
CHAPTER14
Introduction to Swing
Components

In this chapter, you will:

Understand Swing components

Use the JFrame class

Use the JLabel class

Use a layout manager

Extend the JFrame class

Add JTextFields, JButtons, and tool tips to a JFrame

Learn about event-driven programming

Understand Swing event listeners

Use the JCheckBox, ButtonGroup, and JComboBox
classes

Unless noted otherwise, all images are © 2014 Cengage Learning

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Understanding Swing Components
Computer programs usually are more user friendly (and more fun to use) when they contain
user interface (UI) components. UI components are buttons, text fields, and other
components with which the user can interact. Java’s creators have packaged a number of
prewritten components in the Swing package. Swing components are UI elements such as
dialog boxes and buttons; you can usually recognize their names because they begin with J.

Swing components were named after a musical style that was popular in the 1940s. The name is meant to
imply that the components have style and pizzazz. You have already used the JOptionPane component
that is part of the Swing class. The Swing classes are part of a more general set of UI programming
capabilities that are collectively called the Java Foundation Classes, or JFC. JFC includes Swing
component classes and selected classes from the java.awt package.

In early versions of Java, components had simple names, such as Frame and Button. The components
created from these original classes did not have a consistent appearance when used with different browsers
and operating systems. When Java’s creators designed new, improved classes, they needed new names for
the classes, so they used a J in front of each new class name. Hence, Swing components have names like
JFrame, JButton, JScrollbar, JOptionPane, and so on.

UI components are also called controls or widgets. Each Swing component is a descendant of a
JComponent, which in turn inherits from the java.awt.Container class. You can insert the
statement import javax.swing.*; at the beginning of your Java program files so you can
take advantage of the Swing UI components and their methods. When you import Swing
classes, you use the javax.swing package instead of java.swing. The x originally stood for
extension, so named because the Swing classes were an extension of the original Java language
specifications.

Almost all Swing components are said to be lightweight components because they are written
completely in Java and do not have to rely on the local operating system code. This means the
components are not “weighed down” by having to interact with the operating system (for example,
Windows or Macintosh) in which the application is running. Some Swing components, such as
JFrames, are known as heavyweight components because they do require interaction with the local
operating system. A lightweight component reuses the native (original) window of its closest
heavyweight ancestor; a heavyweight component has its own opaque native window. The only
heavyweight components used in Swing are swing.JFrame, swing.JDialog, swing.JWindow,
swing.JApplet, awt.Component, awt.Container, and awt.JComponent.

When you use Swing components, you usually place them in containers. A container is a type
of component that holds other components so you can treat a group of them as a single
entity. Containers are defined in the Container class. Often, a container takes the form of
a window that you can drag, resize, minimize, restore, and close.

As you know from reading about inheritance in Chapters 10 and 11, all Java classes descend
from the Object class. The Component class is a child of the Object class, and the Container
class is a child of the Component class. Therefore, every Container object “is a” Component,
and every Component object (including every Container) “is an” Object. The Container class
is also a parent class, and the Window class is a child of Container. However, Java
programmers rarely use Window objects because the Window subclass Frame and its child,

CH A P T E R 1 4 Introduction to Swing Components

740

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

the Swing component JFrame, both allow you to create more useful objects. Window objects
do not have title bars or borders, but JFrame objects do.

TWO TRUTHS & A LIE

Understanding Swing Components

1. Swing components are elements such as buttons; you can usually recognize
their names because they contain the word Swing.

2. Each Swing component is a descendant of a JComponent, which in turn inherits
from the java.awt.Container class.

3. You insert the import statement import javax.swing.*; at the beginning of
your Java program files so you can use Swing components.

Using the JFrame Class
You usually create a JFrame so that you can place other objects within it for display.
Figure 14-1 shows the JFrame’s inheritance tree. Recall that the Object class is defined in the
java.lang package, which is imported automatically every time you write a Java program.
However, Object’s descendants (shown in Figure 14-1) are not automatically imported.

The JFrame class has four constructors:

l JFrame() constructs a new frame that initially is invisible and has no title.

l JFrame(String title) creates a new, initially invisible JFrame with the specified title.

l JFrame(GraphicsConfiguration gc) creates a JFrame in the specified
GraphicsConfiguration of a screen device with a blank title. (You will learn about the
GraphicsConfiguration class as you continue to study Java.)

Figure 14-1 Relationship of the JFrame class to its ancestors

Thefalsestatementis#1.YoucanusuallyrecognizeSwingcomponentnames
becausetheybeginwithJ.

Using the JFrame Class

741

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

l JFrame(String title, GraphicsConfiguration gc) creates a JFrame with the specified
title and the specified GraphicsConfiguration of a screen.

You can construct a JFrame as you do other objects, using the class name, an identifier, the
assignment operator, the new operator, and a constructor call. For example, the following two
statements construct two JFrames: one with the title “Hello” and another with no title:

JFrame firstFrame = new JFrame("Hello");
JFrame secondFrame = new JFrame();

After you create a JFrame object, you can use the now-familiar object-dot-method format you
have used with other objects to call methods that manipulate a JFrame’s features. Table 14-1
describes some useful JFrame class methods.

The methods in Table 14-1 represent only a small portion of the available methods you can use with a
JFrame. Each of the methods listed in Table 14-1 is inherited from either JFrame’s Component or Frame
parent class. These classes contain many useful methods in addition to the few listed here. You can read the
documentation for all the methods at www.oracle.com/technetwork/java/index.html.

Method Purpose
void setTitle(String) Sets a JFrame’s title using the String argument

void setSize(int, int) Sets a JFrame’s size in pixels with the width and height as
arguments

void setSize(Dimension) Sets a JFrame’s size using a Dimension class object; the
Dimension(int, int) constructor creates an object that
represents both a width and a height

String getTitle() Returns a JFrame’s title

void setResizable(boolean) Sets the JFrame to be resizable by passing true to the
method, or sets the JFrame not to be resizable by passing
false to the method

boolean isResizable() Returns true or false to indicate whether the JFrame is
resizable

void setVisible(boolean) Sets a JFrame to be visible using the boolean argument true
and invisible using the boolean argument false

void setBounds(int, int,
int, int)

Overrides the default behavior for the JFrame to be positioned
in the upper-left corner of the computer screen’s desktop. The
first two arguments are the horizontal and vertical positions of
the JFrame’s upper-left corner on the desktop. The final two
arguments set the width and height.

Table 14-1 Useful methods inherited by the JFrame class

CH A P T E R 1 4 Introduction to Swing Components

742

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.oracle.com/technetwork/java/index.html

Assuming you have declared a JFrame named firstFrame, you can use the following
statements to set the firstFrame object’s size to 250 pixels horizontally by 100 pixels
vertically and set the JFrame’s title to display a String argument. Pixels are the picture
elements, or tiny dots of light, that make up the image on your computer monitor.

firstFrame.setSize(250, 100);
firstFrame.setTitle("My frame");

When you set a JFrame’s size, you do not have the full area available to use because part of the
area is consumed by the JFrame’s title bar and borders.

Figure 14-2 shows an application that creates a small, empty JFrame.

import javax.swing.*;
public class JFrame1
{

public static void main(String[] args)
{

JFrame aFrame = new JFrame("First frame");
aFrame.setSize(250, 100);
aFrame.setVisible(true);

}
}

Figure 14-2 The JFrame1 application

The application in Figure 14-2 produces the JFrame shown in Figure 14-3. It resembles
frames that you have probably seen when using different UI programs you have downloaded
or purchased. One reason to use similar frame objects in your own programs is that users are
already familiar with the frame environment. When users see frames on their computer
screens, they expect to see a title bar at the top containing text information (such as “First
frame”). Users also expect to see Minimize, Maximize or Restore, and Close buttons in the
frame’s upper-right corner. Most users assume that they can change a frame’s size by
dragging its border or reposition the frame on their screen by dragging the frame’s title bar to
a new location. The JFrame in Figure 14-3 has all of these capabilities.

In the application in Figure 14-2, all three statements in the main() method are important.
After you instantiate aFrame, if you do not use setVisible(true), you do not see the JFrame,

Figure 14-3 Output of the JFrame1 application

Using the JFrame Class

743

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

and if you do not set its size, you see only the title bar of the JFrame because the JFrame size is
0 × 0 by default. It might seem unusual that the default state for a JFrame is invisible.
However, consider that you might want to construct a JFrame in the background while other
actions are occurring and that you might want to make it visible later, when appropriate (for
example, after the user has taken an action such as selecting an option). To make a frame
visible, some Java programmers use the show() method instead of the setVisible() method.

When a user closes a JFrame by clicking the Close button in the upper-right corner, the
default behavior is for the JFrame to become hidden and for the application to keep
running. This makes sense when there are other tasks for the program to complete after
the main frame is closed—for example, displaying additional frames, closing open data
files, or printing an activity report. However, when a JFrame serves as a Swing
application’s main user interface (as happens frequently in interactive programs), you
usually want the program to exit when the user clicks the Close button. To change this
behavior, you can call a JFrame’s setDefaultCloseOperation() method and use one of
the following four values as an argument:

l JFrame.EXIT_ON_CLOSE exits the program when the JFrame is closed.

l WindowConstants.DISPOSE_ON_CLOSE closes the frame, disposes of the JFrame object, and
keeps running the application.

l WindowConstants.DO_NOTHING_ON_CLOSE keeps the JFrame open and continues running.
In other words, it disables the Close button.

l WindowConstants.HIDE_ON_CLOSE closes the JFrame and continues running; this is the
default operation that you frequently want to override.

When you execute an application in which you have forgotten to exit when the JFrame is
closed, you can end the program by typing Ctrl+C.

Each of the four usable setDefaultCloseOperation() arguments represents an integer; for example,
the value of JFrame.EXIT_ON_CLOSE is 3. However, it is easier to remember the constant names than
the numeric values they represent, and other programmers more easily understand your intentions if you use
the named constant identifier.

Customizing a JFrame’s Appearance
The appearance of the JFrame in Figure 14-3 is provided by the operating system in which the
program is running (in this case, Windows). For example, the coffee-cup icon in the frame’s
title bar and the Minimize, Restore, and Close buttons look and act as they do in other
Windows applications. The icon and buttons are known as window decorations; by default,
window decorations are supplied by the operating system. However, you can request that
Java’s look and feel provide the decorations for a frame. A look and feel is the default
appearance and behavior of any user interface.

Optionally, you can set a JFrame’s look and feel using the setDefaultLookAndFeelDecorated()
method. For example, Figure 14-4 shows an application that calls this method.

CH A P T E R 1 4 Introduction to Swing Components

744

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

import javax.swing.*;
public class JFrame2
{

public static void main(String[] args)
{

JFrame.setDefaultLookAndFeelDecorated(true);
JFrame aFrame = new JFrame("Second frame");
aFrame.setSize(250, 100);
aFrame.setVisible(true);

}
}

Figure 14-4 The JFrame2 class

You can provide a custom icon for a frame instead of using your operating system’s default icon or the Java
look-and-feel icon. For details, go to the Java Web site and search for “How to Make Frames.”

The program in Figure 14-4 differs from Figure 14-2 only in the shaded areas, which show the
class name, the text in the title bar, and the look-and-feel statement. Figure 14-5 shows
the output. If you compare the frame in Figure 14-5 with the one in Figure 14-3, you can see
that Java’s look and feel has similar features to that of Windows, but their appearance is
different. Java’s look and feel is also known by the name Metal.

Look and feel is a legal issue because some software companies claim that competitors are infringing on
their copyright protection by copying the look and feel of their products.

Watch the video Using the JFrame class.

Figure 14-5 Output of the JFrame2 application

Using the JFrame Class

745

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Using the JFrame Class

1. The JFrame class contains overloaded constructors; for example, you can
specify a title or not.

2. An advantage of using a JFrame is that it resembles traditional frames that
people are accustomed to using.

3. When a user closes a JFrame by clicking the Close button in the upper-right
corner, the default behavior is for the application to end.

