextField. MouseEvents include determining the location of the mouse
pointer and distinguishing between a single- and double-click. When you want to listen
for an event, you implement an appropriate interface for your class. For every event class,
such as <name>Event, there is a similarly named <name>Listener interface. Instead of
implementing a listener class, you can extend an adapter class.

l In addition to the handler methods included with the event listener interfaces, the
AWTEvent classes themselves contain methods that return information about an event.

CH A P T E R 1 5 Advanced GUI Topics

866

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

l The MouseMotionListener interface provides you with methods named mouseDragged()
and mouseMoved() that detect the mouse being rolled or dragged across a component
surface. The MouseListener interface provides you with methods named
mousePressed(), mouseClicked(), and mouseReleased(). The additional interface
methods mouseEntered() and mouseExited() inform you when the user positions
the mouse over a component (entered) or moves the mouse off a component (exited).
The MouseInputListener interface implements all the methods in both the
MouseListener and MouseMotionListener interfaces.

l Menus are lists of user options. You use JMenuBar, JMenu, JMenuItem, and other classes in
menu creation.

Review Questions
1. If you add fewer than five components to a BorderLayout, .

a. any empty component regions disappear
b. the remaining components expand to fill the available space
c. both a and b
d. none of the above

2. When you resize a Container that uses BorderLayout, .

a. the Container and the regions both change in size
b. the Container changes in size, but the regions retain their original sizes
c. the Container retains its size, but the regions change or might disappear
d. nothing happens

3. When you create a JFrame named myFrame, you can set its layout manager to
BorderLayout with the statement .

a. myFrame.setLayout = new BorderLayout();

b. myFrame.setLayout(new BorderLayout());

c. setLayout(myFrame = new BorderLayout());

d. setLayout(BorderLayout(myFrame));

4. Which of the following is the correct syntax for adding a JButton named b1 to a
Container named con when using CardLayout?

a. con.add(b1);

b. con.add("b1");

c. con.add("Options", b1);

d. none of the above

Review Questions

867

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5. You can use the class to arrange components in a single row or
column of a container.

a. FlowLayout

b. BorderLayout

c. CardLayout

d. BoxLayout

6. When you use , the components you add fill their region; they do not
retain their default size.

a. FlowLayout

b. BorderLayout

c. FixedLayout

d. RegionLayout

7. The statement ensures that components are placed from left to right
across a JFrame surface until the first row is full, at which point a second row is
started at the frame surface’s left edge.

a. setLayout(FlowLayout.LEFT);

b. setLayout(new FlowLayout(LEFT));

c. setLayout(new FlowLayout(FlowLayout.LEFT));

d. setLayout(FlowLayout(FlowLayout.LEFT));

8. The GridBagLayout class allows you to .

a. add components to precise locations within the grid
b. indicate that specific components should span multiple rows or columns

within the grid
c. both a and b
d. none of the above

9. The statement setLayout(new GridLayout(2,7)); establishes a GridLayout
with horizontal row(s).

a. zero
b. one

c. two
d. seven

10. As you add new components to a GridLayout, .

a. they are positioned from left to right across each row in sequence
b. you can specify exact positions by skipping some positions
c. both of the above
d. none of the above

11. A JPanel is a .

a. Window

b. Container

c. both of the above
d. none of the above

CH A P T E R 1 5 Advanced GUI Topics

868

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

12. The class allows you to arrange components as if they are stacked
like index or playing cards.

a. GameLayout

b. CardLayout

c. BoxLayout

d. GridBagLayout

13. AWTEvent is the child class of .

a. EventObject

b. Event

c. ComponentEvent

d. ItemEvent

14. When a user clicks a JPanel or JFrame, the action generates a(n) .

a. ActionEvent

b. MouseEvent

c. PanelEvent

d. KeyboardEvent

15. Event handlers are .

a. abstract classes
b. concrete classes

c. listeners
d. methods

16. The return type of getComponent() is .

a. Object

b. Component

c. int

d. void

17. The KeyEvent method getKeyChar() returns a(n) .

a. int

b. char

c. KeyEvent

d. AWTEvent

18. The MouseEvent method that allows you to identify double-clicks is .

a. getDouble()

b. isClickDouble()

c. getDoubleClick()

d. getClickCount()

19. You can use the method to determine the Object in which an
ActionEvent originates.

a. getObject()

b. getEvent()

c. getOrigin()

d. getSource()

20. Which of the following is true in a standard menu application?

a. A JMenuItem holds a JMenu.
b. A JMenuItem holds a JMenuBar.
c. A JMenuBar holds a JMenu.
d. A JMenu holds a JMenuBar.

