
CHAPTER12
Exception Handling

In this chapter, you will:

Learn about exceptions

Try code and catch exceptions

Throw and catch multiple exceptions

Use the finally block

Understand the advantages of exception handling

Specify the exceptions that a method can throw

Trace exceptions through the call stack

Create your own Exception classes

Use an assertion

Unless noted otherwise, all images are © 2014 Cengage Learning

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Learning About Exceptions
An exception is an unexpected or error condition. The programs you write can generate
many types of potential exceptions:

l A programmight issue a command to read a file from a disk, but the file does not exist there.

l A program might attempt to write data to a disk, but the disk is full or unformatted.

l A program might ask for user input, but the user enters an invalid data type.

l A program might attempt to divide a value by 0.

l A program might try to access an array with a subscript that is too large or too small.

These errors are called exceptions because, presumably, they are not usual occurrences; they
are “exceptional.” Exception handling is the name for the object-oriented techniques that
manage such errors. Unplanned exceptions that occur during a program’s execution are also
called runtime exceptions, in contrast with syntax errors that are discovered during program
compilation.

Java includes two basic classes of errors: Error and Exception. Both of these classes descend
from the Throwable class, as shown in Figure 12-1. Like all other classes in Java, Error and
Exception originally descend from Object.

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception
| |
| +--java.io.IOException
| |
| +--java.lang.RuntimeException
| | |
| | +--java.lang.ArithmeticException
| | |
| | +-- java.lang.IndexOutOfBoundsException
| | | |
| | | +--java.lang.ArrayIndexOutOfBoundsException
| | |
| | +-- java.util.NoSuchElementException
| | | |
| | | +--java.util.InputMismatchException
| | |
| | +--Others..
| |
| +--Others..

Figure 12-1 The Exception and Error class inheritance hierarchy (continues)

CH A P T E R 1 2 Exception Handling

604

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

| |
+--java.lang.Error
|
+-- java.lang.VirtualMachineError

|
+--java.lang.OutOfMemoryError
|
+--java.lang.InternalError
|
+--Others...

Figure 12-1 The Exception and Error class inheritance hierarchy

The Error class represents more serious errors from which your program usually cannot
recover. For example, there might be insufficient memory to execute a program. Usually, you
do not use or implement Error objects in your programs. A program cannot recover from
Error conditions on its own.

The Exception class comprises less serious errors representing unusual conditions that arise
while a program is running and from which the program can recover. Some examples of
Exception class errors include using an invalid array subscript or performing certain illegal
arithmetic operations.

Java displays an Exception message when the program code could have prevented an error.
For example, Figure 12-2 shows a class named Division that contains a single, small main()
method. The method declares three integers, prompts the user for values for two of them, and
calculates the value of the third integer by dividing the first two values.

import java.util.Scanner;
public class Division
{

public static void main(String[] args)
{

Scanner input = new Scanner(System.in);
int numerator, denominator, result;
System.out.print("Enter numerator >> ");
numerator = input.nextInt();
System.out.print("Enter denominator >> ");
denominator = input.nextInt();
result = numerator / denominator;
System.out.println(numerator + " / " + denominator +

" = " + result);
}

}

Figure 12-2 The Division class

(continued)

Learning About Exceptions

605

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 12-3 shows two typical executions of the Division program. In the first execution, the
user enters two usable values and the program executes normally. In the second execution,
the user enters 0 as the value for the denominator and an Exception message is displayed.
(Java does not allow integer division by 0, but floating-point division by 0 is allowed—the
result is displayed as Infinity.) In the second execution in Figure 12-3, most programmers
would say that the program experienced a crash, meaning that it ended prematurely with an
error. The term crash probably evolved from the hardware error that occurs when a read/
write head abruptly comes into contact with a hard disk, but the term has evolved to include
software errors that cause program failure.

In Figure 12-3, the Exception is a java.lang.ArithmeticException. ArithmeticException
is one of many subclasses of Exception. Java acknowledges more than 75 categories of
Exceptions with unusual names such as ActivationException, AlreadyBoundException,
AWTException, CloneNotSupportedException, PropertyVetoException, and
UnsupportedFlavorException.

Besides the type of Exception, Figure 12-3 also shows some information about the error
(“/ by zero”), the method that generated the error (Division.main), and the file and line
number for the error (Division.java, line 12).

Figure 12-4 shows two more executions of the Division class. In each execution, the user has
entered noninteger data for the denominator—first a string of characters, and second, a
floating-point value. In each case, a different type of Exception occurs. You can see from both
sets of error messages that the Exception is an InputMismatchException. The last line of the
messages indicates that the problem occurred in line 11 of the Division program, and the
second-to-last error message shows that the problem occurred within the call to nextInt().
Because the user did not enter an integer, the nextInt() method failed. The second-to-last
message also shows that the error occurred in line 2050 of the nextInt() method, but clearly
you do not want to alter the nextInt() method that resides in the Scanner class—you either
want to rerun the program and enter an integer, or alter the program so that these errors
cannot occur in subsequent executions.

Figure 12-3 Two typical executions of the Division application

CH A P T E R 1 2 Exception Handling

606

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The list of error messages after each attempted execution in Figure 12-4 is called a stack
trace history list, or more simply, a stack trace. (You might also hear the terms stack
backtrace or stack traceback.) The list shows each method that was called as the program ran.
You will learn more about tracing the stack later in this chapter.

Just because an exception occurs, you don’t necessarily have to deal with it. In the Division
class, you can simply let the offending program terminate as it did in Figure 12-4. However,
the program termination is abrupt and unforgiving. When a program divides two numbers
(or performs a less trivial task such as balancing a checkbook), the user might be annoyed if
the program ends abruptly. However, if the program is used for a mission critical task such as
air-traffic control or to monitor a patient’s vital statistics during surgery, an abrupt conclusion
could be disastrous. (The term mission critical refers to any process that is crucial to an
organization.) Object-oriented error-handling techniques provide more elegant and safer
solutions for errors.

Of course, you can write programs without using exception-handling techniques—you have
already written many such programs as you have worked through this book. Programmers
had to deal with error conditions long before object-oriented methods were conceived.
Probably the most common error-handling solution has been to use a decision to avoid an
error. For example, you can change the main() method of the Division class to avoid
dividing by 0 by adding the decision shown in the shaded portion of Figure 12-5:

Figure 12-4 Two executions of the Division application in which the user entered noninteger
values

Learning About Exceptions

607

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

import java.util.Scanner;
public class Division2
{

public static void main(String[] args)
{

Scanner input = new Scanner(System.in);
int numerator, denominator, result;
System.out.print("Enter numerator >> ");
numerator = input.nextInt();
System.out.print("Enter denominator >> ");
denominator = input.nextInt();
if(denominator == 0)

System.out.println("Cannot divide by 0");
else
{

result = numerator / denominator;
System.out.println(numerator + " / " + denominator +

" = " + result);
}

}
}

Figure 12-5 The Division2 application using a traditional error-handling technique

The application in Figure 12-5 displays a message to the user when 0 is entered for a
denominator value, but it is not able to recover when noninteger data such as a string or
floating-point value is entered. Object-oriented exception handling provides a more elegant
solution for handling error conditions.

Programs that can handle exceptions appropriately are said to be more fault tolerant and
robust. Fault-tolerant applications are designed so that they continue to operate, possibly at a
reduced level, when some part of the system fails. Robustness represents the degree to which
a system is resilient to stress, maintaining correct functioning.

Even if you choose never to use exception-handling techniques in your own programs,
you must understand them because built-in Java methods will throw exceptions to your
programs.

CH A P T E R 1 2 Exception Handling

608

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Learning About Exceptions

1. Exception handling is the name for the object-oriented techniques used to
manage runtime errors.

2. The Error class represents serious errors from which your program usually
cannot recover; the Exception class comprises less serious errors
representing unusual conditions that occur while a program is running and from
which the program can recover.

3. When an exception occurs, your program must handle it using object-oriented
exception-handling techniques.

. esi r at aht snoi t pecxe
el dnaht on odt aht s mar gor p yna mnetti r wydaerl a evah uoY.ti hti wl aed ot evah

yli r assecent’ nod uoy , sr ucco noi t pecxe na esuacebt suJ . 3# si t ne met at s esl af ehT

Trying Code and Catching Exceptions
In object-oriented terminology, you “try” a procedure that might cause an error. A method
that detects an error condition “throws an exception,” and the block of code that processes
the error “catches the exception.”

When you create a segment of code in which something might go wrong, you place the code
in a try block, which is a block of code you attempt to execute while acknowledging that an
exception might occur. A try block consists of the following elements:

l The keyword try

l An opening curly brace

l Executable statements, including some that might cause exceptions

l A closing curly brace

To handle a thrown exception, you can code one or more catch blocks immediately following
a try block. A catch block is a segment of code that can handle an exception that might be
thrown by the try block that precedes it. The exception might be one that is thrown
automatically, or you might explicitly write a throw statement. A throw statement is one that
sends an Exception object out of a block or a method so that it can be handled elsewhere.
A thrown Exception can be caught by a catch block. Each catch block can “catch” one type

Trying Code and Catching Exceptions

609

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

of exception—that is, one object that is an object of type Exception or one of its child classes.
You create a catch block by typing the following elements:

l The keyword catch

l An opening parenthesis

l An Exception type

l A name for an instance of the Exception type

l A closing parenthesis

l An opening curly brace

l The statements that take the action you want to use to handle the error condition

l A closing curly brace

Figure 12-6 shows the general format of a method that includes a shaded try…catch pair.
A catch block looks a lot like a method named catch() that takes an argument that is some
type of Exception. However, it is not a method; it has no return type, and you can’t call it
directly. Some programmers refer to a catch block as a catch clause.

returnType methodName(optional arguments)
{

// optional statements prior to code that is tried
try
{

// statement or statements that might generate an exception
}
catch(Exception someException)
{

// actions to take if exception occurs
}
// optional statements that occur after try,
// whether or not catch block executes

}

Figure 12-6 Format of try…catch pair

In Figure 12-6, someException represents an object of the Exception class or any of its
subclasses. If an exception occurs during the execution of the try block, the statements in the
catch block execute. If no exception occurs within the try block, the catch block does not
execute. Either way, the statements following the catch block execute normally.

Figure 12-7 shows an application named DivisionMistakeCaught that improves on the
Division class. The main() method in the class contains a try block with code that attempts
division. When illegal integer division is attempted, an ArithmeticException is automatically
created and the catch block executes. Figure 12-8 shows two typical executions, one with a
generated Exception and one without.

CH A P T E R 1 2 Exception Handling

610

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

import java.util.Scanner;
public class DivisionMistakeCaught
{

public static void main(String[] args)
{

Scanner input = new Scanner(System.in);
int numerator, denominator, result;
System.out.print("Enter numerator >> ");
numerator = input.nextInt();
System.out.print("Enter denominator >> ");
denominator = input.nextInt();
try
{

result = numerator / denominator;
System.out.println(numerator + " / " + denominator +

" = " + result);
}
catch(ArithmeticException mistake)
{

System.out.println("Attempt to divide by zero");
}

}
}

Figure 12-7 The DivisionMistakeCaught application

In the application in Figure 12-7, the throw and catch operations reside in the same method. Later in this
chapter, you will learn that throws and their corresponding catch blocks frequently reside in separate
methods.

If you want to send error messages to a location other than “normal” output, you can use System.err
instead of System.out. For example, if an application writes a report to a specific disk file, you might want
errors to write to a different location—perhaps to a different disk file or to the screen.

Figure 12-8 Two executions of the DivisionMistakeCaught application

Trying Code and Catching Exceptions

611

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Although the DivisionMistakeCaught application displays the error message (“Attempt to
divide by zero”), you cannot be sure that division by 0 was the source of the error. In reality,
any ArithmeticException generated within the try block in the program would be caught
by the catch block in the method. Instead of writing your own message, you can use the
getMessage() method that ArithmeticException inherits from the Throwable class. To
retrieve Java’s message about any ThrowableException named someException, you code
someException.getMessage().

As an example of another condition that could generate an ArithmeticException, if you create an
object using Java’s BigDecimal class and then perform a division that results in a nonterminating decimal
division such as 1/3 but specify that an exact result is needed, an ArithmeticException is thrown.
As another example, you could create your own class containing a method that creates a new instance of the
ArithmeticException class and throws it under any conditions you specify.

