
CHAPTER11
Advanced Inheritance
Concepts

In this chapter, you will:

Create and use abstract classes

Use dynamic method binding

Create arrays of subclass objects

Use the Object class and its methods

Use inheritance to achieve good software design

Create and use interfaces

Create and use packages

Unless noted otherwise, all images are © 2014 Cengage Learning

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Creating and Using Abstract Classes
Developing new classes is easier after you understand the concept of inheritance. When you
use a class as a basis from which to create extended child classes, the child classes are more
specific than their parent. When you create a child class, it inherits all the general attributes
you need; thus, you must create only the new, more specific attributes. For example, a
SalariedEmployee and an HourlyEmployee are more specific than an Employee. They can
inherit general Employee attributes, such as an employee number, but they add specific
attributes, such as pay-calculating methods.

Notice that a superclass contains the features that are shared by its subclasses. For example,
the attributes of the Dog class are shared by every Poodle and Spaniel. The subclasses are
more specific examples of the superclass type; they add more features to the shared, general
features. Conversely, when you examine a subclass, you see that its parent is more general and
less specific; for example, Animal is more general than Dog.

Recall from Chapter 10 that the terms base class, superclass, and parent are equivalent. Similarly, the terms
derived class, subclass, and child are equivalent. Also recall that a child class contains all the members of its
parent, whether those members are public, protected, or private. However, a child object cannot
directly access a private member inherited from a parent.

A concrete class is one from which you can instantiate objects. Sometimes, a class is so
general that you never intend to create any specific instances of the class. For example, you
might never create an object that is “just” an Employee; each Employee is more specifically a
SalariedEmployee, HourlyEmployee, or ContractEmployee. A class such as Employee that
you create only to extend from is not a concrete class; it is an abstract class. In the last
chapter, you learned that you can create final classes if you do not want other classes to be
able to extend them. Classes that you declare to be abstract are the opposite; your only
purpose in creating them is to enable other classes to extend them. If you attempt to
instantiate an object from an abstract class, you receive an error message from the compiler
that you have committed an InstantiationError. You use the keyword abstract when you
declare an abstract class. (In other programming languages, such as C++, abstract classes are
known as virtual classes.)

In the last chapter, you learned to create class diagrams. By convention, when you show abstract classes
and methods in class diagrams, their names appear in italics.

In Chapter 4, you worked with the GregorianCalendar class. GregorianCalendar is a concrete
class that extends the abstract class Calendar. In other words, there are no “plain” Calendar objects.

CH A P T E R 1 1 Advanced Inheritance Concepts

548

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Programmers of an abstract class can include two method types:

l Nonabstract methods, like those you can create in any class, are implemented in the
abstract class and are simply inherited by its children.

l Abstract methods have no body and must be implemented in child classes.

Abstract classes usually contain at least one abstract method. When you create an abstract
method, you provide the keyword abstract and the rest of the method header, including the
method type, name, and parameters. However, the declaration ends there: you do not provide
curly braces or any statements within the method—just a semicolon at the end of the
declaration. If you create an empty method within an abstract class, the method is an abstract
method even if you do not explicitly use the keyword abstract when defining the method,
but programmers often include the keyword for clarity. If you declare a class to be abstract, its
methods can be abstract or not, but if you declare a method to be abstract, you must also
declare its class to be abstract.

When you create a subclass that inherits an abstract method, you write a method with the
same signature. You are required to code a subclass method to override every empty, abstract
superclass method that is inherited. Either the child class method must itself be abstract, or
you must provide a body, or implementation, for the inherited method.

Suppose that you want to create classes to represent different animals, such as Dog and
Cow. You can create a generic abstract class named Animal so you can provide generic
data fields, such as the animal’s name, only once. An Animal is generic, but all specific
Animals make a sound; the actual sound differs from Animal to Animal. If you code an
empty speak() method in the abstract Animal class, you require all future Animal
subclasses to code a speak() method that is specific to the subclass. Figure 11-1 shows
an abstract Animal class containing a data field for the name, getName() and setName()
methods, and an abstract speak() method.

public abstract class Animal
{

private String name;
public abstract void speak();
public String getName()
{

return name;
}
public void setName(String animalName)
{

name = animalName;
}

}

Figure 11-1 The abstract Animal class

Creating and Using Abstract Classes

549

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The Animal class in Figure 11-1 is declared as abstract; the keyword is shaded. You
cannot create a class in which you declare an Animal object with a statement such as
Animal myPet = new Animal("Murphy");, because a class that attempts to instantiate an
Animal object does not compile. Animal is an abstract class, so no Animal objects can exist.

You create an abstract class such as Animal only so you can extend it. For example, because
a dog is an animal, you can create a Dog class as a child class of Animal. Figure 11-2 shows a
Dog class that extends Animal.

public class Dog extends Animal
{

public void speak()
{

System.out.println("Woof!");
}

}

Figure 11-2 The Dog class

The speak() method within the Dog class is required because you want to create Dog
objects and the abstract, parent Animal class contains an abstract speak() method (shaded
in Figure 11-1). You can code any statements you want within the Dog speak() method,
but the speak() method must exist. If you do not want to create Dog objects but want the
Dog class to be a parent to further subclasses, then the Dog class must also be abstract.
In that case, you can write code for the speak() method within the subclasses of Dog.