. gni nnur peek ot noi t acil ppa eht r of dna neddi h e moceb ot
emarFJ eht r of si r oi vahebtl uaf ed eht ,r enr oct hgi r- r eppu eht ni nott ub

esol C eht gni kcil c yb emarFJ a sesol c r esu a neh W. 3# si t ne met at s esl af ehT

You Do It

Creating a JFrame

In this section, you create a JFrame object that appears on the screen.

1. Open a new file in your text editor, and type the following statement to import
the javax.swing classes:

import javax.swing.*;

2. On the next lines, type the following class header for the JDemoFrame class, its
opening curly brace, the main() method header, and its opening curly brace:

public class JDemoFrame
{

public static void main(String[] args)
{

3. Within the body of the main() method, enter the following code to declare a
JFrame with a title, set its size, and make it visible. If you neglect to set a
JFrame’s size, you see only the title bar of the JFrame (because the size is
0 × 0 by default); if you neglect to make the JFrame visible, you do not see
anything. Add two closing curly braces—one for the main() method and one
for the JDemoFrame class.

(continues)

CH A P T E R 1 4 Introduction to Swing Components

746

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

JFrame aFrame = new JFrame("This is a frame");
final int WIDTH = 250;
final int HEIGHT = 250;
aFrame.setSize(WIDTH, HEIGHT);
aFrame.setVisible(true);

}
}

4. Save the file as JDemoFrame.java. Compile and then run the program. The
output looks like Figure 14-6—an empty JFrame with a title bar, a little taller than
it is wide. The JFrame has all the properties of frames you have seen in
applications you have used. For example, click the JFrame’s Minimize button,
and the JFrame minimizes to an icon on the Windows taskbar.

5. Click the JFrame’s icon on the taskbar. The JFrame returns to its previous size.

6. Click the JFrame’s Maximize button. The JFrame fills the screen.

7. Click the JFrame’s Restore button. The JFrame returns to its original size.

8. Position your mouse pointer on the JFrame’s title bar, and then drag the JFrame
to a new position on your screen.

9. Click the JFrame’s Close button. The JFrame disappears or hides. The default
behavior of a JFrame is simply to hide when the user clicks the Close button—not
to end the program.

(continued)

Figure 14-6 Output of the JDemoFrame application

(continues)

Using the JFrame Class

747

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10. To end the program and return control to the command line, click the Command
Prompt window, and then press Ctrl+C. In Chapter 6, you learned to press
Ctrl+C to stop a program that contains an infinite loop. This situation is similar—
you want to stop a program that does not have a way to end automatically.

Ending an Application When a JFrame Closes

Next, you modify the JDemoFrame program so that the application ends when the user
clicks the JDemoFrame Close button.

1. Within the JDemoFrame class file, change the class name to
JDemoFrameThatCloses.

2. Add a new line of code as the final executable statement within the main()
method, as follows:

aFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

3. Save the file as JDemoFrameThatCloses.java, and compile and execute the
application.

4. When the JFrame appears on your screen, confirm that it still has Minimize,
Maximize, and Restore capabilities. Then click the JFrame’s Close button. The
JFrame closes, and the command prompt returns as the program relinquishes
control to the operating system.

Using the JLabel Class
One of the components you might want to place on a JFrame is a JLabel. JLabel is a built-in
Java Swing class that holds text you can display. The inheritance hierarchy of the JLabel class
is shown in Figure 14-7.

(continued)

Figure 14-7 The JLabel class inheritance hierarchy

CH A P T E R 1 4 Introduction to Swing Components

748

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Available constructors for the JLabel class include the following:

l JLabel() creates a JLabel instance with no image and with an empty string for the title.

l JLabel(Icon image) creates a JLabel instance with the specified image.

l JLabel(Icon image, int horizontalAlignment) creates a JLabel instance with the
specified image and horizontal alignment.

l JLabel(String text) creates a JLabel instance with the specified text.

l JLabel(String text, Icon icon, int horizontalAlignment) creates a JLabel
instance with the specified text, image, and horizontal alignment.

l JLabel(String text, int horizontalAlignment) creates a JLabel instance with the
specified text and horizontal alignment.

For example, you can create a JLabel named greeting that holds the words “Good day” by
writing the following statement:

JLabel greeting = new JLabel("Good day");

You then can add the greeting object to the JFrame object named aFrame using the
add() method as follows:

aFrame.add(greeting);

Figure 14-8 shows an application in which a JFrame is created and its size, visibility, and
close operation are set. Then a JLabel is created and added to the JFrame. Figure 14-9 shows
the output.

import javax.swing.*;
public class JFrame3
{

public static void main(String[] args)
{

final int FRAME_WIDTH = 250;
final int FRAME_HEIGHT = 100;
JFrame aFrame = new JFrame("Third frame");
aFrame.setSize(FRAME_WIDTH, FRAME_HEIGHT);
aFrame.setVisible(true);
aFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
JLabel greeting = new JLabel("Good day");
aFrame.add(greeting);

}
}

Figure 14-8 The JFrame3 class

Using the JLabel Class

749

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The counterpart to the add() method is the remove() method. The following statement
removes greeting from aFrame:

aFrame.remove(greeting);

If you add or remove a component from a container after it has been made visible, you should
also call the invalidate(), validate(), and repaint() methods, or else you will not see the
results of your actions. Each performs slightly different functions, but all three together
guarantee that the results of changes in your layout will take effect. The invalidate() and
validate() methods are part of the Container class, and the repaint() method is part of
the Component class.

If you add or remove a component in a JFrame during construction, you do not have to call repaint() if
you later alter the component—for example, by changing its text. You only need to call repaint() if you
add or remove a component after construction. You will learn more about the repaint() method in the
Graphics chapter.

You can change the text in a JLabel by using the Component class setText()method with the
JLabel object and passing a String to it. For example, the following code changes the value
displayed in the greeting JLabel:

greeting.setText("Howdy");

You can retrieve the text in a JLabel (or other Component) by using the getText() method,
which returns the currently stored String.

Changing a JLabel’s Font
If you use the Internet and a Web browser to visit Web sites, you probably are not very
impressed with the simple application displayed in Figure 14-9. You might think that
the string “Good day” is plain and lackluster. Fortunately, Java provides you with a
Font class from which you can create an object that holds typeface and size information.
The setFont() method requires a Font object argument. To construct a Font object, you
need three arguments: typeface, style, and point size.

l The typeface argument to the Font constructor is a String representing a font. Common
fonts have names such as Arial, Century, Monospaced, and Times New Roman.
The typeface argument in the Font constructor is only a request; the system on which

Figure 14-9 Output of the JFrame3 application

CH A P T E R 1 4 Introduction to Swing Components

750

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

your program runs might not have access to the requested font, and if necessary, it
substitutes a default font.

l The style argument applies an attribute to displayed text and is one of three values: Font.
PLAIN, Font.BOLD, or Font.ITALIC.

l The point size argument is an integer that represents about 1/72 of an inch. Printed text is
commonly 12 points; a headline might be 30 points.

In printing, point size defines a measurement between lines of text in a single-spaced text document.
The point size is based on typographic points, which are approximately 1/72 of an inch. Java adopts the
convention that one point on a display is equivalent to one unit in user coordinates. For more information,
see the Font documentation at the Java Web site.

To give a JLabel object a new font, you can create a Font object, as in the following:

Font headlineFont = new Font("Monospaced", Font.BOLD, 36);

The typeface name is a String, so you must enclose it in double quotation marks.

You can use the setFont() method to assign the Font to a JLabel with a statement such as:

greeting.setFont(headlineFont);

Figure 14-10 shows a class named JFrame4. All the changes from JFrame3 are shaded.

import javax.swing.*;
import java.awt.*;
public class JFrame4
{

public static void main(String[] args)
{

final int FRAME_WIDTH = 250;
final int FRAME_HEIGHT = 100;
Font headlineFont = new Font("Arial", Font.BOLD, 36);
JFrame aFrame = new JFrame("Fourth frame");
aFrame.setSize(FRAME_WIDTH, FRAME_HEIGHT);
aFrame.setVisible(true);
aFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
JLabel greeting = new JLabel("Good day");
greeting.setFont(headlineFont);
aFrame.add(greeting);

}
}

Figure 14-10 The JFrame4 program

The program in Figure 14-10 includes a new import statement for the package that contains
the Font class. The program contains a Font object named headlineFont that is applied to

Using the JLabel Class

751

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

the greeting. Figure 14-11 shows the execution of the JFrame4 program; the greeting appears
in a 36-point, bold, Arial font.

You are not required to provide an identifier for a Font. For example, you could omit the
shaded statement that declares headlineFont in Figure 14-10 and set the greeting Font with
the following statement that uses an anonymous Font object:

greeting.setFont(new Font("Arial", Font.BOLD, 36));

After you create a Font object, you can create a new object with a different type and size using
the deriveFont() method with appropriate arguments. For example, the following two
statements create a headlineFont object and a textBodyFont object that is based on the
first object:

Font headlineFont = new Font("Arial", Font.BOLD, 36);
Font textBodyFont = headlineFont.deriveFont(Font.PLAIN, 14);

TWO TRUTHS & A LIE

Using the JLabel Class

1. JLabel is a built-in Java Swing class that holds text you can display.

2. You can change a JLabel’s text by using its JFrame’s name, a dot, and the
add() method, and then using the desired text as the argument to the method.

3. If you add or remove a component from a container after it has been made
visible, you should also call the validate() and repaint() methods, or else
you will not see the results of your actions.

. doht e meht ot t ne mugr a na sa e man s’ lebaLJ
eht gni su yb neht dna, doht e m)(dda eht dna,t od a, e man s’ emarFJ eht

gni su yb emarFJ a ot lebaLJ a dda uoY.t ne mugr a eht sat xet wen eht gni dul cni
, doht e m)(txeTtes eht gni sut xet s’ lebaLJ a egnahc uoY. 2# si t ne met at s esl af ehT

Figure 14-11 Output of the JFrame4 program

CH A P T E R 1 4 Introduction to Swing Components

752

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using a Layout Manager
When you want to add multiple components to a JFrame or other container, you usually need
to provide instructions for the layout of the components. For example, Figure 14-12 shows an
application in which two JLabels are created and added to a JFrame in the final shaded
statements.

import javax.swing.*;
import java.awt.*;
public class JFrame5
{

public static void main(String[] args)
{

final int FRAME_WIDTH = 250;
final int FRAME_HEIGHT = 100;
JFrame aFrame = new JFrame("Fifth frame");
aFrame.setSize(FRAME_WIDTH, FRAME_HEIGHT);
aFrame.setVisible(true);
aFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
JLabel greeting = new JLabel("Hello");
JLabel greeting2 = new JLabel("Who are you?");
aFrame.add(greeting);
aFrame.add(greeting2);

}
}

Figure 14-12 The JFrame5 program

Figure 14-13 shows the output of the application in Figure 14-12. Although two JLabels are
added to the frame, only the last one added is visible. The second JLabel has been placed on
top of the first one, totally obscuring it. If you continued to add more JLabels to the program,
only the last one added to the JFrame would be visible.

To place multiple components at specified positions in a container so they do not hide each
other, you must explicitly use a layout manager—a class that controls component
positioning. The normal (default) behavior of a JFrame is to use a layout format named
BorderLayout. A BorderLayout, created by using the BorderLayout class, divides a container
into regions. When you do not specify a region in which to place a component (as the

Figure 14-13 Output of the JFrame5 program

Using a Layout Manager

753

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

JFrame5 program fails to do), all the components are placed in the same region, and they
obscure each other.

When you use a FlowLayout instead of a BorderLayout, components do not lie on top of each
other. Instead, the flow layout manager places components in a row, and when a row is filled,
components automatically spill into the next row.