For example, Figure 12-9 shows a DivisionMistakeCaught2 class that uses the getMessage()
method (see the shaded statement) to generate the message that “comes with” the caught
ArithmeticException argument to the catch block. Figure 12-10 shows the output; the
message is “/ by zero”.

import java.util.Scanner;
public class DivisionMistakeCaught2
{

public static void main(String[] args)
{

Scanner input = new Scanner(System.in);
int numerator, denominator, result;
System.out.print("Enter numerator >> ");
numerator = input.nextInt();
System.out.print("Enter denominator >> ");
denominator = input.nextInt();
try
{

result = numerator / denominator;
System.out.println(numerator + " / " + denominator +

" = " + result);
}
catch(ArithmeticException mistake)
{

System.out.println(mistake.getMessage());
}

}
}

Figure 12-9 The DivisionMistakeCaught2 application

CH A P T E R 1 2 Exception Handling

612

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

It should be no surprise that the automatically generated error message in Figure 12-10 is
“/ by zero”; you saw the same message in Figure 12-3 when the programmer provided no
exception handling, the exception was automatically thrown, and its message was
automatically supplied.

Of course, you might want to do more in a catch block than display an error message;
after all, Java did that for you without requiring you to write the code to catch any exceptions.
You also might want to add code to correct the error; for example, such code could force the
arithmetic to divide by 1 rather than by 0. Figure 12-11 shows try…catch code in which
the catch block computes the result by dividing by 1 instead of by the denominator value.
After the catch block, the application could continue with a guarantee that result holds a
valid value—either the division worked in the try block and the catch block did not execute,
or the catch block remedied the error.

try
{

result = numerator / denominator;
}
catch(ArithmeticException mistake)
{

result = numerator / 1;
}
// program continues here; result is guaranteed to have a valid value

Figure 12-11 A try…catch block in which the catch block corrects the error

In the code in Figure 12-11, you can achieve the same result in the catch block by coding
result = numerator; instead of result = numerator / 1;. Explicitly dividing by 1 simply
makes the code’s intention clearer, but it does require a small amount of time to execute the instruction.
As an alternative, you could make the program more efficient by omitting the division by 1 and adding
clarity with a comment.

Figure 12-10 Output of the DivisionMistakeCaught2 application

Trying Code and Catching Exceptions

613

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using a try Block to Make Programs “Foolproof”
One of the most common uses for a try block is to circumvent user data entry errors. When
testing your own programs throughout this book, you might have entered the wrong data
type accidentally in response to a prompt. For example, if the user enters a character or
floating-point number in response to a nextInt() method call, the program crashes. Using a
try block can allow you to handle potential data conversion exceptions caused by careless
users. You can place conversion attempts, such as calling nextInt() or nextDouble(), in a
try block and then handle any generated errors.

In Chapter 2, you learned to add a nextLine() call after any next(), nextInt(), or
nextDouble() call to absorb the Enter key remaining in the input buffer before subsequent
nextLine() calls. When you attempt to convert numeric data in a try block and the effort is
followed by another attempted conversion, you also must remember to account for the
potential remaining characters left in the input buffer. For example, Figure 12-12 shows a
program that accepts and displays an array of six integers. The shaded and commented line is
not part of the program when it is executed twice in Figure 12-13.

import java.util.Scanner;
public class EnteringIntegers
{

public static void main(String[] args)
{

int[] numberList = {0, 0, 0, 0, 0, 0};
int x;
Scanner input = new Scanner(System.in);
for(x = 0; x < numberList.length; ++x)
{

try
{

System.out.print("Enter an integer >> ");
numberList[x] = input.nextInt();

}
catch(Exception e)
{

System.out.println("Exception occurred");
}
// input.nextLine();

}
System.out.print("The numbers are: ");
for(x = 0; x < numberList.length; ++x)

System.out.print(numberList[x] + " ");
System.out.println();

}
}

Figure 12-12 The EnteringIntegers program

CH A P T E R 1 2 Exception Handling

614

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In Figure 12-13, you can see that when a user enters valid data in the first execution,
the program runs smoothly. However, in the second execution, the user enters some letters
instead of numbers. The program correctly displays Exception occurred, but the user is
not allowed to enter data for any of the remaining numbers. The problem can be corrected
by uncommenting the shaded nextLine() call in the program in Figure 12-12. After the
program is recompiled, it executes as shown in Figure 12-14. Now, the data entry exception
is noted, but the user can continue entering data for the remaining array elements.

Figure 12-13 Two typical executions of the EnteringIntegers program without the extra
nextLine() call

Figure 12-14 A typical execution of the EnteringIntegers program with the extra
nextLine() call

Trying Code and Catching Exceptions

615

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Declaring and Initializing Variables in try…catch Blocks
You can include any legal Java statements within a try block or catch block, including
declaring variables. However, you must remember that a variable declared within a block is
local to that block. In other words, the variable goes out of scope when the try or catch block
ends, so any variable declared within one of the blocks should serve only a temporary purpose.

If you want to use a variable both with a try or catch block and afterward, then you must
declare the variable before the try block begins. However, if you declare a variable before a
try block but wait to assign its initial usable value within the try…catch block, you must be
careful that the variable receives a useful value; otherwise, when you use the variable after the
try…catch pair ends, the program will not compile.

Figure 12-15 illustrates this scenario. In the UninitializedVariableTest program, x is
declared and its value is received from the user in a try block. Because the user might
not enter an integer, the conversion to an integer might fail, and an exception might be
thrown. In this example, the catch block only displays a message and does not assign a useful
value to x. When the program attempts to display x after the catch block, an error message is
generated, as shown in Figure 12-16. You have three easy options for fixing this error:

l You can assign a value to x before the try block starts. That way, even if an exception is
thrown, x will have a usable value to display in the last statement.

l You can assign a usable value to x within the catch block. That way, if an exception is
thrown, x will again hold a usable value.

l You can move the output statement within the try block. If the conversion of the user’s
entry to an integer is successful, the try block finishes execution and the value of x is
displayed. However, if the conversion fails, the try block is abandoned, the catch block
executes, the error message is displayed, and x is not used.

import java.util.Scanner;
public class UninitializedVariableTest
{

public static void main(String[] args)
{

int x;
Scanner input = new Scanner(System.in);
try
{

System.out.print("Enter an integer >> ");
x = input.nextInt();

}
catch(Exception e)
{

System.out.println("Exception occurred");
}
System.out.println("x is " + x);

}
}

Figure 12-15 The UninitializedVariableTest program

CH A P T E R 1 2 Exception Handling

616

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Watch the video Exceptions.

TWO TRUTHS & A LIE

Trying Code and Catching Exceptions

1. A try block is a block of code you attempt to execute while acknowledging that
an exception might occur.

2. You usually code at least one catch block immediately following a try block to
handle an exception that might be thrown by the try block.

3. A throw statement is one that sends an Exception object to a try block so it
can be handled.

. kcol b hctac a ot
t cej bo noitpecxE na sdnes t ne met at s worht A. 3# si t ne met at s esl af ehT

You Do It

Throwing and Catching an Exception

In this section, you create an application in which the user enters two values to be
divided. The application catches an exception if either of the entered values is not an
integer.

Figure 12-16 The error message generated when compiling the UninitializedVariableTest
program

(continues)

Trying Code and Catching Exceptions

617

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

1. Open a new file in your text editor, and type the first few lines of an interactive
application named ExceptionDemo.

import javax.swing.*;
public class ExceptionDemo
{

public static void main(String[] args)
{

2. Declare three integers—two to be input by the user and a third to
hold the result after dividing the first two. The numerator and denominator
variables must be assigned starting values because their values will be
entered within a try block. The compiler understands that a try block
might not complete; that is, it might throw an exception before it is
through. Also declare an input String to hold the return value of the
JOptionPane showInputDialog() method.

int numerator = 0, denominator = 0, result;
String inputString;

3. Add a try block that prompts the user for two values, converts each entered
String to an integer, and divides the values, producing result.

try
{

inputString = JOptionPane.showInputDialog(null,
"Enter a number to be divided");

numerator = Integer.parseInt(inputString);
inputString = JOptionPane.showInputDialog(null,

"Enter a number to divide into the first number");
denominator = Integer.parseInt(inputString);
result = numerator / denominator;

}

4. Add a catch block that catches an ArithmeticException object if division
by 0 is attempted. If this block executes, display an error message, and force
result to 0.

catch(ArithmeticException exception)
{

JOptionPane.showMessageDialog(null, exception.getMessage());
result = 0;

}

5. Whether or not the try block succeeds, display the result (which might have
been set to 0). Include closing curly braces for the main() method and for
the class.

(continued)

(continues)

CH A P T E R 1 2 Exception Handling

618

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

JOptionPane.showMessageDialog(null, numerator + " / " +
denominator + "\nResult is " + result);

}
}

6. Save the file as ExceptionDemo.java, and then compile and execute the
application. Enter two nonzero integer values. For example, the first execution in
Figure 12-17 shows the output when the user enters 12 and 3 as the two input
values. The application completes successfully. Click OK to end the application,
and execute the ExceptionDemo application again. This time, enter 0 for the
second value; the output looks like the second part of Figure 12-17. Click OK to
end the application.

Throwing and Catching Multiple Exceptions
You can place as many statements as you need within a try block, and you can catch as many
exceptions as you want. If you try more than one statement, only the first error-generating
statement throws an exception. As soon as the exception occurs, the logic transfers to the
catch block, which leaves the rest of the statements in the try block unexecuted.

When a program contains multiple catch blocks, they are examined in sequence until a
match is found for the type of exception that occurred. Then, the matching catch block
executes, and each remaining catch block is bypassed.

For example, consider the application in Figure 12-18. The main() method in the
DivisionMistakeCaught3 class throws two types of Exception objects: an
ArithmeticException and an InputMismatchException. The try block in the
application surrounds all the statements in which the exceptions might occur.

(continued)

Figure 12-17 Output of two executions of the ExceptionDemo application

Throwing and Catching Multiple Exceptions

619

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

import java.util.*;
public class DivisionMistakeCaught3
{

public static void main(String[] args)
{

Scanner input = new Scanner(System.in);
int numerator, denominator, result;
try
{

System.out.print("Enter numerator >> ");
numerator = input.nextInt();
System.out.print("Enter denominator >> ");
denominator = input.nextInt();
result = numerator / denominator;
System.out.println(numerator + " / " + denominator +

" = " + result);
}
catch(ArithmeticException mistake)
{

System.out.println(mistake.getMessage());
}
catch(InputMismatchException mistake)
{

System.out.println("Wrong data type");
}

}
}

Figure 12-18 The DivisionMistakeCaught3 class

The program in Figure 12-18 must import the java.util.InputMismatchException class to be able
to use an InputMismatchException object. The java.util package is also needed for the
Scanner class, so it’s easiest to import the whole package.

If you use the getMessage() method with the InputMismatchException object, you see that the
message is null, because null is the default message value for an InputMismatchException
object.

In the main() method of the program in Figure 12-18, the try block executes. Several
outcomes are possible:

l If the user enters two usable integers, result is calculated, normal output is displayed,
and neither catch block executes.

l If the user enters an invalid (noninteger) value at either the first or second shaded
statement, an InputMismatchException object is created and thrown. When the program
encounters the first catch block (that catches an ArithmeticException), the block is

CH A P T E R 1 2 Exception Handling

620

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

bypassed because the Exception types do not match. When the program encounters the
second catch block, the types match, and the “Wrong data type” message is displayed.

l If the user enters 0 for denominator, the division statement throws an
ArithmeticException, and the try block is abandoned. When the program encounters
the first catch block, the Exception types match, the value of the getMessage() method
is displayed, and then the second catch block is bypassed.

Figure 12-19 shows the output of four typical program executions.

When you list multiple catch blocks following a try block, you must be careful that
some catch blocks don’t become unreachable. Unreachable statements are program
statements that can never execute under any circumstances. For example, if two successive
catch blocks catch an ArithmeticException and an ordinary Exception, respectively, the
ArithmeticException errors cause the first catch to execute and other types that
derive from Exception “fall through” to the more general Exception catch block. However,
if you reverse the sequence of the catch blocks so the one that catches general Exception
objects is first, even ArithmeticExceptions would be caught by the Exception catch.
The ArithmeticException catch block therefore is unreachable because the Exception
catch block is in its way, and the class does not compile. Think of arranging your catch
blocks so that the “bigger basket” is always below a smaller one. That is, each Exception
should “fall through” as many catch blocks as necessary to reach the one that will hold it.

You first learned about unreachable statements in Chapter 3. For example, statements that follow a method’s
return statement are unreachable. Creating an unreachable catch block causes a compiler error that
generates a message indicating that the exception “has already been caught.”