If Animal is an abstract class, you cannot instantiate an Animal object; however, if Dog is a
concrete class, instantiating a Dog object is perfectly legal. When you code the following,
you create a Dog object:

Dog myPet = new Dog("Murphy");

Then, when you code myPet.speak();, the correct Dog speak() method executes.

The classes in Figures 11-3 and 11-4 also inherit from the Animal class and implement speak()
methods. Figure 11-5 contains a UseAnimals application.

public class Cow extends Animal
{

public void speak()
{

System.out.println("Moo!");
}

}

Figure 11-3 The Cow class

CH A P T E R 1 1 Advanced Inheritance Concepts

550

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public class Snake extends Animal
{

public void speak()
{

System.out.println("Ssss!");
}

}

Figure 11-4 The Snake class

public class UseAnimals
{

public static void main(String[] args)
{

Dog myDog = new Dog();
Cow myCow = new Cow();
Snake mySnake = new Snake();
myDog.setName("My dog Murphy");
myCow.setName("My cow Elsie");
mySnake.setName("My snake Sammy");
System.out.print(myDog.getName() + " says ");
myDog.speak();
System.out.print(myCow.getName() + " says ");
myCow.speak();
System.out.print(mySnake.getName() + " says ");
mySnake.speak();

}
}

Figure 11-5 The UseAnimals application

The output in Figure 11-6 shows that when you create Dog, Cow, and Snake objects, each is an
Animal with access to the Animal class getName() and setName() methods, and each uses its
own speak() method appropriately.
In Figure 11-6, notice how the myDog.
getName() and myDog.speak() method
calls produce different output from when
the same method names are used with
myCow and mySnake.
Recall that using the same method name
to indicate different implementations is
polymorphism. Using polymorphism, one
method name causes different and
appropriate actions for diverse types of
objects. Figure 11-6 Output of the UseAnimals application

Creating and Using Abstract Classes

551

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Watch the video Abstract Classes.

TWO TRUTHS & A LIE

Creating and Using Abstract Classes

1. An abstract class is one from which you cannot inherit, but from which you can
create concrete objects.

2. Abstract classes usually have one or more empty abstract methods.

3. An abstract method has no body, curly braces, or statements.

.ti r ehni nac uoy hci h w morf t ub, st cej bo et er cnoc
yna et aer ct onnac uoy hci h w morf eno si ssal ct cart sba nA. 1# si t ne met at s esl af ehT

You Do It

Creating an Abstract Class

In this section, you create an abstract Vehicle class. The class includes fields for
the power source, the number of wheels, and the price. Vehicle is an abstract class;
there will never be a “plain” Vehicle object. Later, you will create two subclasses,
Sailboat and Bicycle; these more specific classes include price limits for the
vehicle type, as well as different methods for displaying data.

1. Open a new file in your text editor, and enter the following first few lines to
begin creating an abstract Vehicle class:

public abstract class Vehicle
{

2. Declare the data fields that hold the power source, number of wheels, and
price. Declare price as protected rather than private, because you want
child classes to be able to access the field.

private String powerSource;
private int wheels;
protected int price;

3. The Vehicle constructor accepts three parameters and calls three methods.
The first method accepts the powerSource parameter, the second

(continues)

CH A P T E R 1 1 Advanced Inheritance Concepts

552

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

accepts the wheels parameter, and the third method prompts
the user for a vehicle price.

public Vehicle(String powerSource, int wheels)
{

setPowerSource(powerSource);
setWheels(wheels);
setPrice();

}

4. Include the following three get methods that return the values for the data fields:

public String getPowerSource()
{

return powerSource;
}
public int getWheels()
{

return wheels;
}
public int getPrice()
{

return price;
}

5. Enter the following set methods, which assign values to the powerSource and
wheels fields.

public void setPowerSource(String source)
{

powerSource = source;
}
public void setWheels(int wls)
{

wheels = wls;
}

6. The setPrice() method is an abstract method. Each subclass you eventually
create that represents different vehicle types will have a unique prompt for the
price and a different maximum allowed price. Type the abstract method
definition and the closing curly brace for the class:

public abstract void setPrice();
}

7. Save the file as Vehicle.java. At the command prompt, compile the file using
the javac command.

(continued)

(continues)

Creating and Using Abstract Classes

553

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Extending an Abstract Class

You just created an abstract class, but you cannot instantiate any objects from this
class. Rather, you must extend this class to be able to create any Vehicle-related
objects. Next, you create a Sailboat class that extends the Vehicle class. This new
class is concrete; that is, you can create actual Sailboat class objects.

1. Open a new file in your text editor, and then type the following, including a header
for a Sailboat class that extends the Vehicle class:

import javax.swing.*;
public class Sailboat extends Vehicle
{

2. Add the declaration of a length field that is specific to a Sailboat by typing the
following code:

private int length;

3. The Sailboat constructor must call its parent’s constructor and send two
arguments to provide values for the powerSource and wheels values. It also
calls the setLength() method that prompts the user for and sets the length
of the Sailboat objects:

public Sailboat()
{

super("wind", 0);
setLength();

}

4. Enter the following setLength() and getLength() methods, which respectively
ask for and return the Sailboat’s length:

public void setLength()
{

String entry;
entry = JOptionPane.showInputDialog

(null, "Enter sailboat length in feet ");
length = Integer.parseInt(entry);

}
public int getLength()
{

return length;
}

5. The concrete Sailboat class must contain a setPrice() method because
the method is abstract in the parent class. Assume that a Sailboat has a
maximum price of $100,000. Add the following setPrice() method that