Review Questions

869

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exercises

Programming Exercises

1. Create a JFrame, and set the layout to BorderLayout. Place a JButton in each
region, and place the name of an appropriate United States landmark on each
JButton. For example, New York’s Statue of Liberty might be the landmark in the
east region. Save the file as JLandmarkFrame.java.

2. Create an educational program for children that distinguishes between vowels and
consonants as the user clicks buttons. Create 26 JButtons, each labeled with a
different letter of the alphabet. Create a JFrame to hold three JPanels in a two-
by-two grid. Randomly select eight of the 26 JButtons and place four in each of
the first two JPanels. Add a JLabel to the third JPanel. When the user clicks
a JButton, the text of the JLabel identifies the button’s letter as a vowel or
consonant, and then a new randomly selected letter replaces the letter on the
JButton. Save the file as JVowelConsonant.java.

3. Create a JFrame that holds five buttons with the names of five different fonts.
Include a sixth button that the user can click to make a font larger or smaller.
Display a demonstration JLabel using the font and size that the user selects. Save
the file as JFontSelector.java.

4. Create a JFrame that uses BorderLayout. Place a JButton in the center region.
Each time the user clicks the JButton, change the background color in one of the
other regions. Save the file as JColorFrame.java.

5. Create a JFrame with JPanels, a JButton, and a JLabel. When the user clicks the
JButton, reposition the JLabel to a new location in a different JPanel. Save the file
as JMovingFrame.java.

6. Create a class named JPanelOptions that extends JPanel and whose constructor
accepts two colors and a String. Use the colors for background and foreground to
display the String. Create an application named JTeamColors with GridLayout.
Display four JPanelOptions JPanels that show the names, in their team colors,
of four of your favorite sports teams. Save the files as JPanelOptions.java and
JTeamColors.java.

7. Write an application that lets you determine the integer value returned by the
InputEvent method getModifiers() when you click your left, right, or—if you
have one—middle mouse button on a JFrame. Save the file as JLeftOrRight.java.

CH A P T E R 1 5 Advanced GUI Topics

870

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8. a. Search the Java Web site for information on how to use a JTextArea. Write an
application for the WebBuy Company that allows a user to compose the three
parts of a complete e-mail message: the “To:”, “Subject:”, and “Message:” text.
The “To:” and “Subject:” text areas should provide a single line for data entry.
The “Message:” area should allow multiple lines of input and be able to scroll if
necessary to accommodate a long message. The user clicks a button to send the
e-mail message. When the message is complete and the Send button is clicked,
the application should display “Mail has been sent!” on a new line in the message
area. Save the file as JEMail.java.

b. Modify the JEMail application to include a Clear button that the user can
click at any time to clear the “To:”, “Subject:”, and “Message:” fields. Save the file
as JEMail2.java.

9. a. Create an application that uses a graphic interface to capture room assignment
data for dormitory residents and writes that data to a random access output
file. The data required for each assignment includes a room number from
1 through 99 inclusive and the first and last names of the resident. Allow the
user to enter data one record at a time and to click a button to save it. Save the
class as CreateRandomDormFile.java.

b. Create an application that allows the user to enter a room number and display
the name of the stored resident for the room, if any. Save the file as
ReadRandomDormFile.java.

10. Create a JFrame for the Summervale Resort. Allow the user to view information
about different rooms available, dining options, and activities offered. Include at
least two options in each menu, and display appropriate information when the user
makes a choice. Save the file as SummervaleResort.java.

1. Each of the following files in the Chapter15 folder of your downloadable student
files has syntax and/or logic errors. In each case, determine the problem and
fix the program. After you correct the errors, save each file using the same
filename preceded with Fix. For example, DebugFifteen1.java will become
FixDebugFifteen1.java.

a. DebugFifteen1.java
b. DebugFifteen2.java

c. DebugFifteen3.java
d. DebugFifteen4.java

Debugging Exercises

Exercises

871

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Game Zone
As you create some of the games in this section, you might find it convenient to add or remove
components in a container after construction. Recall from Chapter 14 that in order for the user to see
your changes, you might need to call the validate(), invalidate(), and repaint() methods.
You will learn more about the repaint() method in the next chapter, Graphics.