Figure 12-19 Four executions of the DivisionMistakeCaught3 application

Throwing and Catching Multiple Exceptions

621

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Sometimes, you want to execute the same code no matter which Exception type occurs. For
example, within the DivisionMistakeCaught3 application in Figure 12-18, each of the two
catch blocks displays a unique message. Instead, you might want both catch blocks to display
the same message. Because ArithmeticExceptions and InputMismatchExceptions are both
subclasses of Exception, you can rewrite the program as shown in Figure 12-20, using a single
generic catch block (shaded) that can catch any type of Exception object.

import java.util.*;
public class DivisionMistakeCaught4
{

public static void main(String[] args)
{

Scanner input = new Scanner(System.in);
int numerator, denominator, result;
try
{

System.out.print("Enter numerator >> ");
numerator = input.nextInt();
System.out.print("Enter denominator >> ");
denominator = input.nextInt();
result = numerator / denominator;
System.out.println(numerator + " / " + denominator +

" = " + result);
}
catch(Exception mistake)
{

System.out.println("Operation unsuccessful");
}

}
}

Figure 12-20 The DivisionMistakeCaught4 application

The catch block in Figure 12-20 accepts a more generic Exception argument type than that
thrown by either of the potentially error-causing try statements, so the generic catch block
can act as a “catch-all” block. When either an arithmetic error or incorrect input type error
occurs, the thrown exception is “promoted” to an Exception error in the catch block. Figure
12-21 shows several executions of the DivisionMistakeCaught4 application. Notice that no
matter which type of mistake occurs during execution, the general “Operation unsuccessful”
message is displayed by the generic catch block.

CH A P T E R 1 2 Exception Handling

622

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

As a new feature in Java 7, a catch block can also be written to catch specific multiple
exception types. For example, the following catch block catches two Exception types. When
either is caught, its local identifier is e.

catch(ArithmeticException, InputMismatchException e)
{
}

Although a method can throw any number of Exception types, many developers believe that
it is poor style for a method to throw and catch more than three or four types. If it does, one
of the following conditions might be true:

l Perhaps the method is trying to accomplish too many diverse tasks and should be broken
up into smaller methods.

l Perhaps the Exception types thrown are too specific and should be generalized, as they
are in the DivisionMistakeCaught4 application in Figure 12-20.

Watch the video Catching Multiple Exceptions.

Figure 12-21 Several executions of the DivisionMistakeCaught4 application

Throwing and Catching Multiple Exceptions

623

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Throwing and Catching Multiple Exceptions

1. When multiple try block statements throw exceptions, multiple catch blocks
might execute.

2. As soon as an exception occurs, the try block that contains it is abandoned and
the rest of its statements are unexecuted.

3. When a program contains multiple catch blocks, the first one that matches the
thrown Exception type is the one that executes.

. denodnaba si kcol b yrt
eht f ot ser eht neht dna, noi t pecxe na s wor ht t ne met at s gni t ar eneg- r orr e

t sri f eht yl no,t ne met at s eno naht er o myrt uoy fI . 1# si t ne met at s esl af ehT

You Do It

Using Multiple catch Blocks

In this section, you add a second catch block to the ExceptionDemo application.

1. Open the ExceptionDemo.java file. Change the class name to
ExceptionDemo2, and save the file as ExceptionDemo2.java.

2. Execute the program, and enter a noninteger value at one of the prompts.
Program execution fails. For example, Figure 12-22 shows the error generated
when the user types the string “four hundred and seventeen” at the first prompt.

Figure 12-22 Error message generated by the current version of the
ExceptionDemo2 application when a user enters a noninteger value

(continues)

CH A P T E R 1 2 Exception Handling

624

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. After the existing catch block that catches an ArithmeticException object,
add a catch block that catches a NumberFormatException object if neither
user entry can be converted to an integer. If this block executes, display an
error message, set numerator and denominator to a default value of 999,
and force result to 1.

catch(NumberFormatException exception)
{

JOptionPane.showMessageDialog(null,
"This application accepts digits only!");

numerator = 999;
denominator = 999;
result = 1;

}

4. Save, compile, and execute the program. This time, if you enter a noninteger
value, the output appears as shown in Figure 12-23. Click OK to end the
application.

5. Execute the application a few more times by entering a variety of valid and
invalid data. Confirm that the program works appropriately whether you type
two usable integers, an unusable 0 for the second integer, or noninteger data
such as strings containing alphabetic characters or punctuation.

Using the finally Block
When you have actions you must perform at the end of a try…catch sequence, you can use a
finally block. The code within a finally block executes regardless of whether the
preceding try block identifies an exception. Usually, you use a finally block to perform
cleanup tasks that must happen whether or not any exceptions occurred, and whether or not
any exceptions that occurred were caught. Figure 12-24 shows the format of a try…catch
sequence that uses a finally block.

Figure 12-23 Error message generated by the improved version of the
ExceptionDemo2 application when a user enters a noninteger value

(continued)

Using the finally Block

625

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

try
{

// statements to try
}
catch(Exception e)
{

// actions that occur if exception was thrown
}
finally
{

// actions that occur whether catch block executed or not
}

Figure 12-24 Format of try…catch…finally sequence

Compare Figure 12-24 to Figure 12-6 shown earlier in this chapter. When the try code works
without error in Figure 12-6, control passes to the statements at the end of the method. Also,
when the try code fails and throws an exception, and the Exception object is caught, the
catch block executes, and control again passes to the statements at the end of the method. At
first glance, it seems as though the statements at the end of the method in Figure 12-6 always
execute. However, the final set of statements might never execute for at least two reasons:

l Any try block might throw an Exception object for which you did not provide a catch
block. After all, exceptions occur all the time without your handling them, as one did in
the first Division application in Figure 12-2 earlier in this chapter. In the case of an
unhandled exception, program execution stops immediately, the exception is sent to the
operating system for handling, and the current method is abandoned.

l The try or catch block might contain a System.exit(); statement, which stops
execution immediately.

When you include a finally block, you are assured that the finally statements will execute
before the method is abandoned, even if the method concludes prematurely. For example,
programmers often use a finally block when the program uses data files that must be closed.
You will learn more about writing to and reading from data files in the next chapter. For now,
however, consider the format shown in Figure 12-25, which represents part of the logic for a
typical file-handling program:

CH A P T E R 1 2 Exception Handling

626

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

try
{

// Open the file
// Read the file
// Place the file data in an array
// Calculate an average from the data
// Display the average

}
catch(IOException e)
{

// Issue an error message
// System exit

}
finally
{

// If the file is open, close it
}

Figure 12-25 Pseudocode that tries reading a file and handles an IOException

The pseudocode in Figure 12-25 represents an application that opens a file; in Java, if a file
does not exist when you open it, an input/output exception, or IOException, is thrown and a
catch block can handle the error. However, because the application in Figure 12-25 uses an
array, an uncaught IndexOutOfBoundsException might occur even though the file opened
successfully. (An IndexOutOfBoundsException occurs, as its name implies, when a subscript
is not in the range of valid subscripts for an array.) The IndexOutOfBoundsException would
not be caught by the existing catch block. Also, because the application calculates an average,
it might divide by 0 and an ArithmeticException might occur; it also would not be caught.
In any of these events, you might want to close the file before proceeding. By using the
finally block, you ensure that the file is closed because the code in the finally block
executes before control returns to the operating system. The code in the finally block
executes no matter which of the following outcomes of the try block occurs:

l The try ends normally.

l The catch executes.

l An uncaught exception causes the method to abandon prematurely. An uncaught
exception does not allow the try block to finish, nor does it cause the catch block to
execute.

If an application might throw several types of exceptions, you can try some code, catch the
possible exception, try some more code and catch the possible exception, and so on. Usually,
however, the superior approach is to try all the statements that might throw exceptions, and
then include all the needed catch blocks and an optional finally block. This is the approach
shown in Figure 12-25, and it usually results in logic that is easier to follow.

Using the finally Block

627

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You can avoid using a finally block, but you would need repetitious code. For example,
instead of using the finally block in the pseudocode in Figure 12-25, you could insert the
statement “If the file is open, close it” as both the last statement in the try block and the
second-to-last statement in the catch block, just before System exit. However, writing code
just once in a finally block is clearer and less prone to error.

If a try block calls the System.exit() method and the finally block calls the same method, the
exit() method in the finally block executes. The try block’s exit() method call is abandoned.

C++ programmers are familiar with try and catch blocks, but C++ does not provide a finally block.
C# and Visual Basic contain the keywords try, catch, and finally.

TWO TRUTHS & A LIE

Using the finally Block

1. The code within a finally block executes when a try block identifies an
exception that is not caught.

2. Usually, you use a finally block to perform cleanup tasks that must happen
whether or not any exceptions occurred, and whether or not any exceptions that
occurred were caught.

3. It’s possible that the code that follows a try…catch…finally sequence might
never execute—for example, if a try block throws an unhandled exception.

.t hguac si noi t pecxe na
t on r or eht eh w dna, noi t pecxe na seifi t nedi kcol b yrt gni decer p eht

t onr or eht ehwset ucexe kcol b yllanif a ni hti wedoc ehT. 1# si t ne met at s esl af ehT

Understanding the Advantages of Exception Handling
Before the inception of object-oriented programming languages, potential program errors
were handled using somewhat confusing, error-prone methods. For example, a traditional,
non-object-oriented procedural program might perform three methods that depend on each
other using code that provides error checking similar to the pseudocode in Figure 12-26.

CH A P T E R 1 2 Exception Handling

628

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

call methodA()
if methodA() worked
{

call methodB()
if methodB() worked
{

call methodC()
if methodC() worked

everything’s okay, so display finalResult
else

set errorCode to 'C'
}
else

set errorCode to 'B'
}
else

set errorCode to 'A'

Figure 12-26 Pseudocode representing traditional error checking

The pseudocode in Figure 12-26 represents an application in which the logic must pass
three tests before finalResult can be displayed. The program executes methodA(); it then
calls methodB() only if methodA() is successful. Similarly, methodC() executes only when
methodA() and methodB() are both successful. When any method fails, the program sets an
appropriate errorCode to ‘A’, ‘B’, or ‘C’. (Presumably, the errorCode is used later in the
application.) The logic is difficult to follow, and the application’s purpose and intended
usual outcome—to display finalResult—is lost in the maze of if statements. Also, you can
easily make coding mistakes within such a program because of the complicated nesting,
indenting, and opening and closing of curly braces.

Compare the same program logic using Java’s object-oriented, error-handling technique
shown in Figure 12-27. Using the try…catch object-oriented technique provides the same
results as the traditional method, but the statements of the program that do the “real” work
(calling methods A, B, and C and displaying finalResult) are placed together, where their
logic is easy to follow. The try steps should usually work without generating errors; after all,
the errors are “exceptions.” It is convenient to see these business-as-usual steps in one
location. The unusual, exceptional events are grouped and moved out of the way of the
primary action.

Understanding the Advantages of Exception Handling

629

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

try
{

call methodA() and maybe throw an exception
call methodB() and maybe throw an exception
call methodC() and maybe throw an exception
everything’s okay, so display finalResult

}
catch(methodA()’s error)
{

set errorCode to "A"
}
catch(methodB()’s error)
{

set errorCode to "B"
}
catch(methodC()’s error)
{

set errorCode to "C"
}

Figure 12-27 Pseudocode representing object-oriented exception handling

Besides clarity, an advantage to object-oriented exception handling is the flexibility it allows in
the handling of error situations. When a method you write throws an exception, the same
method can catch the exception, although it is not required to do so, and in most object-
oriented programs it does not. Often, you don’t want a method to handle its own exception.
In many cases, you want the method to check for errors, but you do not want to require a
method to handle an error if it finds one. Another advantage to object-oriented exception
handling is that you gain the ability to appropriately deal with exceptions as you decide how
to handle them. When you write a method, it can call another, catch a thrown exception, and
you can decide what you want to do. Just as a police officer has leeway to deal with a speeding
driver differently depending on circumstances, programs can react to exceptions specifically
for their current purposes.

Methods are flexible partly because they are reusable—that is, a well-written method might
be used by any number of applications. Each calling application might need to handle a
thrown error differently, depending on its purpose. For example, an application that uses a
method that divides values might need to terminate if division by 0 occurs. A different
program simply might want the user to reenter the data to be used, and a third program
might want to force division by 1. The method that contains the division statement can throw
the error, but each calling program can assume responsibility for handling the error detected
by the method in an appropriate way.

CH A P T E R 1 2 Exception Handling

630

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Understanding the Advantages of Exception Handling

1. An advantage to using object-oriented error-handling techniques is that
programs are clearer and more flexible.

2. An advantage to using object-oriented error-handling techniques is that when a
method throws an exception, it will always be handled in the same, consistent way.