(continued)

(continues)

CH A P T E R 1 1 Advanced Inheritance Concepts

554

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

prompts the user for the price and forces it to the maximum value if the entered
value is too high:

public void setPrice()
{

String entry;
final int MAX = 100000;
entry = JOptionPane.showInputDialog

(null, "Enter sailboat price ");
price = Integer.parseInt(entry);
if(price > MAX)

price = MAX;
}

6. In Chapter 7, you first used the automatically included Object class toString()
method that converts any object to a String. Now, you can override that method
for this class by writing your own version as follows. When you finish, add a
closing curly brace for the class.

public String toString()
{

return("The " + getLength() +
" foot sailboat is powered by " +
getPowerSource() + "; it has " + getWheels() +
" wheels and costs $" + getPrice());

}
}

7. Save the file as Sailboat.java, and then compile the class.

Extending an Abstract Class with a Second Subclass

The Bicycle class inherits from Vehicle, just as the Sailboat class does. Whereas the Sailboat
class requires a data field to hold the length of the boat, the Bicycle class does not. Other
differences lie in the content of the setPrice() and toString() methods.

1. Open a new file in your text editor, and then type the following first lines of
the Bicycle class:

import javax.swing.*;
public class Bicycle extends Vehicle
{

2. Enter the following Bicycle class constructor, which calls the parent
constructor, sending it power source and wheel values:

public Bicycle()
{

super("a person", 2);
}

(continues)

(continued)

Creating and Using Abstract Classes

555

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. Enter the following setPrice() method that forces a Bicycle’s price to be no
greater than $4,000:

public void setPrice()
{

String entry;
final int MAX = 4000;
entry = JOptionPane.showInputDialog

(null, "Enter bicycle price ");
price = Integer.parseInt(entry);
if(price > MAX)

price = MAX;
}

4. Enter the following toString()method, and add the closing curly brace for the class:

public String toString()
{

return("The bicycle is powered by " + getPowerSource() +
"; it has " + getWheels() + " wheels and costs $" +
getPrice());

}
}

5. Save the file as Bicycle.java, and then compile the class.

Instantiating Objects from Subclasses

Next, you create a program that instantiates concrete objects from each of the two
child classes you just created.

1. Open a new file in your text editor, and then enter the start of the DemoVehicles
class as follows:

import javax.swing.*;
public class DemoVehicles
{

public static void main(String[] args)
{

2. Enter the following statements that declare an object of each subclass type.

Sailboat aBoat = new Sailboat();
Bicycle aBike = new Bicycle();

3. Enter the following statement to display the contents of the two objects. Add
the closing curly braces for the main() method and the class:

JOptionPane.showMessageDialog(null,
"\nVehicle descriptions:\n" +
aBoat.toString() + "\n" + aBike.toString());

}
} (continues)

(continued)

CH A P T E R 1 1 Advanced Inheritance Concepts

556

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4. Save the file as DemoVehicles.java, and then compile it. After you compile the
class with no errors, run this application using the java DemoVehicles command.
When the application prompts you, enter the length and price for a sailboat, and
the price for a bicycle. Figure 11-7 shows output after typical user input.

Using Dynamic Method Binding
When you create a superclass and one or more subclasses, each object of each subclass
“is a” superclass object. Every SalariedEmployee “is an” Employee; every Dog “is an” Animal.
(The opposite is not true. Superclass objects are not members of any of their subclasses.
An Employee is not a SalariedEmployee. An Animal is not a Dog.) Because every subclass
object “is a” superclass member, you can convert subclass objects to superclass objects.

As you are aware, when a superclass is abstract, you cannot instantiate objects of the
superclass; however, you can indirectly create a reference to a superclass abstract object.
A reference is not an object, but it points to a memory address. When you create a reference,
you do not use the keyword new to create a concrete object; instead, you create a variable
name in which you can hold the memory address of a concrete object. So, although a
reference to an abstract superclass object is not concrete, you can store a concrete
subclass object reference there.

You learned how to create a reference in Chapter 4. When you code SomeClass someObject;, you
are creating a reference. If you later code the following statement, including the keyword new and the
constructor name, then you actually set aside memory for someObject:

someObject = new SomeClass();

(continued)

Figure 11-7 Typical output of the DemoVehicles application

Using Dynamic Method Binding

557

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

For example, if you create an Animal class, as shown previously in Figure 11-1, and various
subclasses, such as Dog, Cow, and Snake, as shown in Figures 11-2 through 11-4, you can
create an application containing a generic Animal reference variable into which you can
assign any of the concrete Animal child objects. Figure 11-8 shows an AnimalReference
application, and Figure 11-9 shows its output. The variable animalRef is a type of Animal.
No superclass Animal object is created (none can be); instead, Dog and Cow objects are
created using the new keyword. When the Cow object is assigned to the Animal reference,
the animalRef.speak() method call results in “Moo!”; when the Dog object is assigned to
the Animal reference, the method call results in “Woof!” Recall that assigning a variable
or constant of one type to a variable of another type is called promotion, implicit conversion,
or upcasting.

public class AnimalReference
{

public static void main(String[] args)
{

Animal animalRef;
animalRef = new Cow();
animalRef.speak();
animalRef = new Dog();
animalRef.speak();

}
}

Figure 11-8 The AnimalReference application

The application in Figure 11-8 shows that using a reference polymorphically allows you to
extend a base class and use extended objects when a base class type is expected. For example,
you could pass a Dog or a Cow to a method that expects an Animal. This means that all
methods written to accept a superclass argument can also be used with its children—a feature
that saves child-class creators a lot of work.