Three constants are defined in the FlowLayout class that specify how components are
positioned in each row of their container. These constants are FlowLayout.LEFT,
FlowLayout.RIGHT, and FlowLayout.CENTER. For example, to create a layout manager named
flow that positions components to the right, you can use the following statement:

FlowLayout flow = new FlowLayout(FlowLayout.RIGHT);

If you do not specify how components are laid out, by default they are centered in each row.

Suppose that you create a FlowLayout object named flow as follows:

FlowLayout flow = new FlowLayout();

Then the layout of a JFrame named aFrame can be set to the newly created FlowLayout using
the statement:

aFrame.setLayout(flow);

A more compact syntax that uses an anonymous FlowLayout object is:

aFrame.setLayout(new FlowLayout());

Figure 14-14 shows an application in which the JFrame’s layout manager has been set so that
multiple components are visible.

import javax.swing.*;
import java.awt.*;
public class JFrame6
{

public static void main(String[] args)
{

final int FRAME_WIDTH = 250;
final int FRAME_HEIGHT = 100;
JFrame aFrame = new JFrame("Sixth frame");
aFrame.setSize(FRAME_WIDTH, FRAME_HEIGHT);
aFrame.setVisible(true);
aFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
JLabel greeting = new JLabel("Hello");
JLabel greeting2 = new JLabel("Who are you?");
aFrame.setLayout(new FlowLayout());
aFrame.add(greeting);
aFrame.add(greeting2);

}
}

Figure 14-14 The JFrame6 program

CH A P T E R 1 4 Introduction to Swing Components

754

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 14-15 shows the execution of the JFrame6 program. Because a FlowLayout is used, the
two JLabels appear side by side. If there were more JLabels or other components, they
would continue to be placed side by side across the JFrame until there was no more room.
Then, the additional components would be placed in a new row beneath the first row of
components.

Other layout managers allow you to position components in a container more precisely. You will learn about
these in the Graphics chapter. The examples in this chapter will use FlowLayout because it is the easiest
of the layout managers to use.

Watch the video Using a Layout Manager.

TWO TRUTHS & A LIE

Using a Layout Manager

1. If you do not provide a layout manager for a JFrame, you cannot add multiple
components to it.

2. The normal (default) behavior of a JFrame is to use a layout format named
BorderLayout.

3. The flow layout manager places components in a row, and when a row is filled, it
automatically spills components into the next row.

. el bi si v si eno
dedda yl t necer t so meht yl not ub,ti ot st nenop moc el pi tl u mdda nac uoy

, emarFJ a r of r egana mt uoyal a edi vor pt on od uoy fI . 1# si t ne met at s esl af ehT

Figure 14-15 Output of the JFrame6 program

Using a Layout Manager

755

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Extending the JFrame Class
You can instantiate a simple JFrame object within an application’s main() method or with any
other method of any class you write. Alternatively, you can create your own class that
descends from the JFrame class. The advantage of creating a child class of JFrame is that you
can set the JFrame’s properties within your object’s constructor; then, when you create your
JFrame child object, it is automatically endowed with the features you have specified, such as
title, size, and default close operation.

You already know that you create a child class by using the keyword extends in the class
header, followed by the parent class name. You also know that you can call the parent class’s
constructor using the keyword super, and that when you call super(), the call must be the
first statement in the constructor. For example, the JMyFrame class in Figure 14-16 extends
JFrame. Within the JMyFrame constructor, the super() JFrame constructor is called; it
accepts a String argument to use as the JFrame’s title. (Alternatively, the setTitle() method
could have been used.) The JMyFrame constructor also sets the size, visibility, and default
close operation for every JMyFrame. Each of the methods—setSize(), setVisible(), and
setDefaultCloseOperation()—appears in the constructor in Figure 14-16 without an
object, because the object is the current JMyFrame being constructed. Each of the three
methods could be preceded with a this reference with exactly the same meaning. That is,
within the JMyFrame constructor, the following two statements have identical meanings:

setSize(WIDTH, HEIGHT);
this.setSize(WIDTH, HEIGHT);

Each statement sets the size of “this” current JMyFrame instance.

import javax.swing.*;
public class JMyFrame extends JFrame
{

final int WIDTH = 200;
final int HEIGHT = 120;
public JMyFrame()
{

super("My frame");
setSize(WIDTH, HEIGHT);
setVisible(true);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

}
}

Figure 14-16 The JMyFrame class

Figure 14-17 shows an application that declares two JMyFrame objects. Each has the same set
of attributes, determined by the JMyFrame constructor.

CH A P T E R 1 4 Introduction to Swing Components

756

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public class CreateTwoJMyFrameObjects
{

public static void main(String[] args)
{

JMyFrame myFrame = new JMyFrame();
JMyFrame mySecondFrame = new JMyFrame();

}
}

Figure 14-17 The CreateTwoJMyFrameObjects application

When you execute the application in Figure 14-17, the two JMyFrame objects are displayed
with the second one on top of, or obscuring, the first. Figure 14-18 shows the output of the
CreateTwoJMyFrameObjects application after the top JMyFrame has been dragged to partially
expose the bottom one.

You could use the setBounds() method with one of the JMyFrame objects that produces the output in
Figure 14-18 so that you don’t have to move one JMyFrame object to view the other. See Table 14-1 for
details. The Object class also includes a setLocation() method you can use with a JFrame. To use
this method, you provide horizontal and vertical position values as method arguments. You will learn more
about the setLocation() method in the chapter Applets, Images, and Sound.

You exit the application when you click the Close button on either of the two JMyFrame objects shown in
Figure 14-18. Each object has the same default close operation because each uses the same constructor
that specifies this operation. To allow only one JMyFrame to control the program’s exit, you could use the
setDefaultCloseOperation() method with one or both of the objects in the application to change its
close behavior. For example, you could use DISPOSE_ON_CLOSE to dismiss one of the frames but keep the
application running.

When you extend a JFrame to create a new custom class, you must remember to make
decisions as to which attributes you want to set within the class and which you want to leave
to the applications that will use the class. For example, you can place the setVisible()

Figure 14-18 Output of the CreateTwoJMyFrameObjects application after dragging
the top frame

Extending the JFrame Class

757

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

statement within the JFrame child class constructor (using either an explicit or implied this
reference), or you can allow the application to use a setVisible() statement (using the name
of an instantiated object followed by a dot and the method name). Either one works, but if you
fail to do either, the frame will not be visible.

Programmers frequently place a main() method within a class such as JMyFrame. Then the class
provides the option to be used to instantiate objects, as in the CreateTwoJMyFrameObjects application,
or to be used to execute as a program that creates an object.

TWO TRUTHS & A LIE

Extending the JFrame Class

1. The advantage of creating a child class of JFrame is that you can set the
JFrame’s properties within your object’s constructor so it is automatically
endowed with the features that you have specified.

2. When a class descends from JFrame, you can use super() or setTitle() to
set the title within any of the child’s methods.

3. When you extend a JFrame to create a new custom class, you can decide which
attributes you want to set within the class and which you want to leave to the
applications that will use the class.

. sdoht e mr eht o ni kr owt on seod)(repus,r evewoH
.r ot curt snoc s’ dli hc eht ni hti w el ti t eht t es ot)(eltiTtes r o)(repus

esu nac uoy , emarFJ morf sdnecsed ssal c a neh W. 2# si t ne met at s esl af ehT

Adding JTextFields, JButtons, and Tool Tips to a JFrame
In addition to including JLabel objects, JFrames often contain other window features, such as
JTextFields, JButtons, and tool tips.

Adding JTextFields
A JTextField is a component into which a user can type a single line of text data. (Text
data comprises any characters you can enter from the keyboard, including numbers and
punctuation.) Figure 14-19 shows the inheritance hierarchy of the JTextField class.

CH A P T E R 1 4 Introduction to Swing Components

758

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Typically, a user types a line into a JTextField and then presses Enter on the keyboard or
clicks a button with the mouse to enter the data. You can construct a JTextField object
using one of several constructors:

l public JTextField() constructs a new JTextField.

l public JTextField(int columns) constructs a new, empty JTextField with a specified
number of columns.

l public JTextField(String text) constructs a new JTextField initialized with the
specified text.

l public JTextField(String text, int columns) constructs a new JTextField
initialized with the specified text and columns.

For example, to provide a JTextField that allows enough room for a user to enter
approximately 10 characters, you can code the following:

JTextField response = new JTextField(10);

To add the JTextField named response to a JFrame named frame, you write:

frame.add(response);

The number of characters a JTextField can display depends on the font being used and the
actual characters typed. For example, in most fonts, w is wider than i, so a JTextField of size
10 using the Arial font can display 24 i characters, but only eight w characters.

Try to anticipate how many characters your users might enter when you create a JTextField.
The user can enter more characters than those that display, but the extra characters scroll out
of view. It can be disconcerting to try to enter data into a field that is not large enough. It is
usually better to overestimate than underestimate the size of a text field.

Several other methods are available for use with JTextFields. The setText() method allows
you to change the text in a JTextField (or other Component) that has already been created, as
in the following:

response.setText("Thank you");

Figure 14-19 The JTextField class inheritance hierarchy

Adding JTextFields, JButtons, and Tool Tips to a JFrame

759

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

After a user has entered text in a JTextField, you can clear it out with a statement such as
the following, which assigns an empty string to the text:

response.setText("");

The getText() method allows you to retrieve the String of text in a JTextField (or other
Component), as in:

String whatUserTyped = response.getText();

When a JTextField has the capability of accepting keystrokes, the JTextField is editable.
A JTextField is editable by default. If you do not want the user to be able to enter data
in a JTextField, you can send a boolean value to the setEditable() method to change
the JTextField’s editable status. For example, if you want to give a user a limited number of
chances to answer a question correctly, you can count data entry attempts and then prevent
the user from replacing or editing the characters in the JTextField by using a statement
similar to the following:

if(attempts > LIMIT)
response.setEditable(false);

Adding JButtons
A JButton is a Component the user can click with a mouse to make a selection. A JButton is
even easier to create than a JTextField. There are five JButton constructors:

l public JButton() creates a button with no set text.

l public JButton(Icon icon) creates a button with an icon of type Icon or ImageIcon.

l public JButton(String text) creates a button with text.

l public JButton(String text, Icon icon) creates a button with initial text and an icon
of type Icon or ImageIcon.

l public JButton(Action a) creates a button in which properties are taken from the
Action supplied. (Action is a Java class.)

The inheritance hierarchy of the JButton class is shown in Figure 14-20.

Figure 14-20 The JButton class inheritance hierarchy

CH A P T E R 1 4 Introduction to Swing Components

760

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

To create a JButton with the label “Press when ready”, you can write the following:

JButton readyJButton = new JButton("Press when ready");

You can add a JButton to a JFrame (or other container) using the add() method. You can
change a JButton’s label with the setText() method, as in:

readyJButton.setText("Don't press me again!");

You can retrieve the text from a JButton and assign it to a String object with the getText()
method, as in:

String whatsOnJButton = readyJButton.getText();

Figure 14-21 shows a class that extends JFrame and holds several components. As the
components (two JLabels, a JTextField, and a JButton) are added to the JFrame, they are
placed from left to right in horizontal rows across the JFrame’s surface. Figure 14-22 shows
the program that instantiates an instance of the JFrame.

import javax.swing.*;
import java.awt.*;
public class JFrameWithManyComponents extends JFrame
{

final int FRAME_WIDTH = 300;
final int FRAME_HEIGHT = 150;
public JFrameWithManyComponents()
{

super("Demonstrating many components");
setSize(FRAME_WIDTH, FRAME_HEIGHT);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
JLabel heading = new JLabel("This frame has many components");
heading.setFont(new Font("Arial", Font.BOLD, 16));
JLabel namePrompt = new JLabel("Enter your name:");
JTextField nameField = new JTextField(12);
JButton button = new JButton("Click to continue");
setLayout(new FlowLayout());
add(heading);
add(namePrompt);
add(nameField);
add(button);

}
}

Figure 14-21 The JFrameWithManyComponents class

Adding JTextFields, JButtons, and Tool Tips to a JFrame

761

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public class ComponentDemo
{

public static void main(String[] args)
{

JFrameWithManyComponents frame =
new JFrameWithManyComponents();

frame.setVisible(true);
}

}

Figure 14-22 A ComponentDemo application that instantiates a JFrameWithManyComponents

When you execute the ComponentDemo program, the JFrame contains all the components that
were added in the frame’s constructor, as shown in Figure 14-23. A user can minimize or
restore the frame and can alter its size by dragging the frame borders. The user can type
characters in the JTextField and click the JButton. When the button is clicked, it appears
to be pressed just like buttons you have used in professional applications. However, when the
user types characters or clicks the button, no resulting actions occur because code has not yet
been written to handle those user-initiated events.