3. In many cases, you want a method to check for errors, but you do not want to
require the method to handle an error if it finds one.

. esopr up sti no
gni dneped, yl t ner effi d sr orr e n wor ht el dnah nac noi t acil ppa gnill ac hcaet aht si
seuqi nhcet gnil dnah- noi t pecxe det nei r o- t cej bof o egat navda nA. snoi t acil ppaf o
r eb mun yna yb desu ebt hgi mdoht e mnetti r w-ll ew A. 2# si t ne met at s esl af ehT

Specifying the Exceptions That a Method Can Throw
If a method throws an exception that it will not catch but will be caught by a different
method, you must use the keyword throws followed by an Exception type in the method
header. This practice is known as exception specification.

For example, Figure 12-28 shows a PriceList class used by a company to hold a list of prices
for items it sells. For simplicity, there are only four prices and a single method that displays
the price of a single item. The displayPrice() method accepts a parameter to use as the
array subscript, but because the subscript could be out of bounds, the method contains a
shaded throws clause, acknowledging it could throw an exception.

public class PriceList
{

private static final double[] price = {15.99, 27.88, 34.56, 45.89};
public static void displayPrice(int item) throws IndexOutOfBoundsException
{

System.out.println("The price is $" + price[item]);
}

}

Figure 12-28 The PriceList class

Specifying the Exceptions That a Method Can Throw

631

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figures 12-29 and 12-30 show two applications in which programmers have chosen to handle
the potential exception differently. In the first class, PriceListApplication1, the
programmer has chosen to handle the exception in the shaded catch block by displaying a
price of $0. In the second class, PriceListApplication2, the programmer has chosen to
handle the exception by using the highest price in the array. Figure 12-31 shows several
executions of each program. Other programmers writing other applications that use the
PriceList class could choose still different actions, but they all can use the flexible
displayPrice() method because it doesn’t limit the calling method’s choice of recourse.

import java.util.*;
public class PriceListApplication1
{

public static void main(String[] args)
{

int item;
Scanner input = new Scanner(System.in);
System.out.print("Enter item number >> ");
item = input.nextInt();
try
{

PriceList.displayPrice(item);
}
catch(IndexOutOfBoundsException e)
{

System.out.println("Price is $0");
}

}
}

Figure 12-29 The PriceListApplication1 class

CH A P T E R 1 2 Exception Handling

632

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

import java.util.*;
public class PriceListApplication2
{

public static void main(String[] args)
{

int item;
Scanner input = new Scanner(System.in);
final int MAXITEM = 3;
System.out.print("Enter item number >> ");
item = input.nextInt();
try
{

PriceList.displayPrice(item);
}
catch(IndexOutOfBoundsException e)
{

PriceList.displayPrice(MAXITEM);
}

}
}

Figure 12-30 The PriceListApplication2 class

Figure 12-31 Several executions of PriceListApplication1 and
PriceListApplication2

Specifying the Exceptions That a Method Can Throw

633

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

For most Java methods that you write, you do not use a throws clause. For example, you have
not needed to use a throws clause in any of the many programs you have written while
working through this book; however, in those methods, if you divided by 0 or went beyond an
array’s bounds, an exception was thrown nevertheless. Most of the time, you let Java handle
any exception by shutting down the program. Imagine how unwieldy your programs would
become if you were required to provide instructions for handling every possible error,
including equipment failures and memory problems. Most exceptions never have to be
explicitly thrown or caught, nor do you have to include a throws clause in the headers of
methods that automatically throw these exceptions. The only exceptions that must be caught
or named in a throws clause are the type known as checked exceptions.

Java’s exceptions can be categorized into two types:

l Unchecked exceptions—These exceptions inherit from the Error class or the
RuntimeException class. Although you can handle these exceptions in your
programs, you are not required to do so. For example, dividing by zero is a type of
RuntimeException, and you are not required to handle this exception—you can simply
let the program terminate.

l Checked exceptions—These exceptions are the type that programmers should anticipate
and from which programs should be able to recover. All exceptions that you explicitly
throw and that descend from the Exception class are checked exceptions.

Java programmers say that checked exceptions are subject to the catch or specify
requirement, which means if you throw a checked exception from a method, you must
do one of the following:

l Catch it within the method.

l Specify the exception in your method header’s throws clause.

Code that uses a checked exception will not compile if the catch or specify rule is not
followed.

If you write a method with a throws clause in the header, then any method that uses your
method must do one of the following:

l Catch and handle the possible exception.

l Declare the exception in its throws clause. The called method can then rethrow the
exception to yet another method that might either catch it or throw it yet again.

In other words, when an exception is a checked exception, client programmers are forced to
deal with the possibility that an exception will be thrown.

Some programmers feel that using checked exceptions is an example of “syntactic salt.” Syntactic sugar is
a term coined by Peter J. Landin to describe aspects of a computer language that make it “sweeter,” or
easier, for programmers to use. For example, you learned in Chapter 1 that you do not have to write
import java.lang; at the top of every Java program file because the package is automatically imported
for you. The metaphor has been extended by the term syntactic salt, which is a language feature designed
to make it harder to write bad code.

CH A P T E R 1 2 Exception Handling

634

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

If you write a method that explicitly throws a checked exception that is not caught within
the method, Java requires that you use the throws clause in the header of the method. Using
the throws clause does not mean that the method will throw an exception—everything might
go smoothly. Instead, it means the method might throw an exception. You include the
throws clause in the method header so applications that use your methods are notified of the
potential for an exception.

In Chapter 3, you learned that a method’s signature is the combination of the method name and the
number, types, and order of arguments. Some programmers argue that any throws clause is also part
of the signature, but most authorities disagree. You cannot create a class that contains multiple methods
that differ only in their return types; such methods are not overloaded. The same is true for methods with
the same signatures that differ only in their throws clauses; the compiler considers the methods to have an
identical signature. Instead of saying that the throws clause is part of the method’s signature, you might
prefer to say that it is part of the method’s interface.

A method that overrides another cannot throw an exception unless it throws the same type as its parent or a
subclass of its parent’s thrown type. These rules do not apply to overloaded methods. Any exceptions may
(or may not) be thrown from one version of an overloaded method without considering what exceptions are
thrown by other versions of an overloaded method.

To be able to use a method to its full potential, you must know the method’s name and three
additional pieces of information:

l The method’s return type

l The type and number of arguments the method requires

l The type and number of exceptions the method throws

To use a method, you must know what types of arguments are required. You can call a
method without knowing its return type, but if you do, you can’t benefit from any value
that the method returns. (Also, if you use a method without knowing its return type, you
probably don’t understand the purpose of the method.) Likewise, you can’t make sound
decisions about what to do in case of an error if you don’t know what types of exceptions
a method might throw.

When a method might throw more than one exception type, you can specify a list of
potential exceptions in the method header by separating them with commas. As an
alternative, if all the exceptions descend from the same parent, you can specify the
more general parent class. For example, if your method might throw either an
ArithmeticException or an ArrayIndexOutOfBoundsException, you can just specify that
your method throws a RuntimeException. One advantage to this technique is that when your
method is modified to include more specific RuntimeExceptions in the future, the method
header will not change. This saves time and money for users of your methods, who will
not have to modify their own methods to accommodate new RuntimeException types.

An extreme alternative is simply to specify that your method throws a general Exception
object, so that all exceptions are included in one clause. Doing this simplifies the exception

Specifying the Exceptions That a Method Can Throw

635

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

specification you write. However, using this technique disguises information about the
specific types of exceptions that might occur, and such information usually has value to
users of your methods.

Usually, you declare only checked exceptions. Remember that runtime exceptions can occur anywhere in a
program, and they can be numerous. Programs would be less clear and more cumbersome if you had to
account for runtime exceptions in every method declaration. Therefore, the Java compiler does not require
that you catch or specify runtime exceptions.

Watch the video Specifying Exceptions.

TWO TRUTHS & A LIE

Specifying the Exceptions That a Method Can Throw

1. Exception specification is the practice of listing possible exceptions in a throws
clause in a method header.

2. Many exceptions never have to be explicitly thrown or caught, nor do you have to
include a throws clause in the headers of methods that automatically throw
these exceptions.

3. If you write a method with a throws clause for a checked exception in the
header, then any method that uses your method must catch and handle the
possible exception.

dekcehc ar of esual c sworht a hti wdoht e ma eti r wuoy fI . 3# si t ne met at s esl af ehT

Tracing Exceptions Through the Call Stack
When one method calls another, the computer’s operating system must keep track of
where the method call came from, and program control must return to the calling method
when the called method is completed. For example, if methodA() calls methodB(), the
operating system has to “remember” to return to methodA() when methodB() ends. Likewise,
if methodB() calls methodC(), the computer must “remember” while methodC() executes
to return to methodB() and eventually to methodA(). The memory location known as the
call stack is where the computer stores the list of method locations to which the system
must return.

exceptionintheheader,thenanymethodthatusesyourmethodmustcatch
andhandlethepossibleexceptionordeclaretheexceptioninitsthrows
clausesotheexceptioncanberethrown.

CH A P T E R 1 2 Exception Handling

636

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

When a method throws an exception and the method does not catch it, the exception
is thrown to the next method up the call stack, or in other words, to the method that called
the offending method. Figure 12-32 shows how the call stack works. If methodA() calls
methodB(), and methodB() calls methodC(), and methodC() throws an exception, Java
first looks for a catch block in methodC(). If none exists, Java looks for the same thing in
methodB(). If methodB() does not have a catch block, Java looks to methodA(). If methodA()
cannot catch the exception, it is thrown to the Java Virtual Machine, which displays a
message at the command prompt.

For example, examine the application in Figure 12-33. The main() method of the application
calls methodA(), which displays a message and calls methodB(). Within methodB(), another
message is displayed and methodC() is called. In methodC(), yet another message is displayed.
Then, a three-integer array is declared, and the program attempts to display the fourth
element in the array. This program compiles correctly—no error is detected until methodC()
attempts to access the out-of-range array element. In Figure 12-33, the comments indicate
line numbers so you can more easily follow the sequence of generated error messages. You
probably would not add such comments to a working application. Figure 12-34 shows the
output when the application executes.

methodA()
 calls methodB()

Operating system

methodB()
 calls methodC()

methodC()
 throws exception

Can it be caught here? No?

Can it be caught here? No?

Can it be caught here? No?

Figure 12-32 Cycling through the call stack

Tracing Exceptions Through the Call Stack

637

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public class DemoStackTrace
{

public static void main(String[] args)
{

methodA(); // line 5
}
public static void methodA()
{

System.out.println("In methodA()");
methodB(); // line 10

}
public static void methodB()
{

System.out.println("In methodB()");
methodC(); // line 15

}
public static void methodC()
{

System.out.println("In methodC()");
int [] array = {0, 1, 2};
System.out.println(array[3]); // line 21

}
}

Figure 12-33 The DemoStackTrace class

As you can see in Figure 12-34, three messages are displayed, indicating that methodA(),
methodB(), and methodC() were called in order. However, when methodC() attempts to
access the out-of-range element in the array, an ArrayIndexOutOfBoundsException is
automatically thrown. The error message generated shows that the exception occurred at line
21 of the file in methodC(), which was called in line 15 of the file by methodB(), which was

Figure 12-34 Error messages generated by the DemoStackTrace application

Don’t Do It
You never would purposely
use an out-of-range subscript
in a professional program.

CH A P T E R 1 2 Exception Handling

638

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

called in line 10 of the file by methodA(), which was called by the main() method in line 5 of
the file. Using this list of error messages, you could track down the location where the error
was generated. Of course, in a larger application that contains thousands of lines of code, the
stack trace history list would be even more useful.

The technique of cycling through the methods in the stack has great advantages because
it allows methods to handle exceptions wherever the programmer has decided it is most
appropriate—including allowing the operating system to handle the error. However, when
a program uses several classes, the disadvantage is that the programmer finds it difficult to
locate the original source of an exception.

You have already used the Throwable method getMessage() to obtain information about an
Exception object. Another useful Exceptionmethod is the printStackTrace()method.When
you catch an Exception object, you can call printStackTrace() to display a list of methods in
the call stack and determine the location of the statement that caused the exception.