Figure 11-9 Output of the AnimalReference application

CH A P T E R 1 1 Advanced Inheritance Concepts

558

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Recall from Chapter 10 that you can use the instanceof keyword to determine whether an object is an
instance of any class in its hierarchy. For example, both of the following expressions are true if myPoodle is
a Dog object and Dog is an Animal subclass:
myPoodle instanceof Animal
myPoodle instanceof Dog

The application in Figure 11-8 demonstrates polymorphic behavior. The same statement,
animalRef.speak();, repeats after animalRef is assigned each new animal type. Each call to
the speak() method results in different output. Each reference “chooses” the correct speak()
method, based on the type of animal referenced. This flexible behavior is most useful when
you pass references to methods; you will learn more about this in the next section. In the
last chapter, you learned that in Java all instance method calls are virtual method calls by
default—the method that is used is determined when the program runs, because the type
of the object used might not be known until the method executes. An application’s ability to
select the correct subclass method depending on the argument type is known as dynamic
method binding. When the application executes, the correct method is attached (or bound) to
the application based on the current, changing (dynamic) context. Dynamic method binding
is also called late method binding. The opposite of dynamic method binding is static (fixed)
method binding. In Java, instance methods (those that receive a this reference) use dynamic
binding; class methods use static method binding. Dynamic binding makes programs flexible;
however, static binding operates more quickly.

In the example in this section, the objects using speak() happen to be related (Cow and Dog are both
Animals). Be aware that polymorphic behavior can apply to nonrelated classes as well. For example, a
DebateStudent and a VentriloquistsDummy might also speak(). When polymorphic behavior
depends on method overloading, it is called ad-hoc polymorphism; when it depends on using a superclass
as a method parameter, it is called pure polymorphism or inclusion polymorphism.

Using a Superclass as a Method Parameter Type
Dynamic method binding is most useful when you want to create a method that has one or
more parameters that might be one of several types. For example, the shaded header for the
talkingAnimal() method in Figure 11-10 accepts any type of Animal argument. The method
can be used in programs that contain Dog objects, Cow objects, or objects of any other class
that descends from Animal. The application passes first a Dog and then a Cow to the method.
The output in Figure 11-11 shows that the method works correctly no matter which type of
Animal descendant it receives.

Using Dynamic Method Binding

559

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public class TalkingAnimalDemo
{

public static void main(String[] args)
{

Dog dog = new Dog();
Cow cow = new Cow();
dog.setName("Ginger");
cow.setName("Molly");
talkingAnimal(dog);
talkingAnimal(cow);

}
public static void talkingAnimal(Animal animal)
{

System.out.println("Come one. Come all.");
System.out.println

("See the amazing talking animal!");
System.out.println(animal.getName() +

" says");
animal.speak();
System.out.println("***************");

}
}

Figure 11-10 The TalkingAnimalDemo class

Figure 11-11 Output of the TalkingAnimalDemo application

CH A P T E R 1 1 Advanced Inheritance Concepts

560

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Using Dynamic Method Binding

1. If Parent is a parent class and Child is its child, then you can assign a Child
object to a Parent reference.

2. If Parent is a parent class and Child is its child, then you can assign a Parent
object to a Child reference.

3. Dynamic method binding refers to a program’s ability to select the correct
subclass method for a superclass reference while a program is running.

. ecner ef er tneraP a ot t cej bo dlihC
a r ot cej bo tneraP a ngi ssa nac uoy ,r evewoH. ecner ef er dlihC a ot yl not cej bo
dlihC a ngi ssa nac uoy ; ecner ef er dlihC a ot t cej bo tneraP a ngi ssat onnac uoy
neht , dli hc sti si dlihC dna ssal ct ner ap a si tneraPfI . 2# si t ne met at s esl af ehT

Creating Arrays of Subclass Objects
Recall that every array element must be the same data type, which can be a primitive, built-in
type or a type based on a more complex class. When you create an array in Java, you are not
constructing objects. Instead, you are creating space for references to objects. In other words,
although it is convenient to refer to “an array of objects,” every array of objects is really an
array of object references. When you create an array of superclass references, it can hold
subclass references. This is true whether the superclass in question is abstract or concrete.

For example, even though Employee is an abstract class, and every Employee object is either a
SalariedEmployee or an HourlyEmployee subclass object, it can be convenient to create an
array of generic Employee references. Likewise, an Animal array might contain individual
elements that are Dog, Cow, or Snake objects. As long as every Employee subclass has access to
a calculatePay() method, and every Animal subclass has access to a speak() method, you
can manipulate an array of superclass objects and invoke the appropriate method for each
subclass member.