Using Tool Tips
Tool tips are popup windows that can help a user understand the purpose of
components in an application; the tool tip appears when a user hovers the mouse
pointer over the component. You define the text to be displayed in a tool tip by using
the setToolTipText() method and passing an appropriate String to it. For example, in
the JFrameWithManyComponents program in Figure 14-21, you can add a tool tip to the
button component by using the following statement in the JFrame constructor:

button.setToolTipText("Click this button");

Figure 14-24 shows the result when the JFrame is displayed and the user’s mouse pointer is
placed over the button.

Figure 14-23 Execution of the ComponentDemo program

CH A P T E R 1 4 Introduction to Swing Components

762

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The JFrameWithToolTip.java file in your downloadable student files contains a revised version of
JFrameWithManyComponents with the tool tip added. The ToolTipDemo.java file contains an
application that instantiates a JFrameWithToolTip object.

TWO TRUTHS & A LIE

Adding JTextFields, JButtons, and Tool Tips to a JFrame

1. A JTextField is a component into which a user can type a single line of text
data; typically, a user types a line into a JTextField and then presses Enter on
the keyboard or clicks a button with the mouse to enter the data.

2. A JButton is a Component the user can click with a mouse to make a selection.

3. Tool tips are the different symbols you can select to display as a cursor in your
applications.

.t nenop moc eht
r evor et ni op esuo meht sr evoh r esu a nehwsr aeppa pi t

l oot eht ; noi t acil ppa na ni st nenop mocf o esopr up eht dnat sr ednu
r esu a pl eh nact aht s wodni w pupop er a spi t l ooT. 3# si t ne met at s esl af ehT

Figure 14-24 JFrame with added tool tip

Adding JTextFields, JButtons, and Tool Tips to a JFrame

763

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You Do It

Adding Components to a JFrame

Next, you create a Swing application that displays a JFrame that holds a JLabel,
JTextField, and JButton.

1. Open a new file in your text editor, then type the following first few lines of an
application. The import statements make the Swing and AWT components
available, and the class header indicates that the class is a JFrame. The class
contains several components: a label, field, and button.

import javax.swing.*;
import java.awt.*;
public class JFrameWithComponents extends JFrame
{

JLabel label = new JLabel("Enter your name");
JTextField field = new JTextField(12);
JButton button = new JButton("OK");

2. In the JFrameWithComponents constructor, set the JFrame title to “Frame with
Components” and the default close operation to exit the program when the
JFrame is closed. Set the layout manager. Add the label, field, and button to
the JFrame.

public JFrameWithComponents()
{

super("Frame with Components");
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setLayout(new FlowLayout());
add(label);
add(field);
add(button);

}

3. Add a closing curly brace for the class, and then save the file as
JFrameWithComponents.java.

4. Compile the class and correct any errors.

5. Next, write an application that creates a new JFrameWithComponents named
aFrame, sizes it using the setSize() method, and then sets its visible property
to true.

(continues)

CH A P T E R 1 4 Introduction to Swing Components

764

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

import javax.swing.*;
public class CreateJFrameWithComponents
{

public static void main(String[] args)
{

JFrameWithComponents aFrame =
new JFrameWithComponents();

final int WIDTH = 350;
final int HEIGHT = 100;
aFrame.setSize(WIDTH, HEIGHT);
aFrame.setVisible(true);

}
}

6. Save the file as CreateJFrameWithComponents.java. Compile and then
execute the application. The output is shown in Figure 14-25.

7. Click the JButton. It acts like a button should—that is, it appears to be pressed
when you click it, but nothing happens because you have not yet written
instructions for the button clicks to execute.

8. Close the application.

Learning About Event-Driven Programming
An event occurs when a user takes action on a component, such as clicking the mouse on a
JButton object. In an event-driven program, the user might initiate any number of events in
any order. For example, if you use a word-processing program, you have dozens of choices at
your disposal at any time. You can type words, select text with the mouse, click a button to
change text to bold, click a button to change text to italic, choose a menu item, and so on.
With each word-processing document you create, you choose options in any order that
seems appropriate at the time. The word-processing program must be ready to respond to
any event you initiate.

(continued)

Figure 14-25 Output of the CreateJFrameWithComponents application

Learning About Event-Driven Programming

765

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Within an event-driven program, a component on which an event is generated is the source
of the event. A button that a user can click is an example of a source; a text field that a user
can use to enter text is another source. An object that is interested in an event is a listener.
Not all objects listen for all possible events—you probably have used programs in which
clicking many areas of the screen has no effect. If you want an object to be a listener for an
event, you must register the object as a listener for the source.

Social networking sites maintain lists of people in whom you are interested and notify you
each time a person on your list posts a comment or picture. Similarly, a Java component
source object (such as a button) maintains a list of registered listeners and notifies all of them
when any event occurs. For example, a JFrame might want to be notified of any mouse click
on its surface. When the listener “receives the news,” an event-handling method contained in
the listener object responds to the event.

A source object and a listener object can be the same object. For example, you might program a JButton
to change its own label when a user clicks it.

To respond to user events within any class you create, you must do the following:

l Prepare your class to accept event messages.

l Tell your class to expect events to happen.

l Tell your class how to respond to events.

Preparing Your Class to Accept Event Messages
You prepare your class to accept button-press events by importing the java.awt.event
package into your program and adding the phrase implements ActionListener to the class
header. The java.awt.event package includes event classes with names such as
ActionEvent, ComponentEvent, and TextEvent. ActionListener is an interface—a class
containing a set of specifications for methods that you can use. Implementing
ActionListener provides you with standard event method specifications that allow your
listener to work with ActionEvents, which are the types of events that occur when a user
clicks a button.

You learned to create and implement interfaces in Chapter 11. You can identify interfaces such as
ActionListener because they use the keyword implements. In ordinary language, an item that is
implemented is put into service, or used. Implementation has a similar meaning when applied to interfaces. In
contrast, packages that are imported are brought into an application, and classes that are added onto are
extended.

CH A P T E R 1 4 Introduction to Swing Components

766

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Telling Your Class to Expect Events to Happen
You tell your class to expect ActionEvents with the addActionListener() method. If you
have declared a JButton named aButton, and you want to perform an action when a user
clicks aButton, aButton is the source of a message, and you can think of your class as a target
to which to send a message. You learned in Chapter 4 that the this reference means “this
current object,” so the code aButton.addActionListener(this); causes any ActionEvent
messages (button clicks) that come from aButton to be sent to “this current object.”

Not all Events are ActionEvents with an addActionListener() method. For example,
KeyListeners have an addKeyListener() method, and FocusListeners have an
addFocusListener() method. Additional event types and methods are covered in more
detail in the next chapter.

Telling Your Class How to Respond to Events
The ActionListener interface contains the actionPerformed(ActionEvent e) method
specification. When a class, such as a JFrame, has registered as a listener with a Component
such as a JButton, and a user clicks the JButton, the actionPerformed() method executes.
You implement the actionPerformed() method, which contains a header and a body, like all
methods. You use the following header, in which e represents any name you choose for the
Event (the JButton click) that initiated the notification of the ActionListener (which is
the JFrame):

public void actionPerformed(ActionEvent e)

The body of the method contains any statements that you want to execute when the action
occurs. You might want to perform mathematical calculations, construct new objects,
produce output, or execute any other operation. For example, Figure 14-26 shows a JFrame
containing a JLabel that prompts the user for a name, a JTextField into which the user can
type a response, a JButton to click, and a second JLabel that displays the name entered by
the user. The actionPerformed() method executes when the user clicks the pressMe
JButton; within the method, the String that a user has typed into the JTextField is
retrieved and stored in the name variable. The name is then used as part of a String that alters
the second JLabel on the JFrame. Figure 14-27 shows an application that instantiates a
JHelloFrame object and makes it visible.

Learning About Event-Driven Programming

767

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
public class JHelloFrame extends JFrame implements ActionListener
{

JLabel question = new JLabel("What is your name?");
Font bigFont = new Font("Arial", Font.BOLD, 16);
JTextField answer = new JTextField(10);
JButton pressMe = new JButton("Press me");
JLabel greeting = new JLabel("");
final int WIDTH = 275;
final int HEIGHT = 225;
public JHelloFrame()
{

super("Hello Frame");
setSize(WIDTH, HEIGHT);
setLayout(new FlowLayout());
question.setFont(bigFont);
greeting.setFont(bigFont);
add(question);
add(answer);
add(pressMe);
add(greeting);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
pressMe.addActionListener(this);

}
public void actionPerformed(ActionEvent e)
{

String name = answer.getText();
String greet = "Hello, " + name;
greeting.setText(greet);

}
}

Figure 14-26 The JHelloFrame class that produces output when the user clicks the JButton

public class JHelloDemo
{

public static void main(String[] args)
{

JHelloFrame frame = new JHelloFrame();
frame.setVisible(true);

}
}

Figure 14-27 An application that instantiates a JHelloFrame object

CH A P T E R 1 4 Introduction to Swing Components

768

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 14-28 shows a typical execution of the JHelloDemo program. The user enters Lindsey
into the JTextField, and the greeting with the name is displayed after the user clicks the
button.

When more than one component is added and registered to a JFrame, it might be necessary
to determine which component was used to initiate an event. For example, in the
JHelloFrame class in Figure 14-26, you might want the user to be able to see the message
after either clicking the button or pressing Enter in the JTextField. In that case, you would
designate both the pressMe button and the answer text field to be message sources by using
the addActionListener() method with each, as follows:

pressMe.addActionListener(this);
answer.addActionListener(this);

These two statements make the JFrame (this) the receiver of messages from either object.
The JFrame has only one actionPerformed() method, so it is the method that executes when
either the pressMe button or the answer text field sends a message.

If you want different actions to occur depending on whether the user clicks the button or
presses Enter, you must determine the source of the event. Within the actionPerformed()
method, you can use the getSource() method of the object sent to determine which
component generated the event. For example, within a method with the header public void
actionPerformed(ActionEvent e), e is an ActionEvent. ActionEvent and other event
classes are part of the java.awt.event package and are subclasses of the EventObject class.
To determine what object generated the ActionEvent, you can use the following statement:

Object source = e.getSource();

For example, if a JFrame contains two JButtons named option1 and option2, you can use the
decision structure in the method in Figure 14-29 to take different courses of action based on
the button that is clicked. Whether an event’s source is a JButton, JTextField, or other
Component, it can be assigned to an Object because all components descend from Object.

Figure 14-28 Typical execution of the JHelloDemo program

Learning About Event-Driven Programming

769

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public void actionPerformed(ActionEvent e)
{

Object source = e.getSource();
if(source == option1)

//execute these statements when user clicks option1
else

//execute these statements when user clicks any other option
}

Figure 14-29 An actionPerformed() method that takes one of two possible actions

Alternatively, you can also use the instanceof keyword to determine the source of the event.
The instanceof keyword is used when it is necessary to know only the component’s type,
rather than what component triggered the event. For example, if you want to take some
action when a user enters data into any JTextField, but not when an event is generated by a
different Component type, you could use the method format shown in Figure 14-30.

void actionPerformed(ActionEvent e)
{

Object source = e.getSource();
if(source instanceof JTextField)
{

// execute these statements when any JTextField
// generates the event
// but not when a JButton or other Component does

}
}

Figure 14-30 An actionPerformed() method that executes a block of statements when a user
generates an event from any JTextField

Using the setEnabled() Method
You probably have used computer programs in which a component becomes disabled or
unusable. For example, a JButton might become dim and unresponsive when the
programmer no longer wants you to have access to the JButton’s functionality. Components
are enabled by default, but you can use the setEnabled() method to make a component
available or unavailable by passing true or false to it, respectively. For example, Figure 14-31
shows a JFrame with two JButton objects. The one on top is enabled, but the one on the
bottom has been disabled.