For example, Figure 12-35 shows a DemoStackTrace2 application in which the
printStackTrace() method produces a trace of the trail taken by a thrown exception.
The differences in the executable statements from the DemoStackTrace application are
shaded. The call to methodB() has been placed in a try block so that the exception can be
caught. Instead of throwing the exception to the operating system, this application catches
the exception, displays a stack trace history list, and continues to execute. The output of
the list of methods in Figure 12-36 is similar to the one shown in Figure 12-34, but the
application does not end abruptly.

public class DemoStackTrace2
{

public static void main(String[] args)
{

methodA(); // line 5
}
public static void methodA()
{

System.out.println("In methodA()");
try
{

methodB(); // line 12
}
catch(ArrayIndexOutOfBoundsException error)
{

System.out.println("In methodA() - The stack trace:");
error.printStackTrace();

}
System.out.println("methodA() ends normally.");
System.out.println("Application could continue " +

"from this point.");
}

Figure 12-35 The DemoStackTrace2 class (continues)

Tracing Exceptions Through the Call Stack

639

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public static void methodB()
{

System.out.println("In methodB()");
methodC(); // line 26

}
public static void methodC()
{

System.out.println("In methodC()");
int[] array = {0, 1, 2};
System.out.println(array[3]); // line 32

}
}

Figure 12-35 The DemoStackTrace2 class

Usually, you do not want to place a printStackTrace() method call in a finished program.
The typical application user has no interest in the cryptic messages that are displayed.
However, while you are developing an application, printStackTrace() can be a useful tool
for diagnosing your class’s problems.

Figure 12-36 Output of the DemoStackTrace2 application

(continued)

CH A P T E R 1 2 Exception Handling

640

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Tracing Exceptions Through the Call Stack

1. The memory location known as the call stack is where the computer stores
the list of locations to which the system must return after each method call.

2. When a method throws an exception and the method does not catch it, the
exception is thrown to the next method down the call stack, or in other words,
to the next method that the offending method calls.

3. When you catch an exception, you can call printStackTrace() to display a list
of methods in the call stack and determine the location of the statement that
caused the exception. However, usually you do not want to place a
printStackTrace() method call in a finished program.

. doht e mgni dneff o eht dell act aht doht e meht ot , sdr owr eht o ni r o
, kcat sll ac eht pu doht e mt xen eht ot n wor ht si noi t pecxe eht ,ti hct act on seod
doht e meht dna noi t pecxe na s wor ht doht e ma neh W. 2# si t ne met at s esl af ehT

Creating Your Own Exception Classes
Java provides over 40 categories of Exceptions that you can use in your programs.
However, Java’s creators could not predict every condition that might be an exception in
your applications. For example, you might want to declare an Exception when your bank
balance is negative or when an outside party attempts to access your e-mail account. Most
organizations have specific rules for exceptional data; for example, an employee number
must not exceed three digits, or an hourly salary must not be less than the legal minimum
wage. Of course, you can handle these potential error situations with if statements, but
Java also allows you to create your own Exception classes.

To create your own throwable Exception class, you must extend a subclass of
Throwable. Recall from Figure 12-1 that Throwable has two subclasses, Exception and Error,
which are used to distinguish between recoverable and nonrecoverable errors. Because
you always want to create your own exceptions for recoverable errors, your classes should
extend the Exception class. You can extend any existing Exception subclass, such as
ArithmeticException or NullPointerException, but usually you want to inherit
directly from Exception. When you create an Exception subclass, it’s conventional to
end the name with Exception.

The Exception class contains four constructors as follows:

l Exception()—Constructs a new Exception object with null as its detail message

l Exception(String message)—Constructs a new Exception object with the specified
detail message

Creating Your Own Exception Classes

641

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

l Exception(String message, Throwable cause)—Constructs a new Exception object
with the specified detail message and cause

l Exception(Throwable cause)—Constructs a new Exception object with the specified
cause and a detail message of cause.toString(), which typically contains the class and
the detail message of cause, or null if the cause argument is null

For example, Figure 12-37 shows a HighBalanceException class. Its constructor contains a
single statement that passes a description of an error to the parent Exception constructor.
This String would be retrieved if you called the getMessage() method with a
HighBalanceException object.

public class HighBalanceException extends Exception
{

public HighBalanceException()
{

super("Customer balance is high");
}

}

Figure 12-37 The HighBalanceException class

Figure 12-38 shows a CustomerAccount class that uses a HighBalanceException. The
CustomerAccount constructor header indicates that it might throw a HighBalanceException
(see the first shaded statement); if the balance used as an argument to the constructor exceeds
a set limit, a new, unnamed instance of the HighBalanceException class is thrown (see the
second shaded statement).

public class CustomerAccount
{

private int acctNum;
private double balance;
public static double HIGH_CREDIT_LIMIT = 20000.00;
public CustomerAccount(int num, double bal) throws HighBalanceException
{

acctNum = num;
balance = bal;
if(balance > HIGH_CREDIT_LIMIT)

throw(new HighBalanceException());
}

}

Figure 12-38 The CustomerAccount class

CH A P T E R 1 2 Exception Handling

642

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In the CustomerAccount class in Figure 12-38, you could choose to instantiate a named
HighBalanceException and throw it when the balance exceeds the credit limit. By waiting and
instantiating an unnamed object only when it is needed, you improve program performance.

Figure 12-39 shows an application that instantiates a CustomerAccount. In this application, a
user is prompted for an account number and balance. After the values are entered, an attempt
is made to construct a CustomerAccount in a try block (as shown in the first shaded section).
If the attempt is successful—that is, if the CustomerAccount constructor does not throw an
Exception—the CustomerAccount information is displayed in a dialog box. However, if the
CustomerAccount constructor does throw a HighBalanceException, the catch block receives
it (as shown in the second shaded section) and displays a message. A different application
could take any number of different actions; for example, it could display the return
value of the getMessage() method, construct a CustomerAccount object with a lower
balance, or construct a different type of object—perhaps a child of CustomerAccount
called PreferredCustomerAccount that allows a higher balance. Figure 12-40 shows typical
output of the application in a case in which a customer’s balance is too high.

import javax.swing.*;
public class UseCustomerAccount
{

public static void main(String[] args)
{

int num;
double balance;
String input;
input = JOptionPane.showInputDialog(null,

"Enter account number");
num = Integer.parseInt(input);
input = JOptionPane.showInputDialog(null, "Enter balance due");
balance = Double.parseDouble(input);
try
{

CustomerAccount ca = new CustomerAccount(num, balance);
JOptionPane.showMessageDialog(null, "Customer #" +

num + " has a balance of $" + balance);
}
catch(HighBalanceException hbe)
{

JOptionPane.showMessageDialog(null, "Customer #" +
num + " has a balance of $" + balance +
" which is higher than the credit limit");

}
}

}

Figure 12-39 The UseCustomerAccount class

Creating Your Own Exception Classes

643

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Instead of hard coding error messages into your exception classes, as shown in Figure 12-39,
you might consider creating a catalog of possible messages to use. This approach provides
several advantages:

l All the messages are stored in one location instead of being scattered throughout the
program, making them easier to see and modify.

l The list of possible errors serves as a source of documentation, listing potential problems
when running the application.

l Other applications might want to use the same catalog of messages.

l If your application will be used internationally, you can provide messages in multiple
languages, and other programmers can use the version that is appropriate for their
country.

You can throw any type of exception at any time, not just exceptions of your own creation. For example,
within any program you can code throw(new RuntimeException());. Of course, you would want to
do so only with good reason because Java handles RuntimeExceptions for you by stopping the
program. Because you cannot anticipate every possible error, Java’s automatic response is often the best
course of action.

You should not create an excessive number of special Exception types for your classes,
especially if the Java development environment already contains an Exception class that
will catch the error. Extra Exception types add complexity for other programmers who use
your classes. However, when appropriate, specialized Exception classes provide an elegant
way for you to handle error situations. They enable you to separate your error code from the
usual, nonexceptional sequence of events; they allow errors to be passed up the stack and
traced; and they allow clients of your classes to handle exceptional situations in the manner
most suitable for their application.

Figure 12-40 Typical output of the UseCustomerAccount application

CH A P T E R 1 2 Exception Handling

644

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Creating Your Own Exception Classes

1. You must create your own Exception classes for your programs to be
considered truly object oriented.

2. To create your own throwable Exception class, you should extend the
Exception class.

3. The Exception class contains four constructors, including a default constructor
and one that requires a String that contains the message that can be returned
by the getMessage() method.

. sessal c noitpecxE nwor uoy et aer c nac osl a uoy dna, esu nac uoy t aht
snoitpecxEf o sei r oget ac ni- tli ub yna medi vor p seod avaJ ,r evewoH. s mar gor p

det nei r o- t cej bo ni snoi t pecxe wor ht ot deri uqer t on er a uoY. 1#si t ne met at s esl af ehT

Using Assertions
In Chapter 1, you learned that you might inadvertently create syntax or logical errors
when you write a program. Syntax errors are mistakes using the Java language; they are
compile-time errors that prevent a program from compiling and creating an executable
file with a .class extension.

In Chapter 1, you also learned that a program might contain logical errors even though it is
free from syntax errors. Some logical errors cause runtime errors, or errors that cause a
program to terminate. In this chapter, you learned how to use exceptions to handle many of
these kinds of errors.

Some logical errors do not cause a program to terminate but nevertheless produce incorrect
results. For example, if a payroll program should determine gross pay by multiplying hours
worked by hourly pay rate, but you inadvertently divide the numbers, no runtime error
occurs and no exception is thrown, but the output is wrong. An assertion is a Java language
feature that can help you detect such logic errors and debug a program. You use an assert
statement to create an assertion; when you use an assert statement, you state a condition
that should be true, and Java throws an AssertionError when it is not.

The syntax of an assert statement is:

assert booleanExpression : optionalErrorMessage

The Boolean expression in the assert statement should always be true if the program is
working correctly. The optionalErrorMessage is displayed if the booleanExpression
is false.

Using Assertions

645

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 12-41 contains an application that prompts a user for a number and passes it to a
method that determines whether a value is even. Within the isEven() method, the remainder
is taken when the passed parameter is divided by 2. If the remainder after dividing by 2 is 1,
result is set to false. For example, 1, 3, and 5 all are odd, and all result in a value of 1
when % 2 is applied to them. If the remainder after dividing by 2 is not 1, result is set
to true. For example, 2, 4, and 6 all are even, and all have a 0 remainder when % 2 is applied
to them.

import java.util.Scanner;
public class EvenOdd
{

public static void main(String[] args)
{

Scanner input = new Scanner(System.in);
int number;
System.out.print("Enter a number >> ");
number = input.nextInt();
if(isEven(number))

System.out.println(number + " is even");
else

System.out.println(number + " is odd");
}
public static boolean isEven(int number)
{

boolean result;
if(number % 2 == 1)

result = false;
else

result = true;
return result;

}
}

Figure 12-41 The flawed EvenOdd program without an assertion

Figure 12-42 shows several executions of the application in Figure 12-41. The output seems
correct until the last two executions. The values –5 and –7 are classified as even although
they are odd. An assertion might help you to debug this application.

CH A P T E R 1 2 Exception Handling

646

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 12-43 contains a new version of the isEven() method to which the shaded
assert statement has been added. The statement asserts that when the remainder of a
number divided by 2 is not 1, it must be 0. If the expression is not true, a message is
created using the values of both number and its remainder after dividing by 2.

public static boolean isEven(int number)
{

boolean result;
if(number % 2 == 1)

result = false;
else
{

result = true;
assert number % 2 == 0 : number + " % 2 is " + number % 2;

}
return result;

}

Figure 12-43 The flawed isEven() method with an assertion

If you add the assertion shown in Figure 12-43 and then compile and execute the program in
the usual way, you get the same incorrect output as in Figure 12-42. To enable the assertion,
you must use the -ea option when you execute the program; ea stands for enable assertion.
Figure 12-44 shows the command prompt with an execution that uses the -ea option.

Figure 12-42 Typical executions of the EvenOdd application

Using Assertions

647

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

When the EvenOdd program executes and the user enters –5, the program displays
the messages in Figure 12-44 instead of displaying incorrect output. You can see from the
message that an AssertionError was thrown and that the value of –5 % 2 is –1, not 1 as
you had assumed. The remainder operator results in a negative value when one of its
operands is negative, making the output in this program incorrect.

When the programmer sees that –5 % 2 is –1, the reasonable course of action is to return to
the source code and change the logic.

Several adjustments are possible:

l The programmer might decide to convert the parameter to the isEven() method to its
absolute value before using the remainder operator, as in the following:

number = Math.abs(number);

l Another option would be to change the if statement to test for even values by comparing
number % 2 to 0 first, as follows:

if(number % 2 == 0)
result = true;

else
result = false;

Then values of both 1 and –1 would be classified as not even.

l Other options might include displaying an error message when negative values are
encountered, reversing the result values of true and false when the parameter is
negative, or throwing an exception.