The following statement creates an array of three Animal references:

Animal[] animalRef = new Animal[3];

The statement reserves enough computer memory for three Animal objects named
animalRef[0], animalRef[1], and animalRef[2]. The statement does not actually instantiate
Animals; Animal is an abstract class and cannot be instantiated. The Animal array declaration
simply reserves memory for three object references. If you instantiate objects from Animal
subclasses, you can place references to those objects in the Animal array, as Figure 11-12

Creating Arrays of Subclass Objects

561

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

illustrates. Figure 11-13 shows the output of the AnimalArrayDemo application. The array of
three references is used to access each appropriate speak() method.

public class AnimalArrayDemo
{

public static void main(String[] args)
{

Animal[] animalRef = new Animal[3];
animalRef[0] = new Dog();
animalRef[1] = new Cow();
animalRef[2] = new Snake();
for(int x = 0; x < 3; ++x)

animalRef[x].speak();
}

}

Figure 11-12 The AnimalArrayDemo application

In the AnimalArrayDemo application in Figure 11-12, a reference to an instance of the Dog
class is assigned to the first Animal reference, and then references to Cow and Snake objects
are assigned to the second and third array elements. After the object references are in the
array, you can manipulate them like any other array elements. The application in Figure 11-12
uses a for loop and a subscript to get each individual reference to speak().

Figure 11-13 Output of the AnimalArrayDemo application

CH A P T E R 1 1 Advanced Inheritance Concepts

562

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Creating Arrays of Subclass Objects

1. You can assign a superclass reference to an array of its subclass type.

2. The following statement creates an array of 10 Table references:

Table[] table = new Table[10];

3. You can assign subclass objects to an array that is their superclass type.

. dnuor a yawr eht o eht t ont ub, epyt ssal cr epus
sti f o yarr a na ot ecner ef er ssal cbus a ngi ssa nac uoY. 1# si t ne met at s esl af ehT

You Do It

Using Object References

Next, you write an application in which you create an array of Vehicle references.
Within the application, you assign Sailboat objects and Bicycle objects to the same
array. Then, because the different object types are stored in the same array, you can
easily manipulate them by using a for loop.

1. Open a new file in your text editor, and then enter the following first few lines
of the VehicleDatabase program:

import javax.swing.*;
public class VehicleDatabase
{

public static void main(String[] args)
{

2. Create the following array of five Vehicle references and an integer subscript
to use with the array:

Vehicle[] vehicles = new Vehicle[5];
int x;

3. Enter the following for loop that prompts you to select whether to enter
a sailboat or a bicycle in the array. Based on user input, instantiate the
appropriate object type.

(continues)

Creating Arrays of Subclass Objects

563

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

for(x = 0; x < vehicles.length; ++x)
{

String userEntry;
int vehicleType;
userEntry = JOptionPane.showInputDialog(null,

"Please select the type of\n " +
"vehicle you want to enter: \n1 - Sailboat\n" +
" 2 - Bicycle");

vehicleType = Integer.parseInt(userEntry);
if(vehicleType == 1)

vehicles[x] = new Sailboat();
else

vehicles[x] = new Bicycle();
}

4. After entering the information for each vehicle, display the array contents by
typing the following code. First create a StringBuffer to hold the list of vehicles.
Then, in a for loop, build an output String by repeatedly adding a newline
character, a counter, and a vehicle from the array to the StringBuffer object.
Display the constructed StringBuffer in a dialog box. Then type the closing
curly braces for the main() method and the class:

StringBuffer outString = new StringBuffer();
for(x = 0; x < vehicles.length; ++x)
{

outString.append("\n#" + (x + 1) + " ");
outString.append(vehicles[x].toString());

}
JOptionPane.showMessageDialog(null,

"Our available Vehicles include:\n" +
outString);

}
}

5. Save the file as VehicleDatabase.java, and then compile it. Run the application,
entering five objects of your choice. Figure 11-14 shows typical output after the
user has entered data.

Figure 11-14 Output of the VehicleDatabase application

(continued)

CH A P T E R 1 1 Advanced Inheritance Concepts

564

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using the Object Class and Its Methods
Every class in Java is actually a subclass, except one. When you define a class, if you do not
explicitly extend another class, your class implicitly is an extension of the Object class. The
Object class is defined in the java.lang package, which is imported automatically every time
you write a program; in other words, the following two class declarations have identical
outcomes:

public class Animal
{
}
public class Animal extends Object
{
}

When you declare a class that does not extend any other class, you always are extending the
Object class. The Object class includes methods that descendant classes can use or override
as you see fit. Table 11-1 describes the methods built into the Object class; every Object you
create has access to these methods.

Method Description
Object clone() Creates and returns a copy of this object

boolean equals
(Object obj)

Indicates whether some object is equal to the parameter object (this method
is described in detail below)

void finalize() Called by the garbage collector on an object when there are no more
references to the object

Class<?> getClass() Returns the class to which this object belongs at run time

int hashCode() Returns a hash code value for the object (this method is described
briefly below)

void notify() Wakes up a single thread that is waiting on this object’s monitor

void notifyAll() Wakes up all threads that are waiting on this object’s monitor

String toString() Returns a string representation of the object (this method is described
in detail below)

void wait
(long timeout)

Causes the current thread to wait until either another thread invokes
the notify() method or the notifyAll() method for this object, or
a specified amount of time has elapsed

void wait
(long timeout,
int nanos)

Causes the current thread to wait until another thread invokes the
notify() or notifyAll() method for this object, or some other
thread interrupts the current thread, or a certain amount of real time
has elapsed

Table 11-1 Object class methods

Using the Object Class and Its Methods

565

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Table 11-1 refers to threads in several locations. In Chapter 7, you learned about threads in reference to the
StringBuffer class. Threads of execution are units of processing that are scheduled by an operating
system and that can be used to create multiple paths of control during program execution.