CH A P T E R 1 4 Introduction to Swing Components

770

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Your downloadable student files contain a file named JTwoButtons.java that produces the JFrame shown in
Figure 14-31.

TWO TRUTHS & A LIE

Learning About Event-Driven Programming

1. Within an event-driven program, a component on which an event is generated
is a listener.

2. You prepare your class to accept button-press events by importing the
java.awt.event package into your program and adding the phrase
implements ActionListener to the class header.

3. A class that can react to ActionEvents includes an actionPerformed()
method.

.r enet sil a si t neve na ni
det ser et ni si t aht t cej bo na dna,t neve eht f o ecr uos eht si det ar eneg si t neve na
hci h wnot nenop moc a, mar gor p nevi r d- t neve na ni hti W. 1# si t ne met at s esl af ehT

Figure 14-31 A JFrame with an enabled JButton and a disabled JButton

Learning About Event-Driven Programming

771

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You Do It

Adding Functionality to a JButton and a JTextField

Next, you add functionality to the JButton and JTextField that you created in the
JFrameWithComponents class.

1. Open the JFrameWithComponents.java file. Immediately save the file as
JAction.java.

2. After the existing import statements at the top of the file, add the following
import statement that will allow event handling:

import java.awt.event.*;

3. Change the class name to JAction to match the new filename. Also change
the constructor header to match the new class name. Within the constructor,
change the string argument to the super() method from “Frame with
Components” to “Action”.

4. After extends JFrame at the end of the JAction class header, add the
following phrase so that the class can respond to ActionEvents:

implements ActionListener

5. Register the JAction class as a listener for events generated by either the
button or the text field by adding the following statements at the end of, but
within, the JAction() constructor:

button.addActionListener(this);
field.addActionListener(this);

6. Just prior to the closing curly brace for the class, add the following
actionPerformed() method. The method changes the text on both the label
and the button whenever the user clicks the button or presses Enter in the text
field.

public void actionPerformed(ActionEvent e)
{

label.setText("Thank you");
button.setText("Done");

}

7. Just after the actionPerformed() method, and just before the closing curly
brace for the class, add a main() method to the class so that you can
instantiate a JAction object for demonstration purposes.

(continues)

CH A P T E R 1 4 Introduction to Swing Components

772

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public static void main(String[] args)
{

JAction aFrame = new JAction();
final int WIDTH = 250;
final int HEIGHT = 100;
aFrame.setSize(WIDTH, HEIGHT);
aFrame.setVisible(true);

}

8. Save the file, then compile and execute it. The output looks like the frame on the
left side of Figure 14-32. Type a name in the text field, and then click the OK
button. Its text changes to “Done”, and its size increases slightly because the
label “Done” requires more space than the label “OK”. The other label requires
less space than it did because “Thank you” is a shorter message than “Enter
your name”. Therefore, all the components are redistributed because the
FlowLayout manager places as many components as will fit horizontally in the
top row before adding components to subsequent rows. The output looks like
the right side of Figure 14-32.

9. Close the application and then execute it again. This time, enter a name in the
text field and press Enter. Again, the button text changes, showing that the
actionPerformed() method reacts to actions that take place on either the
button or the text field.

10. Close the application.

Distinguishing Event Sources

Next, you will modify the actionPerformed() method of the JAction class so that
different results occur depending on which action a user takes.

1. Open the JAction.java file in your text editor if the file is not still open.
Immediately save the file as JAction2.java.

(continued)

Figure 14-32 Typical execution of the JAction application after the user clicks the
OK button

(continues)

Learning About Event-Driven Programming

773

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. Change the class name and the constructor name to match the new filename by
adding 2 to each name.

3. In the main() method, change the statement that instantiates the JFrame object
to the following:

JAction2 aFrame = new JAction2();

4. Within the actionPerformed() method, you can use the named ActionEvent
argument and the getSource() method to determine the source of the event.
Using an if statement, you can take different actions when the argument
represents different sources. For example, you can change the label in the frame
to indicate the event’s source. Change the actionPerformed() method to:

public void actionPerformed(ActionEvent e)
{

Object source = e.getSource();
if(source == button)

label.setText("You clicked the button");
else

label.setText("You pressed Enter");
}

5. Save the file (as JAction2.java), then compile and execute it. Type a name, press
Enter or click the button, and notice the varying results in the frame’s label. For
example, Figure 14-33 shows the application after the user has typed a name
and pressed Enter.

6. Close the application.

Understanding Swing Event Listeners
Many types of listeners exist in Java, and each of these listeners can handle a specific event
type. A class can implement as many event listeners as it needs—for example, a class might
need to respond to both a mouse button press and a keyboard key press, so you might

(continued)

Figure 14-33 Typical execution of the JAction2 application

CH A P T E R 1 4 Introduction to Swing Components

774

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

implement both ActionListener and KeyListener interfaces. Table 14-2 lists some event
listeners and the types of events for which they are used.

An event occurs every time a user types a character or clicks a mouse button. Any object can
be notified of an event as long as it implements the appropriate interface and is registered as
an event listener on the appropriate event source. You already know that you establish a
relationship between a JButton and a JFrame that contains it by using the
addActionListener() method. Similarly, you can create relationships between other Swing
components and the classes that react to users’ manipulations of them. In Table 14-3, each
component listed on the left is associated with a method on the right. For example, when you
want a JCheckBox to respond to a user’s clicks, you can use the addItemListener() method
to register the JCheckBox as the type of object that can create an ItemEvent. The argument
you place within the parentheses of the call to the addItemListener() method is the object
that should respond to the event—perhaps a JFrame that contains the event-generating
JCheckBox. The format is:

theSourceOfTheEvent.addListenerMethod(theClassThatShouldRespond);

Listener Type of Events Example
ActionListener Action events Button clicks

AdjustmentListener Adjustment events Scroll bar moves

ChangeListener Change events Slider is repositioned

FocusListener Keyboard focus events Text field gains or
loses focus

ItemListener Item events Check box changes
status

KeyListener Keyboard events Text is entered

MouseListener Mouse events Mouse clicks

MouseMotionListener Mouse movement events Mouse rolls

WindowListener Window events Window closes

Table 14-2 Alphabetical list of some event listeners

Understanding Swing Event Listeners

775

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Any event source can have multiple listeners registered on it. Conversely, a single listener can be registered
with multiple event sources. In other words, a single instance of JCheckBox might generate ItemEvents
and FocusEvents, and a single instance of the JFrame class might respond to ActionEvents
generated by a JButton and ItemEvents generated by a JCheckBox.

The class of the object that responds to an event must contain a method that accepts the
event object created by the user’s action. A method that executes because it is called
automatically when an appropriate event occurs is an event handler. In other words, when
you register a component (such as a JFrame) to be a listener for events generated by another
component (such as a JCheckBox), you must write an event handler method. You cannot
choose your own name for event handlers—specific method identifiers react to specific event
types. Table 14-4 lists just some of the methods that react to events.

Each listener in Table 14-4 is associated with only one or two methods. Other listeners, such as
KeyListener and MouseListener, are associated with multiple methods. You will learn how to use
these more complicated listeners in the chapter Advanced GUI Topics.

Listener Method
ActionListener actionPerformed(ActionEvent)

AdjustmentListener adjustmentValueChanged(AdjustmentEvent)

FocusListener focusGained(FocusEvent) and focusLost(FocusEvent)

ItemListener itemStateChanged(ItemEvent)

Table 14-4 Selected methods that respond to events

Component(s) Associated Listener-Registering Method(s)
JButton, JCheckBox, JComboBox, JTextField,
and JRadioButton

addActionListener()

JScrollBar addAdjustmentListener()

All Swing components addFocusListener(), addKeyListener(),
addMouseListener(), and
addMouseMotionListener()

JButton, JCheckBox, JComboBox, and
JRadioButton

addItemListener()

All JWindow and JFrame components addWindowListener()

JSlider and JCheckBox addChangeListener()

Table 14-3 Some Swing components and their associated listener-registering methods

CH A P T E R 1 4 Introduction to Swing Components

776

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Until you become familiar with the event-handling model, it can seem quite confusing. For
now, remember these tasks you must perform when you declare a class that handles an event:

l The class that handles an event must either implement a listener interface or extend a
class that implements a listener interface. For example, if a JFrame named MyFrame needs
to respond to a user’s clicks on a JCheckBox, you would write the following class header:

public class MyFrame extends JFrame
implements ItemListener

If you then declare a class that extends MyFrame, you need not include implements
ItemListener in its header. The new class inherits the implementation.

l You must register each instance of the event-handling class as a listener for one or more
components. For example, if MyFrame contains a JCheckBox named myCheckBox, then
within the MyFrame class you would code:

myCheckBox.addItemListener(this);

The this reference is to the class in which myCheckBox is declared—in this case, MyFrame.

l You must write an event handler method with an appropriate identifier (as shown in
Table 14-4) that accepts the generated event and reacts to it.

Watch the video Event-Driven Programming.

TWO TRUTHS & A LIE

Understanding Swing Event Listeners

1. A class can implement as many event listeners as it needs.

2. Any object can be notified of a mouse click or keyboard press as long as it
implements the appropriate interface and is registered as an event listener on
the appropriate event source.

3. Every event-handling method accepts a parameter that represents the listener
for the event.

.t neve det ar eneg eht st neser per t aht
r et e mar ap a st pecca doht e mgnil dnah- t neve yr evE. 3# si t ne met at s esl af ehT

Understanding Swing Event Listeners

777

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using the JCheckBox, ButtonGroup, and JComboBox
Classes
Besides JButtons and JTextFields, several other Java components allow a user to
make selections in a UI environment. These include JCheckBoxes, ButtonGroups,
and JComboBoxes.

The JCheckBox Class
A JCheckBox consists of a label positioned beside a square; you can click the square to display
or remove a check mark. Usually, you use a JCheckBox to allow the user to turn an option on
or off. For example, Figure 14-34 shows the code for an application that uses four
JCheckBoxes, and Figure 14-35 shows the output.

import java.awt.*;
import javax.swing.*;
import java.awt.event.*;
public class CheckBoxDemonstration

extends JFrame implements ItemListener
{

FlowLayout flow = new FlowLayout();
JLabel label = new JLabel("What would you like to drink?");
JCheckBox coffee = new JCheckBox("Coffee", false);
JCheckBox cola = new JCheckBox("Cola", false);
JCheckBox milk = new JCheckBox("Milk", false);
JCheckBox water = new JCheckBox("Water", false);
String output, insChosen;
public CheckBoxDemonstration()
{

super("CheckBox Demonstration");
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setLayout(new FlowLayout());
label.setFont(new Font("Arial", Font.ITALIC, 22));
coffee.addItemListener(this);
cola.addItemListener(this);
milk.addItemListener(this);
water.addItemListener(this);
add(label);
add(coffee);
add(cola);
add(milk);
add(water);

}

Figure 14-34 The CheckBoxDemonstration class (continues)

CH A P T E R 1 4 Introduction to Swing Components

778

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public void itemStateChanged(ItemEvent check)
{

// Actions based on choice go here
}
public static void main(String[] arguments)
{

final int FRAME_WIDTH = 350;
final int FRAME_HEIGHT = 120;
CheckBoxDemonstration frame =

new CheckBoxDemonstration();
frame.setSize(FRAME_WIDTH, FRAME_HEIGHT);
frame.setVisible(true);

}
}

Figure 14-34 The CheckBoxDemonstration class

In the application in Figure 14-34, the CheckBoxDemonstration class and the main() method that
instantiates an instance of it are part of the same class. You could also store the two parts in separate
classes, as in previous examples.