An experienced programmer might have found the error in the original EvenOdd application
without using an assertion. For example, the programmer might have previously used the
remainder operator with a negative operand, remembered that the result might be negative,
and changed the code accordingly. Alternatively, the programmer could have inserted
statements to display values at strategic points in the program. However, after the mistake is
found and fixed, any extra display statements should be removed when the final product is
ready for distribution to users. In contrast, any assert statements can be left in place, and if
the user does not use the -ea option when running the program, the user will see no evidence

Figure 12-44 Executing an application using the enable assertion option

CH A P T E R 1 2 Exception Handling

648

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

that the assert statements exist. Placing assert statements in key program locations can
reduce development and debugging time.

You do not want to use assertions to check for every type of error that could occur in a
program. For example, if you want to ensure that a user enters numeric data, you should
use exception-handling techniques that provide the means for your program to recover from
the mistake. If you want to ensure that the data falls within a specific range, you should use
a decision or a loop. Assertions are meant to be helpful in the development stage of a
program, not when it is in production and in the hands of users.

TWO TRUTHS & A LIE

Using Assertions

1. All logical errors cause a program to terminate, and they should be handled by
throwing and catching exceptions.

2. The Boolean expression in an assert statement should always be true if the
program is working correctly.

3. To enable an assertion, you must use the -ea option when you execute the
program.

. stl user t cerr ocni ecudor p yl p mi s yeht —noi t ani mr et
mar gor p esuact on od sr orr el aci gol yna M. 1# si t ne met at s esl af ehT

You Do It

Creating a Class That Automatically Throws Exceptions

Next, you create a class that contains two methods that throw exceptions but
don’t catch them. The PickMenu class allows restaurant customers to choose from a
dinner menu. Before you create PickMenu, you will create the Menu class, which
lists dinner choices and allows a user to make a selection.

1. Open a new file in your text editor, and then enter the following import
statement, class header, and opening curly brace for the Menu class:

import javax.swing.*;
public class Menu
{

(continues)

Using Assertions

649

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. Type the following String array for three entree choices. Also include
a String to build the menu that you will display and an integer to hold the
numeric equivalent of the selection.

private String[] entreeChoice = {"Rosemary Chicken",
"Beef Wellington", "Maine Lobster"};

private String menu = "";
private int choice;

3. Add the displayMenu() method, which lists each entree option with a
corresponding number the customer can type to make a selection. Even
though the allowable entreeChoice array subscripts are 0, 1, and 2, most users
would expect to type 1, 2, or 3. So, you code x + 1 rather than x as the number
in the prompt. After the user enters a selection, convert it to an integer. Return
the String that corresponds to the user’s menu selection—the one with the
subscript that is 1 less than the entered value. After the closing curly brace
for the displayMenu() method, add the closing curly brace for the class.

public String displayMenu()
{

for(int x = 0; x < entreeChoice.length; ++x)
{

menu = menu + "\n" + (x + 1) + " for " +
entreeChoice[x];

}
String input = JOptionPane.showInputDialog(null,

"Type your selection, then press Enter." + menu);
choice = Integer.parseInt(input);
return(entreeChoice[choice - 1]);

}
}

The curly braces are not necessary in the for loop of the displayMenu() method because
the loop contains only one statement. However, in a later exercise, you will add another statement
within this block.

4. Examine the code within the displayMenu() method. Consider the exceptions
that might occur. The user might not type an integer, so the parseInt() method
can fail, and even if the user does type an integer, it might not be in the range
allowed to access the entreeChoice array. Therefore, the displayMenu()
method, like most methods in which you rely on the user to enter data, might
throw exceptions that you can anticipate. (Of course, any method might throw
an unanticipated exception.)

5. Save the file as Menu.java, and compile the class using the javac command.

(continued)

(continues)

CH A P T E R 1 2 Exception Handling

650

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Creating a Class That Passes on an Exception Object

Next, you create the PickMenu class, which lets a customer choose from the
available dinner entree options. The PickMenu class declares a Menu and a String
named guestChoice that holds the name of the entree the customer selects.

To enable the PickMenu class to operate with different kinds of Menus in the future,
you will pass a Menu to PickMenu’s constructor. This technique provides two
advantages: First, when the menu options change, you can alter the contents of
the Menu.java file without changing any of the code in programs that use Menu.
Second, you can extend Menu, perhaps to VegetarianMenu, LowSaltMenu, or
KosherMenu, and still use the existing PickMenu class. When you pass any Menu or Menu
subclass into the PickMenu constructor, the correct customer options appear.

The PickMenu class is unlikely to directly generate any exceptions because it does
not request user input. (Keep in mind that any class might generate an exception
for such uncontrollable events as the system not having enough memory
available.) However, PickMenu declares a Menu object; the Menu class, because it
relies on user input, is likely to generate an exception.

1. Open a new file in your text editor, and then add the following first few lines
of the PickMenu class with its data fields (a Menu and a String that reflect
the customer’s choice):

import javax.swing.*;
public class PickMenu
{

private Menu briefMenu;
private String guestChoice = new String();

2. Enter the following PickMenu constructor, which receives an argument
representing a Menu. The constructor assigns the Menu that is the argument
to the local Menu and then calls the setGuestChoice() method, which
prompts the user to select from the available menu. The PickMenu()
constructor might throw an exception because it calls setGuestChoice(),
which calls displayMenu(), a method that uses keyboard input and might
throw an exception.

public PickMenu(Menu theMenu)
{

briefMenu = theMenu;
setGuestChoice();

}

(continued)

(continues)

Using Assertions

651

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. The following setGuestChoice() method displays the menu and reads keyboard
data entry (so the method throws an exception). It also displays instructions and
then retrieves the user’s selection.

public void setGuestChoice()
{

JOptionPane.showMessageDialog(null,
"Choose from the following menu:");

guestChoice = briefMenu.displayMenu();
}

4. Add the following getGuestChoice() method that returns a guest’s String
selection from the PickMenu class. Also, add a closing curly brace for the class.

public String getGuestChoice()
{

return(guestChoice);
}

}

5. Save the file as PickMenu.java, and compile it using the javac command.

Creating an Application That Can Catch Exceptions

You have created a Menu class that simply holds a list of food items, displays itself, and
allows the user to make a selection. You also created a PickMenu class with fields that
hold a user’s specific selection from a given menu and methods to get and set values
for those fields. The PickMenu class might throw exceptions, but it contains no
methods that catch those exceptions. Next, you write an application that uses the
PickMenu class. This application can catch exceptions that PickMenu throws.

1. Open a new file in your text editor, and start entering the following PlanMenu class,
which has just one method—a main() method:

import javax.swing.*;
public class PlanMenu
{

public static void main(String[] args)
{

2. Construct the following Menu named briefMenu, and declare a PickMenu
object that you name entree. You do not want to construct a PickMenu object
yet because you want to be able to catch the exception that the PickMenu
constructor might throw. Therefore, you want to wait and construct the PickMenu
object within a try block. For now, you just declare entree and assign it null.
Also, you declare a String that holds the customer’s menu selection.

(continued)

(continues)

CH A P T E R 1 2 Exception Handling

652

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Menu briefMenu = new Menu();
PickMenu entree = null;
String guestChoice = new String();

3. Write the following try block that constructs a PickMenu item. If the construction
is successful, the next statement assigns a selection to the entree object.
Because entree is a PickMenu object, it has access to the getGuestChoice()
method in the PickMenu class, and you can assign the method’s returned value to
the guestChoice String.

try
{

PickMenu selection = new PickMenu(briefMenu);
entree = selection;
guestChoice = entree.getGuestChoice();

}

4. The catch block must immediately follow the try block. When the try block
fails, guestChoice will not have a valid value, so recover from the exception by
assigning a value to guestChoice within the following catch block:

catch(Exception error)
{
guestChoice = "an invalid selection";

}

5. After the catch block, the application continues. Use the following code to display
the customer’s choice at the end of the PlanMenu application, and then add
closing curly braces for the main() method and the class:

JOptionPane.showMessageDialog(null,
"You chose " + guestChoice);

}
}

6. Save the file as PlanMenu.java, and then compile and execute it. Read the
instructions, click OK, choose an entree by typing its number from the menu,
and click OK again. Confirm that the menu selection displayed is the one you
chose, and click OK to dismiss the last dialog box. Figure 12-45 shows the
first dialog box of instructions, the menu that appears, and the output when
the user selects option 3.

(continued)

(continues)

Using Assertions

653

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

7. The PlanMenu application works well when you enter a valid menu selection. One
way that you can force an exception is to enter an invalid menu selection at the
prompt. Run the PlanMenu application again, and type 4, A, or any invalid value
at the prompt. Entering 4 produces an ArrayIndexOutOfBoundsException,
and entering A produces a NumberFormatException. If the program lacked the
try…catch pair, either entry would halt the program. However, because the
setGuestChoice() method in the PickMenu class throws the exception and the
PlanMenu application catches it, guestChoice takes on the value “an invalid
selection” and the application ends smoothly, as shown in Figure 12-46.

Figure 12-45 Typical execution of the PlanMenu application

(continued)

Figure 12-46 Exceptional execution of the PlanMenu application

(continues)

CH A P T E R 1 2 Exception Handling

654

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Extending a Class That Throws Exceptions

An advantage to using object-oriented exception handling techniques is that you gain
the ability to handle error conditions differently within each program you write. Next,
you extend the Menu class to create a class named VegetarianMenu. Subsequently,
when you write an application that uses PickMenu with a VegetarianMenu object, you
can deal with any thrown exception differently than when you wrote the PlanMenu
application.

1. Open the Menu.java file in your text editor, and change the access specifier for
the entreeChoice array from private to protected. That way, when you extend
the class, the derived class will have access to the array. Save the file, and
recompile it using the javac command.

2. Open a new file in your text editor, and then type the following class header for the
VegetarianMenu class that extends Menu:

public class VegetarianMenu extends Menu
{

3. Provide new menu choices for the VegetarianMenu as follows:

String[] vegEntreeChoice = {"Spinach Lasagna",
"Cheese Enchiladas", "Fruit Plate"};

4. Add the following constructor that calls the superclass constructor and assigns
each vegetarian selection to the Menu superclass entreeChoice array, and then
add the closing curly brace for the class:

public VegetarianMenu()
{

super();
for(int x = 0; x < vegEntreeChoice.length; ++x)

entreeChoice[x] = vegEntreeChoice[x];
}

}

5. Save the class as VegetarianMenu.java, and then compile it.

6. Now write an application that uses VegetarianMenu. You could write any program,
but for demonstration purposes, you can simply modify PlanMenu.java. Open the
PlanMenu.java file in your text editor, then immediately save it as
PlanVegetarianMenu.java.

7. Change the class name in the header to PlanVegetarianMenu.

(continued)

(continues)

Using Assertions

655

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8. Change the first statement within the main() method as follows so it declares a
VegetarianMenu instead of a Menu:

VegetarianMenu briefMenu = new VegetarianMenu();

9. Change the guestChoice assignment statement in the catch block as follows so it
is specific to the program that uses the VegetarianMenu:

guestChoice = "an invalid vegetarian selection";

10. Save the file, compile it, and run the application. When you see the vegetarian
menu, enter a valid selection and confirm that the program works correctly.
Run the application again, and enter an invalid selection. The error message
shown in Figure 12-47 identifies your invalid entry as “an invalid vegetarian
selection”. Remember that you did not change the PickMenu class. Your new
PlanVegetarianMenu application uses the PickMenu class that you wrote and
compiled before a VegetarianMenu ever existed. However, because PickMenu
throws uncaught exceptions, you can handle those exceptions as you see fit in
any new applications in which you catch them. Click OK to end the application.

Creating an Exception Class

Besides using built-in classes that derive from Exception, such as
NumberFormatException and IndexOutOfBoundsException, you can create your own
Exception classes. For example, suppose that although you have asked a user to type
a number representing a menu selection, you realize that some users might mistakenly
type the initial letter of an option, such as R for Rosemary Chicken. Although the user
has made an error, you want to treat this type of error more leniently than other errors,
such as typing a letter that has no discernable connection to the presented menu. In
the next section, you create a MenuException class that you can use with the Menu
class to represent a specific type of error.

(continued)

Figure 12-47 Output of the PlanVegetarianMenu application when the user makes an
invalid selection

(continues)

CH A P T E R 1 2 Exception Handling

656

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

1. Open a new file in your text editor, and enter the MenuException class. The class
extends Exception. Its constructor requires a String argument, which is passed
to the parent class to be used as a return value for the getMessage() method.

public class MenuException extends Exception
{

public MenuException(String choice)
{

super(choice);
}

}

2. Save the file as MenuException.java, and compile it.

Using an Exception You Created

Next, you modify the Menu, PickMenu, and PlanMenu classes to demonstrate how to
use a MenuException object.