Using the toString() Method
The Object class toString() method converts an Object into a String that contains
information about the Object. Within a class, if you do not create a toString() method
that overrides the version in the Object class, you can use the superclass version of the
toString() method. For example, examine the Dog class originally shown in Figure 11-2
and repeated in Figure 11-15. Notice that it does not contain a toString() method and
that it extends the Animal class.

public abstract class Animal
{

private String name;
public abstract void speak();
public String getName()
{

return name;
}
public void setName(String animalName)
{

name = animalName;
}

}

public class Dog extends Animal
{

public void speak()
{

System.out.println("Woof!");
}

}

public class DisplayDog
{

public static void main(String[] args)
{

Dog myDog = new Dog();
String dogString = myDog.toString();
System.out.println(dogString);

}
}

Figure 11-15 The Animal and Dog classes and the DisplayDog application

CH A P T E R 1 1 Advanced Inheritance Concepts

566

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Notice that neither the Animal class nor the Dog class in Figure 11-15 defines a toString()
method. Yet, when you write the DisplayDog application in Figure 11-15, it uses a
toString() method with a Dog object in the shaded statement. The class compiles
correctly, converts the Dog object to a String, and produces the output shown in
Figure 11-16 because Dog inherits toString() from Object.

The output of the DisplayDog application in Figure 11-16 is not very useful. It consists of
the class name of which the object is an instance (Dog), the at sign (@), and a hexadecimal
(base 16) number that represents a unique identifier for every object in the current application.
The hexadecimal number that is part of the String returned by the toString() method
(addbf1 in Figure 11-16) is an example of a hash code—a calculated number used to
identify an object. Later in this chapter, you learn about the equals() method, which
also uses a hash code.

Instead of using the automatic toString() method with your classes, it is usually more useful
to write your own overloaded version that displays some or all of the data field values for the
object with which you use it. A good toString() method can be very useful in debugging a
program; if you do not understand why a class is behaving as it is, you can display the
toString() value and examine its contents. For example, Figure 11-17 shows a BankAccount
class that contains a mistake in the shaded line—the BankAccount balance value is set to the
account number instead of the balance amount. Of course, if you made such a mistake within
one of your own classes, there would be no shading or comment to help you find the mistake.
In addition, a useful BankAccount class would be much larger, so the mistake would be more
difficult to locate. However, when you ran programs containing BankAccount objects, you
would notice that the balances of your BankAccounts were incorrect. To help you discover
why, you could create a short application like the TestBankAccount class in Figure 11-18.
This application uses the BankAccount class toString() method to display the relevant
details of a BankAccount object. The output of the TestBankAccount application appears in
Figure 11-19.

Figure 11-16 Output of the DisplayDog application

Using the Object Class and Its Methods

567

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public class BankAccount
{

private int acctNum;
private double balance;
public BankAccount(int num, double bal)
{

acctNum = num;
balance = num;

}
public String toString()
{

String info = "BankAccount acctNum = " + acctNum +
" Balance = $" + balance;

return info;
}

}

Figure 11-17 The BankAccount class

public class TestBankAccount
{

public static void main(String[] args)
{

BankAccount myAccount = new BankAccount(123, 4567.89);
System.out.println(myAccount.toString());

}
}

Figure 11-18 The TestBankAccount application

From the output in Figure 11-19, you can see that the account number and balance have
the same value, and this knowledge might help you to pin down the location of the
incorrect statement in the BankAccount class. Of course, you do not have to use a method
named toString() to discover a BankAccount’s attributes. If the class had methods such

Figure 11-19 Output of the TestBankAccount application

Don’t Do It
The bal parameter should be
assigned to balance, not the
num parameter.

CH A P T E R 1 1 Advanced Inheritance Concepts

568

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

as getAcctNum() and getBalance(), you could use them to create a similar application.
The advantage of creating a toString() method for your classes is that toString() is Java’s
conventional name for a method that converts an object’s relevant details into String format.
Because toString() originates in the Object class, you can be assured that toString()
compiles with any object whose details you want to see, even if the method has not been
rewritten for the subclass in question. In addition, as you write your own applications and
use classes written by others, you can hope that those programmers have overridden
toString() to provide useful information. You don’t have to search documentation to
discover a useful method—instead you can rely on the likely usefulness of toString().
In Chapter 7, you learned that you can use the toString() method to convert any object
to a String. Now you understand why this works—the String class overloads the Object
class toString() method.

Using the equals() Method
The Object class also contains an equals() method that takes a single argument, which
must be the same type as the type of the invoking object, as in the following example:

if(someObject.equals(someOtherObjectOfTheSameType))
System.out.println("The objects are equal");

Other classes, such as the String class, also have their own equals() methods that overload the
Object class method. You first used the equals() method to compare String objects in Chapter 7.
Two String objects are considered equal only if their String contents are identical.

The Object class equals() method returns a boolean value indicating whether the objects
are equal. This equals() method considers two objects of the same class to be equal only if
they have the same hash code; in other words, they are equal only if one is a reference to the
other. For example, two BankAccount objects named myAccount and yourAccount are not
automatically equal, even if they have the same account numbers and balances; they are equal
only if they have the same memory address. If you want to consider two objects to be equal
only when one is a reference to the other, you can use the built-in Object class equals()
method. However, if you want to consider objects to be equal based on their contents, you
must write your own equals() method for your classes.