1. a. Create a Mine Field game in which the user attempts to click 10 panels of a grid
before hitting the “bomb.” Set up a JFrame using BorderLayout, use the NORTH
region for a congratulatory message, and use the CENTER region for the game. In
the CENTER region, create a four-by-five grid using GridLayout and populate the
grid with JPanels. Set the background color for all the JPanels to Color.BLUE.
Randomly choose one of the panels to be the bomb; the other 19 panels are
“safe.” Allow the player to click on grids. If the player chooses a safe panel, turn
the panel to Color.WHITE. If the player chooses the bomb panel, turn the panel to
Color.RED and turn all the remaining panels white. If the user successfully
chooses 10 safe panels before choosing the bomb, display a congratulatory
message in the NORTH JFrame region. Save the game as MineField.java.

b. Improve the Mine Field game by allowing the user to choose a difficulty level
before beginning. Place three buttons labeled “Easy”, “Intermediate”, and
“Difficult” in one region of the JFrame, and place the game grid and
congratulatory message in other regions. Require the user to select a difficulty
level before starting the game, and then disable the buttons. If the user chooses
“Easy”, the user must select only five safe panels to win the game. If the user
selects “Intermediate”, require 10 safe panels, as in the original game. If the user
selects “Difficult”, require 15 safe panels. Save the game as MineField2.java.

2. a. Create a game that helps new mouse users improve their hand-eye coordination.
Within a JFrame, display an array of 48 JPanels in a GridLayout using eight rows
and six columns. Randomly display an X on one of the panels. When the user
clicks the correct panel (the one displaying the X), remove the X and display it on
a different panel. After the user has successfully “hit” the correct panel 10 times,
display a congratulatory message that includes the user’s percentage (hits divided
by clicks). Save the file as JCatchTheMouse.java.

b. Review how to use the GregorianCalendar class from Chapter 4, and then
revise the JCatchTheMouse game to conclude by displaying the number of
seconds it took the user to click all 10 Xs. When the application starts, create
a GregorianCalendar object and use the get(Calendar.SECOND) and
get(Calendar.MINUTE) methods with it to get the SECOND and MINUTE values
at the start of the game. When the user has clicked all 10 Xs, create a second
GregorianCalendar object and get the SECOND and MINUTE values at the end of

CH A P T E R 1 5 Advanced GUI Topics

872

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

the game. If the user starts and ends a game during the same minute, then the
playing time is simply the difference between the two SECOND values. Make sure
your application times the game correctly even if the start and stop times do not
occur during the same MINUTE. Save the file as JCatchTheMouseTimed.java.

c. In the JCatchTheMouseTimed game described in Game Zone exercise 2b, the
timer does not work correctly if the user happens to play when the hour, day, or
year changes. Visit the Java Web site to find out how to use the
GregorianCalendar class method getTimeInMillis(), and then modify the
game to measure playing time accurately, no matter when the user plays the
game. Save the file as JCatchTheMouseTimed2.java.

If you were writing a professional timed game, you would test the timer’s accuracy regardless of when
the user decided to play. For example, if the user played over the midnight hour on New Year’s Eve, you
would either have to test the game then (which is impractical), or reset your system’s clock to simulate
New Year’s Eve. If you are writing the programs in this book on a school’s computer network, you might
be blocked by the administrator from changing the date and time. Even if you are working on your own
computer, do not attempt to change the date and time unless you understand the impact on other
installed applications. For example, your operating system might assume that an installed virus-protection
program is expired, or a financial program might indicate that automatically paid bills are overdue.

3. The game Corner the King is played on a checkerboard. To begin, a checker is
randomly placed in the bottom row. The player can move one or two squares to the
left or upward, and then the computer can move one or two squares left or up. The
first to reach the upper-left corner wins. Design a game in which the computer’s
moves are chosen randomly. When the game ends, display a message that indicates
the winner. Save the game as CornerTheKing.java.

4. Create a target practice game that allows the user to click moving targets and
displays the number of hits in a 10-second period. Create a grid of at least 100
JPanels. Randomly display an X on five panels to indicate targets. As the user clicks
each X, change the label to indicate a hit. When all five Xs have been hit, randomly
display a new set of five targets. Continue with as many sets as the user can hit in 10
seconds. (Use www.oracle.com/technetwork/java/index.html to find how to use the
GregorianCalendar class method getTimeInMillis() to calculate the time
change.) When the time is up, display a count of the number of targets hit. Save the
file as JTargetPractice.java.