1. Open the Menu class in your text editor, and immediately save the file as
Menu2.java.

2. Change the class name to Menu2.

3. At the end of the list of class data fields, add an array of characters that can hold
the first letter of each of the entrees in the menu.

protected char initial[] = new char[entreeChoice.length];

4. At the end of the method header for the displayMenu() class, add the following
clause:

throws MenuException

You add this clause because you are going to add code that throws such an
exception.

5. Within the displayMenu() method, just before the closing curly brace of the for
loop that builds the menu String, add a statement that takes the first character of
each entreeChoice and stores it in a corresponding element of the initial
array. At the end of the for loop, the initial array holds the first character of
each available entree.

initial[x] = entreeChoice[x].charAt(0);

6. After displaying the JOptionPane dialog box that displays the menu and receives
the user’s input, add a loop that compares the first letter of the user’s choice to
each of the initials of valid menu options. If a match is found, throw a new

(continued)

(continues)

Using Assertions

657

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

instance of the MenuException class that uses the corresponding entree as its
String argument. In other words, when this thrown MenuException is caught by
another method, the assumed entree is the String returned by the
getMessage() method. By placing this test before the call to parseInt(),
you cause entries of R, B, or M to throw a MenuException before they can
cause a NumberFormatException.

for(int y = 0; y < entreeChoice.length; ++y)
if(input.charAt(0) == initial[y])

throw (new MenuException(entreeChoice[y]));

7. Compare your new class with Figure 12-48, in which all of the changes to the Menu
class are shaded.

import javax.swing.*;
public class Menu2
{

protected String[] entreeChoice = {"Rosemary Chicken",
"Beef Wellington", "Maine Lobster"};

private String menu = "";
private int choice;
protected char initial[] = new char[entreeChoice.length];
public String displayMenu() throws MenuException
{

for(int x = 0; x < entreeChoice.length; ++x)
{

menu = menu + "\n" + (x + 1) + " for " +
entreeChoice[x];

initial[x] = entreeChoice[x].charAt(0);
}
String input = JOptionPane.showInputDialog(null,

"Type your selection, then press Enter." + menu);
for(int y = 0; y < entreeChoice.length; ++y)

if(input.charAt(0) == initial[y])
throw(new MenuException(entreeChoice[y]));

choice = Integer.parseInt(input);
return(entreeChoice[choice - 1]);

}
}

Figure 12-48 The Menu2 class

8. Save the class, and compile it.

9. Open the PickMenu file in your text editor, and immediately save it as
PickMenu2.java.

(continued)

(continues)

CH A P T E R 1 2 Exception Handling

658

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10. Change the class name to PickMenu2, and change the declaration of the Menu
object to a Menu2 object. Change the constructor name to PickMenu2 and its
argument to type Menu2. Also add a throws clause to the PickMenu2 constructor
header so that it throws a MenuException. This constructor does not throw an
exception directly, but it calls the setGuestChoice() method, which calls the
displayMenu() method, which throws a MenuException.

11. Add the following throws clause to the setGuestChoice() method header:

throws MenuException

12. Compare your modifications to the PickMenu2 class in Figure 12-49, in which the
changes from the PickMenu class are shaded. Save your file, and compile it.

import javax.swing.*;
public class PickMenu2
{

private Menu2 briefMenu;
private String guestChoice = new String();
public PickMenu2(Menu2 theMenu) throws MenuException
{

briefMenu = theMenu;
setGuestChoice();

}
public void setGuestChoice() throws MenuException
{

JOptionPane.showMessageDialog(null,
"Choose from the following menu:");

guestChoice = briefMenu.displayMenu();
}
public String getGuestChoice()
{

return(guestChoice);
}

}

Figure 12-49 The PickMenu2 class

13. Open the PlanMenu.java file in your text editor, and immediately save it as
PlanMenu2.java.

(continued)

(continues)

Using Assertions

659

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

14. Change the class name to PlanMenu2. Within the main() method, declare a Menu2
object and a PickMenu2 reference instead of the current Menu object and
PickMenu reference.

15. Within the try block, change both references of PickMenu to PickMenu2.

Using Figure 12-50 as a reference, add a catch block after the try block and
before the existing catch block. This catch block will catch any thrown
MenuExceptions and display their messages. The message will be the name of
a menu item, based on the initial the user entered. All other Exception objects,
including NumberFormatExceptions and IndexOutOfBoundsExceptions, will fall
through to the second catch block and be handled as before.

import javax.swing.*;
public class PlanMenu2
{

public static void main(String[] args)
{

Menu2 briefMenu = new Menu2();
PickMenu2 entree = null;
String guestChoice = new String();
try
{

PickMenu2 selection = new PickMenu2(briefMenu);
entree = selection;
guestChoice = entree.getGuestChoice();

}
catch(MenuException error)
{

guestChoice = error.getMessage();
}
catch(Exception error)
{

guestChoice = "an invalid selection";
}
JOptionPane.showMessageDialog(null,

"You chose " + guestChoice);
}

}

Figure 12-50 The PlanMenu2 class

(continued)

(continues)

CH A P T E R 1 2 Exception Handling

660

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

16. Save the file, then compile and execute it several times. When you are asked
to make a selection, try entering a valid number, an invalid number, an initial
letter that is part of the menu, and a letter that is not one of the initial menu
letters, and observe the results each time. Whether or not you enter a valid
number, the application works as expected. Entering an invalid number still
results in an error message. When you enter a letter or a string of letters, the
application assumes your selection is valid if you enter the same initial letter,
using the same case, as one of the menu options.

Don’t Do It
l Don’t forget that all the statements in a try block might not execute. If an exception is

thrown, no statements after that point in the try block will execute.

l Don’t forget that you might need a nextLine() method call after an attempt to read
numeric data from the keyboard throws an exception.

l Don’t forget that a variable declared in a try block goes out of scope at the end of
the block.

l Don’t forget that when a variable gets its usable value within a try block, you must ensure
that it has a valid value before attempting to use it.

l Don’t forget to place more specific catch blocks before more general ones.

l Don’t forget to write a throws clause for a method that throws a checked exception but
does not handle it.

l Don’t forget to handle any checked exception thrown to your method either by writing a
catch block or by listing it in your method’s throws clause.

Key Terms
An exception is an unexpected or error condition.

Exception handling is an object-oriented technique for managing errors.

Runtime exceptions are unplanned exceptions that occur during a program’s execution.
The term is also used more specifically to describe members of the RuntimeException class.

(continued)

Key Terms

661

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The Error class represents more serious errors than the Exception class—those from which
your program usually cannot recover.

The Exception class comprises less serious errors than those from the Error class; the
Exception class represents unusual conditions that arise while a program is running and from
which the program can recover.

A crash is a premature, unexpected, and inelegant end to a program.

A stack trace history list, or more simply a stack trace, displays all the methods that were
called during program execution.

The term mission critical refers to any process that is crucial to an organization.

Fault-tolerant applications are designed so that they continue to operate, possibly at a
reduced level, when some part of the system fails.

Robustness represents the degree to which a system is resilient to stress, maintaining correct
functioning.

A try block is a block of code that might throw an exception that can be handled by a
subsequent catch block.

A catch block is a segment of code that can handle an exception that might be thrown by the
try block that precedes it.

A throw statement is one that sends an exception out of a block or a method so it can be
handled elsewhere.

A finally block is a block of code that holds statements that must execute at the end of a
try…catch sequence, whether or not an exception was thrown.

Exception specification is the practice of using the keyword throws followed by an
Exception type in the method header. If a method throws a checked Exception object that
it will not catch but will be caught by a different method, you must use an exception
specification.

Unchecked exceptions are those from which an executing program cannot reasonably be
expected to recover.

Checked exceptions are those that a programmer should plan for and from which a program
should be able to recover.

The catch or specify requirement is the Java rule that checked exceptions require catching or
declaration.

Syntactic sugar is a term to describe aspects of a computer language that make it “sweeter,”
or easier, for programmers to use.

Syntactic salt describes a language feature designed to make it harder to write bad code.

The memory location known as the call stack is where the computer stores the list of method
locations to which the system must return.

CH A P T E R 1 2 Exception Handling

662

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

An assertion is a Java language feature that can help you detect logic errors and debug a
program.

An assert statement creates an assertion.

Chapter Summary
l An exception is an unexpected or error condition. Exception handling is the name for the

object-oriented techniques that manage such errors. In Java, the two basic classes of
errors are Error and Exception; both descend from the Throwable class.

l In object-oriented terminology, a try block holds code that might cause an error and
throw an exception, and a catch block processes the error.

l You can place as many statements as you need within a try block, and you can catch as
many exceptions as you want. If you try more than one statement, only the first error-
generating statement throws an exception. As soon as the exception occurs, the logic
transfers to the catch block, which leaves the rest of the statements in the try block
unexecuted. When a program contains multiple catch blocks, the first matching catch
block executes, and each remaining catch block is bypassed.

l When you have actions you must perform at the end of a try…catch sequence, you can
use a finally block that executes regardless of whether the preceding try block identifies
an exception. Usually, you use a finally block to perform cleanup tasks.

l Besides clarity, an advantage to object-oriented exception handling is the flexibility it
allows in the handling of error situations. Each calling application might need to handle
the same error differently, depending on its purpose.

l When you write a method that might throw a checked exception that is not caught within
the method, you must type the clause throws <name>Exception after the method header
to indicate the type of Exception that might be thrown. Methods in which you explicitly
throw a checked exception require a catch or a declaration.

l The memory location known as the call stack is where the computer stores the list of
method locations to which the system must return. When you catch an exception, you
can call printStackTrace() to display a list of methods in the call stack so you can
determine the location of the exception.

l Java provides over 40 categories of Exceptions that you can use in your programs.
However, Java’s creators could not predict every condition that might be an Exception in
your applications, so Java also allows you to create your own Exceptions. To create your
own throwable Exception class, you must extend a subclass of Throwable.

l An assertion is a Java language feature that can help you detect logic errors and debug a
program. When you use an assertion, you state a condition that should be true, and Java
throws an AssertionError when it is not.

Chapter Summary

663

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Review Questions

1. In object-oriented programming terminology, an unexpected or error condition
is a(n) .

a. anomaly
b. aberration

c. deviation
d. exception

2. All Java Exceptions are .

a. Errors
b. RuntimeExceptions

c. Throwables
d. Omissions

3. Which of the following statements is true?

a. Exceptions are more serious than Errors.
b. Errors are more serious than Exceptions.
c. Errors and Exceptions are equally serious.
d. Exceptions and Errors are the same thing.

4. The method that ends the current application and returns control to the operating
system is .

a. System.end()

b. System.done()

c. System.exit()

d. System.abort()

5. In object-oriented terminology, you a procedure that might not
complete correctly.

a. try
b. catch

c. handle
d. encapsulate

6. A method that detects an error condition or Exception an
Exception.

a. throws
b. catches

c. handles
d. encapsulates

7. A try block includes all of the following elements except .

a. the keyword try

b. the keyword catch

c. curly braces
d. statements that might cause Exceptions

CH A P T E R 1 2 Exception Handling

664

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8. The segment of code that handles or takes appropriate action following an
exception is a block.

a. try

b. catch

c. throws

d. handles

9. You within a try block.

a. must place only a single statement
b. can place any number of statements
c. must place at least two statements
d. must place a catch block

10. If you include three statements in a try block and follow the block with three
catch blocks, and the second statement in the try block throws an Exception,
then .

a. the first catch block executes
b. the first two catch blocks execute
c. only the second catch block executes
d. the first matching catch block executes

11. When a try block does not generate an Exception and you have included multiple
catch blocks, .

a. they all execute
b. only the first one executes
c. only the first matching one executes
d. no catch blocks execute

12. The catch block that begins catch(Exception e) can catch Exceptions of
type .

a. IOException

b. ArithmeticException

c. both of the above
d. none of the above

13. The code within a finally block executes when the try block .

a. identifies one or more Exceptions
b. does not identify any Exceptions
c. either a or b
d. neither a nor b

Review Questions

665

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

14. An advantage to using a try…catch block is that exceptional events
are .

a. eliminated
b. reduced

c. integrated with regular events
d. isolated from regular events

15. Which methods can throw an Exception?

a. methods with a throws clause
b. methods with a catch block
c. methods with both a throws clause and a catch block
d. any method

16. A method can .

a. check for errors but not handle them
b. handle errors but not check for them
c. either of the above
d. neither of the above

17. Which of the following is least important to know if you want to be able to use a
method to its full potential?

a. the method’s return type
b. the type of arguments the method requires
c. the number of statements within the method
d. the type of Exceptions the method throws

18. The memory location where the computer stores the list of method locations to
which the system must return is known as the .

a. registry
b. call stack

c. chronicle
d. archive

19. You can get a list of the methods through which an Exception has traveled by
using the method.

a. getMessage()

b. callStack()

c. getPath()

d. printStackTrace()

20. A(n) is a statement used in testing programs that should be true; if it
is not true, an Exception is thrown.

a. assertion
b. throwable

c. verification
d. declaration

CH A P T E R 1 2 Exception Handling

666

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exercises

Programming Exercises

1. Write an application named BadSubscriptCaught in which you declare an array
of 10 first names. Write a try block in which you prompt the user for an integer
and display the name in the requested position. Create a catch block that catches
the potential ArrayIndexOutOfBoundsException thrown when the user enters a
number that is out of range. The catch block should also display an error message.
Save the file as BadSubscriptCaught.java.