Java’s Object class contains a public method named hashCode() that returns an integer
representing the hash code. (Discovering this number is of little use to you. The default hash code is
the internal JVM memory address of the object.) However, whenever you override the equals()
method in a professional class, you generally want to override the hashCode() method as well,
because equal objects should have equal hash codes, particularly if the objects will be used in
hash-based methods. See the documentation at the Java Web site for more details.

Using the Object Class and Its Methods

569

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The application shown in Figure 11-20 instantiates two BankAccount objects using the
BankAccount class in Figure 11-17. The BankAccount class does not include its own equals()
method, so it does not override the Object equals() method. Thus, the application in
Figure 11-20 produces the output in Figure 11-21. Even though the two BankAccount
objects have the same account numbers and balances, the BankAccounts are not
considered equal because they do not have the same memory address.

public class CompareAccounts
{

public static void main(String[] args)
{

BankAccount acct1 = new BankAccount(1234, 500.00);
BankAccount acct2 = new BankAccount(1234, 500.00);
if(acct1.equals(acct2))

System.out.println("Accounts are equal");
else

System.out.println("Accounts are not equal");
}

}

Figure 11-20 The CompareAccounts application

If your intention is that within applications, two BankAccount objects with the same account
number and balance are equal, and you want to use the equals() method to make the
comparison, you must write your own equals() method within the BankAccount class. For
example, Figure 11-22 shows a new version of the BankAccount class containing a shaded
equals() method. When you reexecute the CompareAccounts application in Figure 11-20,
the result appears as in Figure 11-23.

Figure 11-21 Output of the CompareAccounts application

CH A P T E R 1 1 Advanced Inheritance Concepts

570

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public class BankAccount
{

private int acctNum;
private double balance;
public BankAccount(int num, double bal)
{

acctNum = num;
balance = bal;

}
public String toString()
{

String info = "BankAccount acctNum = " + acctNum +
" Balance = $" + balance;

return info;
}
public boolean equals(BankAccount secondAcct)
{

boolean result;
if(acctNum == secondAcct.acctNum && balance == secondAcct.balance)

result = true;
else

result = false;
return result;

}
}

Figure 11-22 The BankAccount class containing its own equals() method

The two BankAccount objects described in the output in Figure 11-23 are equal because
their account numbers and balances match. Because the equals() method in Figure 11-22
is part of the BankAccount class, and because equals() is a nonstatic method, the object
that calls the method is held by the this reference within the method. That is, in the
application in Figure 11-22, acct1 becomes the this reference in the equals() method,
so the fields acctNum and balance refer to acct1 object values. In the CompareAccounts
application, acct2 is the argument to the equals() method, so within the equals()
method, acct2 becomes secondAcct, and secondAcct.acctNum and secondAcct.balance
refer to acct2’s values.

Figure 11-23 Output of the CompareAccounts application after adding an overloaded equals()
method to the BankAccount class

Using the Object Class and Its Methods

571

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Your organization might consider two BankAccount objects equal if their account numbers
match, disregarding their balances. If so, you simply change the if clause in the equals()
method. Or, you might decide accounts are equal based on some other criteria. You can
implement the equals() method in any way that suits your needs. When you want to
compare the contents of two objects, you do not have to overload the Object class equals()
method. Instead, you could write a method with a unique name, such as areTheyEqual() or
areContentsSame(). However, as with the toString() method, users of your classes will
appreciate that you use the expected, usual, and conventional identifiers for your methods.

If you change a class (such as changing BankAccount by adding a new method), not only must you
recompile the class, you must also recompile any client applications (such as CompareAccounts) so
the newly updated class can be relinked to the application and so the clients include the new features of
the altered class. If you execute the CompareAccounts application but do not recompile BankAccount,
the application continues to use the previously compiled version of the class.

Watch the video The Object Class.

TWO TRUTHS & A LIE

Using the Object Class and Its Methods

1. When you define a class, if you do not explicitly extend another class, your class
is an extension of the Object class.

2. The Object class is defined in the java.lang package that is imported
automatically every time you write a program.

3. The Object class toString() and equals() methods are abstract.

. ssal cbus a ni meht edi rr evo ot deri uqer t on er a uoy —t cart sba
t on er a sdoht e m)(slauqe dna)(gnirtSot ehT. 3# si t ne met at s esl af ehT

Using Inheritance to Achieve Good Software Design
When an automobile company designs a new car model, the company does not build
every component of the new car from scratch. The company might design a new feature
completely from scratch; for example, at some point someone designed the first air bag.
However, many of a new car’s features are simply modifications of existing features. The
manufacturer might create a larger gas tank or more comfortable seats, but even these
new features still possess many properties of their predecessors in the older models.
Most features of new car models are not even modified; instead, existing components, such
as air filters and windshield wipers, are included on the new model without any changes.

CH A P T E R 1 1 Advanced Inheritance Concepts

572

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Similarly, you can create powerful computer programs more easily if many of their
components are used either “as is” or with slight modifications. Inheritance does not give you
the ability to write programs that you could not write otherwise. If Java did not allow you to
extend classes, you could create every part of a program from scratch. Inheritance simply
makes your job easier. Professional programmers constantly create new class libraries for use
with Java programs. Having these classes available makes programming large systems more
manageable.