The inheritance hierarchy of the JCheckBox class is shown in Figure 14-36; frequently used
JCheckBox methods appear in Table 14-5.

Figure 14-36 The inheritance hierarchy of the JCheckBox class

Figure 14-35 Output of the CheckBoxDemonstration class

(continued)

Using the JCheckBox, ButtonGroup, and JComboBox Classes

779

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Several constructors can be used with JCheckBoxes. When you construct a JCheckBox, you
can choose whether to assign it a label; you can also decide whether the JCheckBox appears
selected (JCheckBoxes start unselected by default). The following statements create four
JCheckBox objects—one with no label and unselected, two with labels and unselected, and
one with a label and selected.

l JCheckBox box1 = new JCheckBox();
// No label, unselected

l JCheckBox box2 = new JCheckBox("Check here");
// Label, unselected

l JCheckBox box3 = new JCheckBox("Check here", false);
// Label, unselected

l JCheckBox box4 = new JCheckBox("Check here", true);
// Label, selected

If you do not initialize a JCheckBox with a label and you want to assign one later, or if you
want to change an existing label, you can use the setText() method, as in the following
example:

box1.setText("Check this box now");

You can set the state of a JCheckBox with the setSelected() method; for example, you can
use the following statement to ensure that box1 is unchecked:

box1.setSelected(false);

The isSelected() method is most useful in Boolean expressions, as in the following example,
which adds one to a voteCount variable if box2 is currently checked.

if(box2.isSelected())
++voteCount;

When the status of a JCheckBox changes from unchecked to checked (or from checked to
unchecked), an ItemEvent is generated, and the itemStateChanged() method executes. You
can use the getItem() method to determine which object generated the event and the
getStateChange() method to determine whether the event was a selection or a deselection.

Method Purpose
void setText(String) Sets the text for the JCheckBox

String getText() Returns the JCheckBox text

void setSelected(boolean) Sets the state of the JCheckBox to true for selected or false
for unselected

boolean isSelected() Gets the current state (checked or unchecked) of the
JCheckBox

Table 14-5 Frequently used JCheckBox methods

CH A P T E R 1 4 Introduction to Swing Components

780

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The getStateChange() method returns an integer that is equal to one of two class
variables—ItemEvent.SELECTED or ItemEvent.DESELECTED. For example, in Figure 14-37 the
itemStateChanged() method calls the getItem() method, which returns the object named
source. Then, the value of source is tested in an if statement to determine if it is equivalent
to a JCheckBox object named checkBox. If the two references are to the same object, the code
determines whether the checkBox was selected or deselected, and in each case appropriate
actions are taken.

public void itemStateChanged(ItemEvent e)
{

Object source = e.getItem();
if(source == checkBox)
{

int select = e.getStateChange();
if(select == ItemEvent.SELECTED)

// statements that execute when the box is checked
else

// statements that execute when the box is unchecked
}
else
{

// statements that execute when the source of the event is
// some component other than the checkBox object

}
}

Figure 14-37 Typical itemStateChanged() method

The ButtonGroup Class
Sometimes, you want options to be mutually exclusive—that is, you want the user to be able
to select only one of several choices. When you create a ButtonGroup, you can group several
components, such as JCheckBoxes, so a user can select only one at a time. When you group
JCheckBox objects, all of the other JCheckBoxes are automatically turned off when the user
selects any one check box. The inheritance hierarchy for the ButtonGroup class is shown in
Figure 14-38. You can see that ButtonGroup descends directly from the Object class. Even
though it does not begin with a J, the ButtonGroup class is part of the javax.swing package.

Figure 14-38 The inheritance hierarchy for the ButtonGroup class

Using the JCheckBox, ButtonGroup, and JComboBox Classes

781

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A group of JCheckBoxes in which a user can select only one at a time also acts like a set of radio buttons
(for example, those used to select preset radio stations on an automobile radio), which you can create using
the JRadioButton class. The JRadioButton class is very similar to the JCheckBox class, and you
might prefer to use it when you have a list of mutually exclusive user options. It makes sense to use
ButtonGroups with items that can be selected (that is, those that use an isSelected() method). You
can find more information about the JRadioButton class at http://java.sun.com.

To create a ButtonGroup in a JFrame and then add a JCheckBox, you must perform four steps:

l Create a ButtonGroup, such as ButtonGroup aGroup = new ButtonGroup();.

l Create a JCheckBox, such as JCheckBox aBox = new JCheckBox();.

l Add aBox to aGroup with aGroup.add(aBox);.

l Add aBox to the JFrame with add(aBox);.

You can create a ButtonGroup and then create the individual JCheckBox objects, or you can
create the JCheckBoxes and then create the ButtonGroup. If you create a ButtonGroup but
forget to add any JCheckBox objects to it, then the JCheckBoxes act as individual,
nonexclusive check boxes.

A user can set one of the JCheckBoxes within a group to “on” by clicking it with the mouse, or
the programmer can select a JCheckBox within a ButtonGroup with a statement such as the
following:

aGroup.setSelected(aBox);

Only one JCheckBox can be selected within a group. If you assign the selected state to a
JCheckBox within a group, any previous assignment is negated.

You can determine which, if any, of the JCheckBoxes in a ButtonGroup is selected using the
isSelected() method.

After a JCheckBox in a ButtonGroup has been selected, one in the group will always be
selected. In other words, you cannot “clear the slate” for all the items that are members of a
ButtonGroup. You could cause all the JCheckBoxes in a ButtonGroup to initially appear
unselected by adding one JCheckBox that is not visible (using the setVisible() method).
Then, you could use the setSelected() method to select the invisible JCheckBox, and all the
others would appear to be deselected.

The JComboBox Class
A JComboBox is a component that combines two features: a display area showing a default
option and a list box that contains additional, alternate options. (A list box is also known as a
combo box or a drop-down list.) The display area contains either a button that a user can
click or an editable field into which the user can type. When a JComboBox appears on the
screen, the default option is displayed. When the user clicks the JComboBox, a list of

CH A P T E R 1 4 Introduction to Swing Components

782

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://java.sun.com

alternative items drops down; if the user selects one, it replaces the box’s displayed item.
Users often expect to view JComboBox options in alphabetical order. If it makes sense for your
application, consider displaying your options this way. Other reasonable approaches are to
place choices in logical order, such as “small”, “medium”, and “large”, or to position the most
frequently selected options first.

Figure 14-39 shows a JComboBox as it looks when first displayed and as it looks after a user
clicks it. The inheritance hierarchy of the JComboBox class is shown in Figure 14-40.

The code that produces the JComboBox in Figure 14-39 is contained in the file named
ComboBoxDemonstration.java in your downloadable student files.

You can build a JComboBox by using a constructor with no arguments and then adding items
(for example, Strings) to the list with the addItem() method. The following statements
create a JComboBox named majorChoice that contains three options from which a user can
choose:

JComboBox<String> majorChoice = new JComboBox<String>();
majorChoice.addItem("English");
majorChoice.addItem("Math");
majorChoice.addItem("Sociology");

Figure 14-40 The inheritance hierarchy of the JComboBox class

Figure 14-39 A JComboBox before and after the user clicks it

Using the JCheckBox, ButtonGroup, and JComboBox Classes

783

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In the declaration of the JComboBox, notice the use of <String> following the class name. By
default, a JComboBox expects items that are added to be Object types. Adding the angle
brackets and String notifies the compiler of the expected items in the JComboBox and allows
the compiler to check for errors if invalid items are added. If you do not insert a data type for
a JComboBox, the program compiles, but a warning message is issued with each addItem()
method call. Programmers say that JComboBox uses generics. Generic programming is a
feature of modern languages that allows multiple data types to be used safely with methods.

As an alternative, you can construct a JComboBox using an array of Objects as the constructor
argument; the Objects in the array become the listed items within the JComboBox. For
example, the following code creates the same majorChoice JComboBox as the preceding code:

String[] majorArray = {"English", "Math", "Sociology"};
JComboBox majorChoice = new JComboBox(majorArray);

Table 14-6 lists some methods you can use with a JComboBox object. For example, you can use
the setSelectedItem() or setSelectedIndex() method to choose one of the items in a
JComboBox to be the initially selected item. You also can use the getSelectedItem() or
getSelectedIndex() method to discover which item is currently selected.

Method Purpose
void addItem(Object) Adds an item to the list

void removeItem(Object) Removes an item from the list

void removeAllItems() Removes all items from the list

Object getItemAt(int) Returns the list item at the index position specified by the
integer argument

int getItemCount() Returns the number of items in the list

int getMaximumRowCount() Returns the maximum number of items the combo box can
display without a scroll bar

int getSelectedIndex() Returns the position of the currently selected item

Object getSelectedItem() Returns the currently selected item

Object[] getSelectedObjects() Returns an array containing selected Objects

void setEditable(boolean) Sets the field to be editable or not editable

void setMaximumRowCount(int) Sets the number of rows in the combo box that can be
displayed at one time

void setSelectedIndex(int) Sets the index at the position indicated by the argument

void setSelectedItem(Object) Sets the selected item in the combo box display area to be
the Object argument

Table 14-6 Some JComboBox class methods

CH A P T E R 1 4 Introduction to Swing Components

784

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You can treat the list of items in a JComboBox object as an array; the first item is at position 0,
the second is at position 1, and so on. It is convenient to use the getSelectedIndex()
method to determine the list position of the currently selected item; then you can use the
index to access corresponding information stored in a parallel array. For example, if a
JComboBox named historyChoice has been filled with a list of historical events, such as
“Declaration of Independence,” “Pearl Harbor,” and “Man walks on moon,” you can code the
following to retrieve the user’s choice:

int positionOfSelection = historyChoice.getSelectedIndex();

The variable positionOfSelection now holds the position of the selected item, and
you can use the variable to access an array of dates so you can display the date that
corresponds to the selected historical event. For example, if you declare the following,
then dates[positionOfSelection] holds the year for the selected historical event:

int[] dates = {1776, 1941, 1969};

A JComboBox does not have to hold items declared as Strings; it can hold an array of Objects and
display the results of the toString() method used with those objects. In other words, instead of using
parallel arrays to store historical events and dates, you could design a HistoricalEvent class that
encapsulates Strings for the event and ints for the date.

In addition to JComboBoxes for which users click items presented in a list, you can create
JComboBoxes into which users type text. To do this, you use the setEditable() method. A
drawback to using an editable JComboBox is that the text a user types must exactly match an
item in the list box. If the user misspells the selection or uses the wrong case, no valid value is
returned from the getSelectedIndex() method. You can use an if statement to test the
value returned from getSelectedIndex(); if it is negative, the selection did not match any
items in the JComboBox, and you can issue an appropriate error message.

TWO TRUTHS & A LIE

Using the JCheckBox, ButtonGroup, and JComboBox Classes

1. A JCheckBox consists of a label positioned beside a square; you can click the
square to display or remove a check mark.

2. When you create a ButtonGroup, you can group several components, such as
JCheckBoxes, so a user can select multiple options simultaneously.

3. When a user clicks a JComboBox, a list of alternative items drops down; if the
user selects one, it replaces the box’s displayed item.

. e mit at a eno yl not cel es nac r esu a os, sexoBkcehCJ sa hcus, st nenop moc
l ar eves puor g nac uoy , puorGnottuB a et aer c uoy neh W. 2# si t ne met at s esl af ehT

Using the JCheckBox, ButtonGroup, and JComboBox Classes

785

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You Do It

Including JCheckBoxes in an Application

Next, you create an interactive program for a resort. The base price for a room is
$200, and a guest can choose from several options. Reserving a room for a
weekend night adds $100 to the price, including breakfast adds $20, and including a
round of golf adds $75. A guest can select none, some, or all of these premium
additions. Each time the user changes the option package, the price is recalculated.