2. The Double.parseDouble() method requires a String argument, but it fails
if the String cannot be converted to a floating-point number. Write an
application in which you try accepting a double input from a user and catch a
NumberFormatException if one is thrown. The catch block forces the number to
0 and displays an appropriate error message. Following the catch block, display the
number. Save the file as TryToParseDouble.java.

3. In Chapter 9, you wrote a program named MeanMedian that allows a user to enter
five integers and then displays the values, their mean, and their median. Now,
modify the program to throw an exception if an entered value is not an integer.
If an exception is thrown, display an appropriate message and allow the user to
reenter the value. Save the file as MeanMedianHandleException.java.

4. Write an application that prompts the user to enter a number to use as an
array size, and then attempt to declare an array using the entered size. If the
array is created successfully, display an appropriate message. Java generates a
NegativeArraySizeException if you attempt to create an array with a negative
size, and it creates a NumberFormatException if you attempt to create an array
using a nonnumeric value for the size. Use a catch block that executes if the array
size is nonnumeric or negative, displaying a message that indicates the array was
not created. Save the file as NegativeArray.java.

5. Write an application that throws and catches an ArithmeticException when
you attempt to take the square root of a negative value. Prompt the user for an
input value and try the Math.sqrt() method on it. The application either displays
the square root or catches the thrown Exception and displays an appropriate
message. Save the file as SqrtException.java.

6. Create a ProductException class whose constructor receives a String that
consists of a product number and price. Save the file as ProductException.java.
Create a Product class with two fields, productNum and price. The Product
constructor requires values for both fields. Upon construction, throw a
ProductException if the product number does not consist of three digits, if the
price is less than $0.01, or if the price is over $1,000. Save the class as Product.java.
Write an application that establishes at least four Product objects with valid and

Exercises

667

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

invalid values. Display an appropriate message when a Product object is created
successfully and when one is not. Save the file as ThrowProductException.java.

7. a. Create an IceCreamConeException class whose constructor receives a String
that consists of an ice cream cone’s flavor and an integer representing the
number of scoops in the IceCreamCone. Pass this String to the
IceCreamConeException’s parent so it can be used in a getMessage() call.
Save the class as IceCreamConeException.java. Create an IceCreamCone class
with two fields—flavor and scoops. The IceCreamCone constructor calls two
data-entry methods—setFlavor() and setScoops(). The setScoops()
method throws an IceCreamConeException when the scoop quantity exceeds
three. Save the class as IceCreamCone.java. Write an application that
establishes several IceCreamCone objects and handles the Exceptions. Save the
file as ThrowIceCream.java.

b. Create an IceCreamCone2 class in which youmodify the IceCreamCone setFlavor()
method to ensure that the user enters a valid flavor. Allow at least four flavors
of your choice. If the user’s entry does not match a valid flavor, throw an
IceCreamConeException. Write an application that establishes several
IceCreamCone objects and demonstrates the handling of the new Exception.
Save the new class file as IceCreamCone2.java, and save the new application
file as ThrowIceCream2.java.

8. Write an application that displays a series of at least five student ID numbers
(that you have stored in an array) and asks the user to enter a numeric test score
for the student. Create a ScoreException class, and throw a ScoreException
for the class if the user does not enter a valid score (less than or equal to 100).
Catch the ScoreException, and then display an appropriate message. In addition,
store a 0 for the student’s score. At the end of the application, display all the
student IDs and scores. Save the files as ScoreException.java and TestScore.java.

9. Write an application that displays a series of at least 10 student ID numbers
(that you have stored in an array) and asks the user to enter a test letter grade for
the student. Create an Exception class named GradeException that contains a
static public array of valid grade letters (‘A’, ‘B’, ‘C’, ‘D’, ‘F’, and ‘I’) you can use
to determine whether a grade entered from the application is valid. In your
application, throw a GradeException if the user does not enter a valid letter
grade. Catch the GradeException, and then display an appropriate message. In
addition, store an ‘I’ (for Incomplete) for any student for whom an exception is
caught. At the end of the application, display all the student IDs and grades.
Save the files as GradeException.java and TestGrade.java.

10. Create a DataEntryException class whose getMessage() method returns
information about invalid integer data. Write a program named GetIDAndAge that
continually prompts the user for an ID number and an age until a terminal 0 is
entered for both. Throw a DataEntryException if the ID is not in the range of

CH A P T E R 1 2 Exception Handling

668

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

valid ID numbers (0 through 999), or if the age is not in the range of valid ages
(0 through 119). Catch any DataEntryException or InputMismatchException
that is thrown, and display an appropriate message. Save the files as
DataEntryException.java and GetIDAndAge.java.

11. A company accepts user orders by part numbers interactively. Users might
make the following errors as they enter data:

l The part number is not numeric.

l The quantity is not numeric.

l The part number is too low (less than 0).

l The part number is too high (more than 999).

l The quantity ordered is too low (less than 1).

l The quantity ordered is too high (more than 5,000).

Create a class that stores an array of usable error messages; save the file
as DataMessages.java. Create a DataException class; each object of this class
will store one of the messages. Save the file as DataException.java. Create
an application that prompts the user for a part number and quantity. Allow for
the possibility of nonnumeric entries as well as out-of-range entries, and display the
appropriate message when an error occurs. If no error occurs, display the
message “Valid entry”. Save the program as PartAndQuantityEntry.java.

12. A company accepts user orders for its products interactively. Users might make
the following errors as they enter data:

l The item number ordered is not numeric.

l The quantity is not numeric.

l The item number is too low (less than 0).

l The item number is too high (more than 9999).

l The quantity ordered is too low (less than 1).

l The quantity ordered is too high (more than 12).

l The item number is not a currently valid item.

Although the company might expand in the future, its current inventory consists of
the items listed in Table 12-1.

Exercises

669

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Create a class that stores an array of usable error messages; save the file as
OrderMessages.java. Create an OrderException class that stores one of
the messages; save the file as OrderException.java. Create an application
that contains prompts for an item number and quantity. Allow for the possibility
of nonnumeric entries as well as out-of-range entries and entries that do not
match any of the currently available item numbers. The program should display
an appropriate message if an error has occurred. If no errors exist in the entered
data, compute the user’s total amount due (quantity times price each) and display
it. Save the program as PlaceAnOrder.java.

13. a. Gadgets by Mail sells many interesting items through its catalogs. Write an
application that prompts the user for order details, including item numbers
and quantity of each item ordered, based on the available items shown in
Table 12-2.

The shipping and handling fee for an order is based on the total order price, as
shown in Table 12-3.

Item Number Price ($)

111 0.89

222 1.47

333 2.43

444 5.99

Table 12-1 Item numbers and prices

Item # Description Price ($)

101 Electric hand warmer 12.99

124 Battery-operated plant waterer 7.55

256 Gerbil trimmer 9.99

512 Talking bookmark 6.89

Table 12-2 Items offered by Gadgets by Mail

Price of Order ($) Shipping and Handling ($)

0−24.99 5.55

25.00−49.99 8.55

50.00 or more 11.55

Table 12-3 Shipping and handling fees charged by Gadgets by Mail

CH A P T E R 1 2 Exception Handling

670

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Create the following classes:

l Gadget, which contains an item number, description, and price for a gadget; a
constructor that sets all the fields; and get methods to retrieve the field values.

l Order, which contains an order number, customer name, and address (assume you
need just a street address, not city, state, and zip code); a list of item numbers
ordered (up to four); the total price of all items ordered; and a shipping and
handling fee for the order. Include a constructor to set the field values and get
methods to retrieve the field values.

l GadgetOrderTaker, which is an interactive application that takes four customer
orders. The class contains an array of the four Gadget objects offered (from
Table 12-2). The application prompts each user for a name and street address and
assigns a unique order number to each customer, starting with 101. The
application asks each user to enter an item number and quantity wanted. When
the user enters 999 for the item number, the order is complete, and the next
customer can enter data. Each customer can order up to four item numbers.
When a customer’s order is complete (the customer has entered 999 for an item
number, or has ordered four different items), calculate the shipping and handling
charges. After four customers have placed Orders, display each Order’s data,
including the order number, the name and address of the customer, and the list of
items ordered, including the item number, description, and price of each Order,
the total price for the order, and the shipping and handling charge. The
GadgetOrderTaker class handles all thrown Exceptions by displaying an
explanatory message and ending the application.

l OrderException, which is an Exception that is created and thrown under any of
the following conditions:

l A customer attempts to order more than four different items.

l A customer orders more than 100 of any item.

l A customer enters an invalid item number.

l Also, catch the Exception generated by either of these conditions:

l A customer enters a nonnumeric character as the item number.

l A customer enters a nonnumeric character as the quantity.

Save the files as Gadget.java, Order.java, GadgetOrderTaker.java, and
OrderException.java.

b. The GadgetOrderTaker class handles all thrown Exceptions by displaying an
explanatory message and ending the application. Create a new application that
handles all Exceptions by requiring the user to reenter the offending data. Save
the file as GadgetOrderTaker2.java.

Exercises

671

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Debugging Exercises
1. Each of the following files in the Chapter12 folder of your downloadable student

files has syntax and/or logic errors. In each case, determine the problem and fix
the program. After you correct the errors, save each file using the same filename
preceded with Fix. For example, DebugTwelve1.java will become FixDebugTwelve1.
java. You will also use a file named DebugEmployeeIDException.java with the
DebugTwelve4.java file.

a. DebugTwelve1.java
b. DebugTwelve2.java

c. DebugTwelve3.java
d. DebugTwelve4.java

Game Zone
1. In Chapter 1, you created a class called RandomGuess. In this game, the application

generates a random number for a player to guess. In Chapter 5, you improved the
application to display a message indicating whether the player’s guess was correct,
too high, or too low. In Chapter 6, you further improved the game by adding a loop
that continually prompts the user to enter the correct value, if necessary. As written,
the game should work as long as the player enters numeric guesses. However, if the
player enters a letter or other nonnumeric character, the game throws an exception.
Discover the type of Exception thrown, then improve the game by handling the
exception so that the user is informed of the error and allowed to attempt to enter
the correct data again. Save the file as RandomGuess4.java.

2. In Chapter 8, you created a Quiz class that contains an array of 10 multiple-choice
questions to which the user was required to respond with an A, B, or C. At the time,
you knew how to handle the user’s response if an invalid character was entered.
Rerun the program now to determine whether an exception is thrown if the user
enters nothing—that is, the user just presses the Enter key without making an entry.
If so, improve the program by catching the exception, displaying an appropriate
error message, and presenting the same question to the user again. Save the file as
QuizWithExceptionsCaught.java.

Case Problems

1. In Chapter 11, you created an interactive StaffDinnerEvent class that obtains all
the data for a dinner event for Carly’s Catering, including details about the staff
members required to work at the event. Now, modify the class so that it becomes
immune to user data entry errors by handling exceptions for each numeric entry.
Each time the program requires numeric data—for example, for the number of
guests, selected menu options, and staff members’ salaries—continuously prompt

CH A P T E R 1 2 Exception Handling

672

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

the user until the data entered is the correct type. Save the revised program as
StaffDinnerEvent.java.

2. In Chapter 11, you created an interactive RentalDemo class that obtains all the data for
four rentals from Sammy’s Seashore Rentals, including details about the contract
number, length of the rental, and equipment type. Now, modify the class so that it
becomes immune to user data entry errors by handling exceptions for each numeric
entry. Each time the program requires numeric data—for example, for the rental
period—continuously prompt the user until the data entered is the correct type. Save
the revised program as RentalDemo.java.

Exercises

673

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