5. You set up the card game Concentration by placing pairs of cards face down in a
grid. The player turns up two cards at a time, exposing their values. If the cards
match, they are removed from the grid. If the cards do not match, they are turned
back over so their values are hidden again, and the player selects two more cards to
expose. Using the knowledge gained by the previously exposed cards, the player
attempts to remove all the pairs of cards from play. Create a Java version of this
game using a GridLayout that is four rows high and five columns wide. Randomly
assign two of the numbers 0 through 9 to each of 20 JPanels, and place each of the

Exercises

873

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.oracle.com/technetwork/java/index.html

20 JPanels in a cell of the grid. Initially, show only “backs” of cards by setting each
panel’s background to a solid color. When the user clicks a first card, change its
color and expose its value. After the user clicks a second card, change its color to the
same color as the first exposed card, expose the second card’s value, and keep both
cards exposed until the user’s mouse pointer exits the second card. If the two
exposed cards are different, hide the cards again. If the two turned cards match,
then “remove” the pair from play by setting their background colors to white. When
the user has matched all 20 cards into 10 pairs, display a congratulatory message.
Save the game as JConcentration.java.

6. Create a Mine Sweeper game by setting up a grid of rows and columns in which
“bombs” are randomly hidden. You choose the size and difficulty of the game; for
example, you might choose to create a fairly simple game by displaying a four-by-
five grid that contains four bombs. If a player clicks a panel in the grid that contains
a bomb, then the player loses the game. If the clicked panel is not a bomb, display a
number that indicates how many adjacent panels contain a bomb. For example, if a
user clicks a panel containing a 0, the user knows it is safe to click any panel above,
below, beside, or diagonally adjacent to the cell, because those cells cannot possibly
contain a bomb. If the player loses by clicking a bomb, display all the numeric values
as well as the bomb positions. If the player succeeds in clicking all the panels except
those containing bombs, the player wins and you should display a congratulatory
message. Figure 15-44 shows the progression of a typical game. In the first screen,
the user has clicked a panel, and the display indicates that two adjacent cells contain
a bomb. In the second screen, the user has clicked a second panel, and the display
indicates that three adjacent cells contain bombs. In the last screen, the user has
clicked a bomb panel, and all the bomb positions are displayed. Save the game as
MineSweeper.java.

CH A P T E R 1 5 Advanced GUI Topics

874

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

7. Create the game Lights Out using a BorderLayout. Place a five-by-five grid of panels
in one region, and reserve another region for a congratulatory message. Randomly set
each panel in the grid to a dark color or light color. The object of the game is to force
all the panels to be dark, thus turning the “lights out.” When the player clicks a panel,
turn all the panels in the same row and column, including the clicked panel, to the
opposite color. For example, if the user clicks the panel in the second row, third
column, then darken all the light-colored panels in the second row and third column,
and lighten all the dark-colored panels in that row and column. When all the panels in
the grid are dark, all the lights are out, so display a congratulatory message. Save the
game as LightsOut.java.

Figure 15-44 Typical progression of MineSweeper game

875

Exercises

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8. The game StopGate is played on a checkerboard with a set of dominoes; each domino
is large enough to cover two checkerboard squares. One player places a domino
horizontally on the checkerboard, covering any two squares. The other player then
places a domino vertically to cover any other two squares. When a player has no more
moves available, that player loses. Create a computerized version of the game in which
the player places the horizontal pieces and the computer randomly selects a position
for the vertical pieces. (Game construction will be simpler if you allow the player to
select only the left square of a two-square area and assume that the domino covers
that position plus the position immediately to the right.) Use a different color for the
player’s dominoes and the computer’s dominoes. Display a message naming the
winner when no more moves are possible. Figure 15-45 shows a typical game after the
player (blue) and computer (black) have each made one move, and near the end of the
game when the player is about to win—the player has two moves remaining, but the
computer has none. Save the file as StopGate.java.

Figure 15-45 A typical game of StopGate just after play begins and near the end of the game

876

C H A P T E R 1 5 Advanced GUI Topics

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

1. In Chapter 14, you created an interactive GUI application for Carly’s Catering that
allows the user to enter a number of guests for an event and to choose an entrée, two
side dishes, and a dessert from groups of choices. Then, the application displays the
cost of the event and a list of the chosen items. Now, modify the interface to include
separate panels for the guest number entry, each group of menu choices, and the
output. Use at least two different layout managers and at least two different colors in
your application. Save the program as JCarlysCatering.java.

2. In Chapter 14, you created an interactive GUI application for Sammy’s Seashore
Rentals that allows the user to enter a rental time in hours, an equipment type,
and a lesson option. Then, the application displays the cost of the rental and
rental details. Now, modify the interface to include separate panels for the hour
entry, each group of menu choices, and the output. Use at least two different
layout managers and at least two different colors in your application. Save the
program as JSammysSeashore.java.

Case Problems

877

Exercises

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