1. Open a new file in your text editor, then type the following first few lines of a
Swing application that demonstrates the use of a JCheckBox. Note that the
JResortCalculator class implements the ItemListener interface:

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
public class JResortCalculator extends

JFrame implements ItemListener
{

2. Declare the named constants that hold the base price for a resort room and
the premium amounts for a weekend stay, including breakfast and a round of
golf. Also include a variable that holds the total price for the stay, and initialize
it to the value of the base price. Later, depending on the user’s selections,
premium fees might be added to totalPrice, making it more than
BASE_PRICE.

final int BASE_PRICE = 200;
final int WEEKEND_PREMIUM = 100;
final int BREAKFAST_PREMIUM = 20;
final int GOLF_PREMIUM = 75;
int totalPrice = BASE_PRICE;

3. Declare three JCheckBox objects. Each is labeled with a String that contains
a description of the option and the cost of the option. Each JCheckBox starts
unchecked or deselected.

JCheckBox weekendBox = new JCheckBox
("Weekend premium $" + WEEKEND_PREMIUM, false);

JCheckBox breakfastBox = new
JCheckBox("Breakfast $" + BREAKFAST_PREMIUM, false);

JCheckBox golfBox = new JCheckBox
("Golf $" + GOLF_PREMIUM, false);

(continues)

CH A P T E R 1 4 Introduction to Swing Components

786

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4. Include JLabels to hold user instructions and information and a JTextField in
which to display the total price:

JLabel resortLabel = new JLabel
("Resort Price Calculator");

JLabel ePrice = new JLabel("The price for your stay is");
JTextField totPrice = new JTextField(4);
JLabel optionExplainLabel = new JLabel

("Base price for a room is $"
+ BASE_PRICE + ".");

JLabel optionExplainLabel2 = new JLabel
("Check the options you want.");

5. Begin the JResortCalculator class constructor. Include instructions to set the
title by passing it to the JFrame parent class constructor, to set the default close
operation, and to set the layout manager. Then add all the necessary
components to the JFrame.

public JResortCalculator()
{

super("Resort Price Estimator");
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setLayout(new FlowLayout());
add(resortLabel);
add(optionExplainLabel);
add(optionExplainLabel2);
add(weekendBox);
add(breakfastBox);
add(golfBox);
add(priceLabel);
add(totPrice);

6. Continue the constructor by setting the text of the totPrice JTextField to
display a dollar sign and the totalPrice value. Register the class as a listener
for events generated by each of the three JCheckBoxes. Finally, add a closing
curly brace for the constructor.

totPrice.setText("$" + totalPrice);
weekendBox.addItemListener(this);
breakfastBox.addItemListener(this);
golfBox.addItemListener(this);

}

(continued)

(continues)

Using the JCheckBox, ButtonGroup, and JComboBox Classes

787

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

7. Begin the itemStateChanged() method that executes when the user selects or
deselects a JCheckBox. Use the appropriate methods to determine which
JCheckBox is the source of the current ItemEvent and whether the event was
generated by selecting a JCheckBox or by deselecting one.

public void itemStateChanged(ItemEvent event)
{

Object source = event.getSource();
int select = event.getStateChange();

8. Write a nested if statement that tests whether the source is equivalent to the
weekendBox, breakfastBox, or, by default, the golfBox. In each case, depending
on whether the item was selected or deselected, add or subtract the
corresponding premium fee from the totalPrice. Display the total price in the
JTextField, and add a closing curly brace for the method.

if(source == weekendBox)
if(select == ItemEvent.SELECTED)

totalPrice += WEEKEND_PREMIUM;
else

totalPrice -= WEEKEND_PREMIUM;
else if(source == breakfastBox)
{

if(select == ItemEvent.SELECTED)
totalPrice += BREAKFAST_PREMIUM;

else
totalPrice -= BREAKFAST_PREMIUM;

}
else // if(source == golfBox) by default

if(select == ItemEvent.SELECTED)
totalPrice += GOLF_PREMIUM;

else
totalPrice -= GOLF_PREMIUM;

totPrice.setText("$" + totalPrice);
}

9. Add a main() method that creates an instance of the JFrame and sets its size
and visibility. Then add a closing curly brace for the class.

public static void main(String[] args)
{

JResortCalculator aFrame =
new JResortCalculator();

final int WIDTH = 300;
final int HEIGHT = 200;
aFrame.setSize(WIDTH, HEIGHT);
aFrame.setVisible(true);

}
}

(continued)

(continues)

CH A P T E R 1 4 Introduction to Swing Components

788

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10. Save the file as JResortCalculator.java. Compile and execute the application.
The output appears in Figure 14-41 with the base price initially set to $200.

11. Select the Weekend premium JCheckBox, and note the change in the total
price of the event. Experiment with selecting and deselecting options to ensure
that the price changes correctly. For example, Figure 14-42 shows the
application with the weekend and golf options selected, adding a total of $175 to
the $200 base price. After testing all the option combinations, close the
application.

(continued)

Figure 14-42 Output of the JResortCalculator application after the user has made
selections

Figure 14-41 Initial output of the JResortCalculator application

Using the JCheckBox, ButtonGroup, and JComboBox Classes

789

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Don’t Do It
l Don’t forget the x in javax when you import Swing components into an application.

l Don’t forget to use a JFrame’s setVisible() method if you want the JFrame to be visible.

l Don’t forget to use setLayout() when you add multiple components to a JFrame.

l Don’t forget to call validate() and repaint() after you add or remove a component
from a container that has been made visible.

l Don’t forget that the ButtonGroup class does not begin with a J.

Key Terms
UI components are user interface components, such as buttons and text fields, with which the
user can interact.

Swing components are UI elements such as dialog boxes and buttons; you can usually
recognize their names because they begin with J.

Java Foundation Classes, or JFC, include Swing component classes and selected classes from
the java.awt package.

Lightweight components are written completely in Java and do not have to rely on the code
written to run the local operating system.

Heavyweight components require interaction with the local operating system.

A container is a type of component that holds other components so you can treat a group
of them as a single entity. Often, a container takes the form of a window that you can drag,
resize, minimize, restore, and close.

A JFrame is a container with a title bar and border.

Pixels are the picture elements, or tiny dots of light, that make up the image on your
computer monitor.

Window decorations are the icons and buttons that are part of a window or frame.

A look and feel is the default appearance and behavior of any user interface.

JLabel is a built-in Java Swing class that holds text you can display.

The add() method adds components to a container.

The remove() method removes components from a container.

CH A P T E R 1 4 Introduction to Swing Components

790

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The setText() method allows you to change the text in a Component that has already been
created.

The getText() method allows you to retrieve the String of text in a Component.

The Font class holds typeface and size information.

The setFont() method changes a JLabel’s font.

The typeface argument to the Font constructor is a String representing a font. Common
fonts have names such as Arial, Century, Monospaced, and Times New Roman.

The style argument to the Font constructor applies an attribute to displayed text and is one
of three values: Font.PLAIN, Font.BOLD, or Font.ITALIC.

The point size argument to the Font constructor is an integer that represents about 1/72 of
an inch.

A layout manager is a class that controls component positioning.

A BorderLayout is a layout manager that divides a container into regions.

The flow layout manager places components in a row, and when a row is filled, components
automatically spill into the next row. By default, the components in each row are centered.

A JTextField is a component into which a user can type a single line of text data.

Editable describes a component that can accept keystrokes.

The setEditable() method changes the editable status of a JTextField.

A JButton is a Component the user can click with a mouse to make a selection.

Tool tips are popup windows that can help a user understand the purpose of components in
an application; a tool tip appears when a user hovers the mouse pointer over the component.

The setToolTipText() method defines the text to be displayed in a tool tip.

An event occurs when a user takes action on a component.

In an event-driven program, the user might initiate any number of events in any order.

The source of an event is the component on which an event is generated.

A listener is an object that is interested in an event.

You tell a class to expect ActionEvents with the addActionListener() method.

The actionPerformed(ActionEvent e)method specification defines the actions that occur in
response to an event.

The setEnabled() method makes a component available or dimmed and unavailable.

An event handler is a method that executes because it is called automatically when an
appropriate event occurs.

Key Terms

791

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A JCheckBox consists of a label positioned beside a square; you can click the square to display
or remove a check mark. Usually, you use a JCheckBox to allow the user to turn an option on
or off.

A ButtonGroup groups several components, such as JCheckBoxes, so a user can select only
one at a time.

A JComboBox is a component that combines two features: a display area showing a default
option and a list box containing additional options. The display area contains either a button
that a user can click or an editable field into which the user can type.

Generic programming is a feature of languages that allows methods to be used safely with
multiple data types.

Chapter Summary
l Swing components are UI elements such as dialog boxes and buttons. Each Swing

component is a descendant of a JComponent, which in turn inherits from the
java.awt.Container class. Swing components usually are placed in a container—a
type of component that holds other components. Containers are defined in the Container
class. Often, a container takes the form of a window that you can drag, resize,
minimize, restore, and close.

l A JFrame holds and displays other objects. Useful methods include setSize(),
setTitle(), setVisible(), setBounds(), and setDefaultCloseOperation(). JFrames
include a title bar at the top containing text information, and Minimize, Maximize or
Restore, and Close buttons in the frame’s upper-right corner. When a user closes a JFrame
by clicking the Close button in the upper-right corner, the default behavior is for the
JFrame to become hidden and for the application to keep running.

l JLabel is a built-in Java Swing class that holds text you can display. You then can add a
JLabel to a JFrame using the add() method. The setFont() method changes the font
typeface, style, and point size.

l To place multiple components at specified positions in a container so they do not hide
each other, you must use a layout manager—a class that controls component positioning.
The normal (default) behavior of a JFrame is to use a layout format named BorderLayout.
When you use FlowLayout, components do not lie on top of each other. Instead,
components are placed in a row, and when a row is filled, components automatically spill
into the next row.

l The advantage of creating a child class of JFrame is that you can set the JFrame’s
properties within your object’s constructor; then, when you create your JFrame child
object, it is automatically endowed with the features you have specified, such as title, size,
and default close operation.

CH A P T E R 1 4 Introduction to Swing Components

792

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

l A JTextField is a component into which a user can type a single line of text data. A
JButton is a Component the user can click with a mouse to make a selection. Tool tips are
popup windows that can help a user understand the purpose of components in an
application; the tool tip appears when a user hovers the mouse pointer over the
component.

l Within an event-driven program, a component on which an event is generated is the
source of the event. An object that is interested in an event is a listener. You prepare your
class to accept button-press events by importing the java.awt.event package into your
program and adding the phrase implements ActionListener to the class header. You tell
your class to expect ActionEvents with the addActionListener() method. The
ActionListener interface contains the actionPerformed(ActionEvent e) method
specification. You implement this method with the actions that should occur in response
to the event. Within the actionPerformed() method, you can use the getSource()
method of the object sent to determine which component generated the event.

l A class can implement as many event listeners as it needs. Examples of event listeners are
ActionListener, ItemListener, KeyListener, and MouseListener. Any object can be
notified of an event as long as it implements the appropriate interface and is registered as
an event listener on the appropriate event source. To add a listener method to a source,
you must use the appropriate designated add() method. Specific methods react to specific
event types; they include actionPerformed() and itemStateChanged().

l A JCheckBox consists of a label positioned beside a square; you can click the square to
display or remove a check mark. Usually, you use a JCheckBox to allow the user to turn an
option on or off. A ButtonGroup groups components so a user can select only one at a
time. After a JCheckBox in a ButtonGroup has been selected, one in the group will always
be selected. A JComboBox is a component that combines two features: a display area
showing a default option and a list box containing additional options. You can treat the list
of items in a JComboBox object as an array and use the getSelectedIndex() method to
determine the list position of the currently selected item.

Review Questions

1. A JFrame is a descendant of each of the following classes except the
class.

a. Component

b. Jar

c. Container

d. Window

2. A programmer might prefer using a JFrame instead of a Window because, unlike a
window, a JFrame .

a. can hold other objects
b. can be made visible

c. can have descendants
d. has a title bar and border

Review Questions

793

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. The statement JFrame myFrame = new JFrame(); creates a JFrame that
is .

a. invisible and has no title
b. invisible and has a title

c. visible and has no title
d. visible and has a title

4. To create a JFrame named aFrame that is 300 pixels wide by 200 pixels tall, you
can .

a. use the declaration JFrame aFrame = new JFrame(300, 200);

b. declare a JFrame named aFrame and then code aFrame.setSize(300, 200);

c. declare a JFrame named aFrame and then code aFrame.setBounds(300,
200);

d. use any of the above

5. When a user closes a JFrame, the default behavior is for .

a. the JFrame to close and the application to keep running
b. the JFrame to become hidden and the application to keep running
c. the JFrame to close and the application to exit
d. nothing to happen

6. An advantage of extending the JFrame class is .

a. you can set the child class properties within the class constructor
b. there is no other way to cause an application to close when the user clicks a

JFrame’s Close button
c. there is no other way to make a JFrame visible
d. all of the above

7. Suppose that you create an application in which you instantiate a JFrame named
frame1 and a JLabel named label1. Which of the following statements within the
application adds label1 to frame1?

a. label1.add(frame1);

b. frame1.add(label1);

c. this.add(label1);

d. two of the above

8. The arguments required by the Font constructor include all of the following
except .

a. typeface
b. style

c. mode
d. point size

CH A P T E R 1 4 Introduction to Swing Components

794

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

9. A class that controls component positioning in a JFrame is a .

a. container
b. layout manager

c. formatter
d. design supervisor

10. Which of the following is not true of a JTextField?

a. A user can type text data into it.
b. Its data can be set in the program instead of by the user.
c. A program can set its attributes so that a user cannot type in it.
d. It is a type of Container.

11. are popup windows that can help a user understand the purpose of
components in an application and that appear when a user hovers the mouse
pointer over the component.

a. Navigation notes
b. Tool tips

c. Help icons
d. Graphic suggestions

12. Within an event-driven program, a component on which an event is generated is
the .

a. performer
b. listener

c. source
d. handler

13. A class that will respond to button-press events must use which phrase in its
header?

a. import java.event

b. extends Action

c. extends JFrame

d. implements ActionListener

14. A JFrame contains a JButton named button1 that should execute an
actionPerformed() method when clicked. Which statement is needed in the
JFrame class?

a. addActionListener(this);

b. addActionListener(button1);

c. button1.addActionListener(this);

d. this.addActionListener(button1);

15. When you use the getSource() method with an ActionEvent object, the result
is .

a. an Object

b. an ActionEvent

c. a Component

d. a TextField

Review Questions

795

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

16. A class can implement .

a. one listener
b. two listeners
c. as many listeners as it needs
d. any number of listeners as long as they are not conflicting listeners

17. When you write a method that reacts to JCheckBox changes, you name the
method .

a. itemStateChanged()

b. actionPerformed()

c. checkBoxChanged()

d. any legal identifier you choose

18. If a class contains two components that might each generate a specific event type,
you can determine which component caused the event by using the
method.

a. addActionListener()

b. getSource()

c. whichOne()

d. identifyOrigin()

19. To group several components such as JCheckBoxes so that a user can select only
one at a time, you create a .

a. JCheckBoxGroup

b. CheckBoxGroup

c. JButtonGroup

d. ButtonGroup

20. Suppose that you have declared a ButtonGroup named threeOptions and added
three JCheckBoxes named box1, box2, and box3 to it. If you code threeOptions.
setSelected(box1);, then threeOptions.setSelected(box2);, and then
threeOptions.setSelected(box3);, the selected box is .

a. box1

b. box2

c. box3

d. all of the above

Exercises

Programming Exercises

1. Write an application that displays a JFrame containing the first few lines of your
favorite song. Save the file as JLyrics.java.

2. a. Write an application that instantiates a JFrame that contains a JButton. Disable
the JButton after the user clicks it. Save the file as JFrameDisableButton.java.

b. Modify the JFrameDisableButton program so that the JButton is not disabled
until the user has clicked at least eight times. At that point, display a JLabel
that indicates “That’s enough!”. Save the file as JFrameDisableButton2.java.

CH A P T E R 1 4 Introduction to Swing Components

796

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. Create an application with a JFrame and five labels that contain the names of five
friends. Every time the user clicks a JButton, remove one of the labels and add a
different one. Save the file as JDisappearingFriends.java.

4. Write an application for Lambert’s Vacation Rentals. Use separate ButtonGroups to
allow a client to select one of three locations, the number of bedrooms, and whether
meals are included in the rental. Assume that the locations are parkside for $600 per
week, poolside for $750 per week, or lakeside for $825 per week. Assume that the
rentals have one, two, or three bedrooms and that each bedroom over one adds $75 to
the base price. Assume that if meals are added, the price is $200 more per rental. Save
the file as JVacationRental.

5. a. Write an application that allows a user to select one of at least 12 songs from a
combo box. Display the purchase price, which is different for each song. Save the
file as JTunes.java.

b. Change the JTunes application to include an editable combo box. Allow the user
to type the name of a song to purchase. Display an appropriate error message if
the desired song is not available. Save the file as JTunes2.java.

6. Design an application for a pizzeria. The user makes pizza order choices from list
boxes, and the application displays the price. The user can choose a pizza size of small
($7), medium ($9), large ($11), or extra large ($14), and one of any number of
toppings. There is no additional charge for cheese, but any other topping adds $1 to
the base price. Offer at least five different topping choices. Save the file as JPizza.java.

7. Write an application that allows a user to select a city from a list box that contains at
least seven options. Display the population of the city in a text field after the user
makes a selection. Save the file as JPopulation.java.

8. Write an application that allows the user to choose insurance options in JCheckBoxes.
Use a ButtonGroup to allow the user to select only one of two insurance types—HMO
(health maintenance organization) or PPO (preferred provider organization). Use
regular (single) JCheckBoxes for dental insurance and vision insurance options; the
user can select one option, both options, or neither option. As the user selects each
option, display its name and price in a text field; the HMO costs $200 per month, the
PPO costs $600 per month, the dental coverage adds $75 per month, and the vision
care adds $20 per month. When a user deselects an item, make the text field blank.
Save the file as JInsurance.java.

9. a. Search the Java Web site for information on how to use a JTextArea, its
constructors, and its setText() and append() methods. Write an application that
allows the user to select options for a dormitory room. Use JCheckBoxes for
options such as private room, Internet connection, cable TV connection,
microwave, refrigerator, and so on. When the application starts, use a text area to
display a message listing the options that are not yet selected. As the user selects
and deselects options, add appropriate messages to the common text area
so it accumulates a running list that reflects the user’s choices. Save the file as
JDorm.java.

Exercises

797

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

b. Modify the JDorm application so that instead of a running list of the user’s choices,
the application displays only the current choices. Save the file as JDorm2.java.

10. Create an application for Paula’s Portraits, a photography studio. Paula’s base price is
$40 for a photo session with one person. The in-studio fee is $75 for a session with
two or more subjects, and $95 for a session with a pet. A $90 fee is added to take
photos on location instead of in the studio. The application allows users to compute
the price of a photography session. Include a set of mutually exclusive check boxes to
select the portrait subject and another set of mutually exclusive check boxes for the
session location. Include labels as appropriate to explain the application’s function-
ality. Save the file as JPhotoFrame.java.

1. Each of the following files in the Chapter14 folder of your downloadable student
files has syntax and/or logic errors. In each case, determine the problem and fix the
program. After you correct the errors, save each file using the same filename
preceded with Fix. For example, DebugFourteen1.java will become
FixDebugFourteen1.java.

a. DebugFourteen1.java
b. DebugFourteen2.java

c. DebugFourteen3.java
d. DebugFourteen4.java

Game Zone

1. a. Create a quiz game that displays, in turn, five questions about any topic of your
choice. All five questions should have the same three possible multiple-choice
answers. For example, you might ask trivia questions about U.S. states for which
the correct response is either California, Florida, or New York. After each
question is displayed, allow the user to choose one, two, or all three answers by
selecting JCheckBoxes. In other words, if the user is sure of an answer, he will
select just one box, but if he is uncertain, he might select two or three boxes.
When the user is ready to submit the answer(s), he clicks a button. If the user’s
answer to the question is correct and he has selected just one box, award 5
points. If the user is correct but has selected two boxes, award 2 points. If the
user has selected all three boxes, award 1 point. If the user has selected fewer
than three boxes but is incorrect, the user receives 0 points. A total of 25 points
is possible. If the user has accumulated more than 21 points at the end of the
quiz, display the message “Fantastic!”. If the user has accumulated more than 15
points, display the message “Very good”, and if the user has accumulated fewer
points, display “OK”. Save the file as HedgeYourBet.java.

Debugging Exercises

CH A P T E R 1 4 Introduction to Swing Components

798

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

b. Modify the HedgeYourBet game so that it stores the player’s score from the last
game in a file and displays the previous score at the start of each new game.
(The first time you play the game, the previous score should be 0.) Save the
game as HedgeYourBetUsingFile.java.

2. In Chapter 5, you created a lottery game application. Create a similar game using
check boxes. For this game, generate six random numbers, each between 0 and 30,
inclusive. Allow the user to choose six check boxes to play the game. (Do not allow
the user to choose more than six boxes.) After the player has chosen six numbers,
display the randomly selected numbers, the player’s numbers, and the amount of
money the user has won, as follows:

Save the file as JLottery2.java.

3. a. Create a game called Last Man Standing in which the objective is to select the
last remaining JCheckBox. The game contains 10 JCheckBoxes. The player can
choose one, two, or three boxes, and then click a JButton to indicate the turn is
complete. The computer then randomly selects one, two, or three JCheckBox
objects. When the last JCheckBox is selected, display a message indicating the
winner. Save the game as LastManStanding.java.

b. In the current version of the Last Man Standing game, the computer might
seem to make strategic mistakes because of its random selections. For example,
when only two JCheckBox objects are left, the computer might randomly
choose to check only one, allowing the player to check the last one and win.
Modify the game to make it as smart as possible, using a random value for the
number of the computer’s selections only when there is no superior alternative.
Save the improved game as SmarterLastManStanding.java.

Case Problems

1. In previous chapters, you have created a number of programs for Carly’s Catering.
Now, create an interactive program that allows the user to enter the number of
guests for an event into a text field; if the value entered is not numeric, set the event
price to 0. Also allow the user to choose one entree from a group of at least
four choices, up to two side dishes from a group of at least four choices, and one

Matching Numbers Award ($)

Three matches 100

Four matches 10,000

Five matches 50,000

Six matches 1,000,000

Zero, one, or two matches 0

Exercises

799

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

dessert from a group of at least three choices. Display the cost of the event as $35 per
person; as the user continues to select and deselect menu items, display a list of the
current items chosen. If a user attempts to choose more than two side dishes, remove
all the current side dish selections so that the user can start over. Save the program as
JCarlysCatering.java.

2. In previous chapters, you have created a number of programs for Sammy’s Seashore
Rentals. Now, create an interactive GUI program that allows the user to enter a rental
time in hours into a text field; if the value entered is not numeric, set the rental price
to 0. Also allow the user to choose one equipment type to rent from a group of seven
choices. The rental fee is $40 per hour for a jet ski or pontoon boat; $20 per hour for a
rowboat, canoe, or kayak; and $7 per hour for a beach chair or umbrella. Let the user
add an equipment lesson for an extra $5. Display a message that indicates all the
details for the rental, including the total price. Save the program as
JSammysSeashore.java.

CH A P T E R 1 4 Introduction to Swing Components

800

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