You have already used many “as is” classes, such as System and String. In these cases, your
programs were easier to write than if you had to write these classes yourself. Now that you
have learned about inheritance, you have gained the ability to modify existing classes. When
you create a useful, extendable superclass, you and other future programmers gain several
advantages:

l Subclass creators save development time because much of the code needed for the class
has already been written.

l Subclass creators save testing time because the superclass code has already been tested
and probably used in a variety of situations. In other words, the superclass code is reliable.

l Programmers who create or use new subclasses already understand how the superclass
works, so the time it takes to learn the new class features is reduced.

l When you create a new subclass in Java, neither the superclass source code nor the
superclass bytecode is changed. The superclass maintains its integrity.

When you consider classes, you must think about the commonalities among them; then you
can create superclasses from which to inherit. You might be rewarded professionally when
you see your own superclasses extended by others in the future.

TWO TRUTHS & A LIE

Using Inheritance to Achieve Good Software Design

1. If object-oriented programs did not support inheritance, programs could still be
written, but they would be harder to write.

2. When you create a useful, extendable superclass, you save development and
testing time.

3. When you create a new subclass in Java, you must remember to revise and
recompile the superclass code.

. degnahc si edocet yb ssal cr epus eht r on edoc ecr uos ssal cr epus
eht r ehti en, avaJ ni ssal cbus wen a et aer c uoy neh W. 3# si t ne met at s esl af ehT

Using Inheritance to Achieve Good Software Design

573

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Creating and Using Interfaces
Some object-oriented programming languages, such as C++, allow a subclass to inherit from
more than one parent class. For example, you might create an InsuredItem class that
contains data fields pertaining to each possession for which you have insurance. Data fields
might include the name of the item, its value, the insurance policy type, and so on. You might
also create an Automobile class that contains data fields such as vehicle identification
number, make, model, and year. When you create an InsuredAutomobile class for a car
rental agency, you might want to include InsuredItem information and methods, as well as
Automobile information and methods. It would be convenient to inherit from both the
InsuredItem and Automobile classes. The capability to inherit from more than one class is
called multiple inheritance.

Many programmers consider multiple inheritance to be a difficult concept, and when
inexperienced programmers use it they encounter many problems. Programmers have to deal
with the possibility that variables and methods in the parent classes might have identical
names, which creates conflict when the child class uses one of the names. Also, you have
already learned that a child class constructor must call its parent class constructor. When
there are two or more parents, this task becomes more complicated—to which class should
super() refer when a child class has multiple parents? For all of these reasons, multiple
inheritance is prohibited in Java. A class can inherit from a superclass that has inherited from
another superclass—this represents single inheritance with multiple generations. However,
Java does not allow a class to inherit directly from two or more parents.

Java, however, does provide an alternative to multiple inheritance—an interface. An interface
looks much like a class, except that all of its methods (if any) are implicitly public and
abstract, and all of its data items (if any) are implicitly public, static, and final.
An interface is a description of what a class does but not how it is done; it declares
method headers but not the instructions within those methods. When you create a class
that uses an interface, you include the keyword implements and the interface name in the
class header. This notation requires class objects to include code for every method in the
interface that has been implemented. Whereas using extends allows a subclass to use
nonprivate, nonoverridden members of its parent’s class, implements requires the subclass
to implement its own version of each method.

In English, an interface is a device or a system that unrelated entities use to interact. Within Java, an interface
provides a way for unrelated objects to interact with each other. An interface is analogous to a protocol,
which is an agreed-on behavior. In some respects, an Automobile can behave like an InsuredItem, and
so can a House, a TelevisionSet, and a JewelryPiece.

As an example, recall the Animal and Dog classes from earlier in this chapter. Figure 11-24
shows these classes, with Dog inheriting from Animal.

CH A P T E R 1 1 Advanced Inheritance Concepts

574

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public abstract class Animal
{

private String name;
public abstract void speak();
public String getName()
{

return name;
}
public void setName(String animalName)
{

name = animalName;
}

}
public class Dog extends Animal
{

public void speak()
{

System.out.println("Woof!");
}

}

Figure 11-24 The Animal and Dog classes

You can create a Worker interface, as shown in Figure 11-25. For simplicity, this example
gives the Worker interface a single method named work(). When any class implements
Worker, it must either include a work() method or the new class must be declared abstract,
and then its descendants must implement the method.

public interface Worker
{

public void work();
}

Figure 11-25 The Worker interface

The WorkingDog class in Figure 11-26 extends Dog and implements Worker. A WorkingDog
contains a data field that a “regular” Dog does not—an integer that holds hours of training
received. The WorkingDog class also contains get and set methods for this field. Because the
WorkingDog class implements the Worker interface, it also must contain a work() method that
calls the Dog speak() method, and then produces two more lines of output—a statement
about working and the number of training hours.

Creating and Using Interfaces

575

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public class WorkingDog extends Dog implements Worker
{

private int hoursOfTraining;
public void setHoursOfTraining(int hrs)
{

hoursOfTraining = hrs;
}
public int getHoursOfTraining()
{

return hoursOfTraining;
}
public void work()
{

speak();
System.out.println("I am a dog who works");
System.out.println("I have " + hoursOfTraining +

" hours of professional training!");
}

}

Figure 11-26 The WorkingDog class

As you know from other classes you have seen, a class can extend another class without implementing any
interfaces. A class can also implement an interface even though it does not extend any other class. When a
class both extends and implements, like the WorkingDog class, by convention the implements clause
follows the extends clause in the class header.

The DemoWorkingDogs application in Figure 11-27 instantiates two WorkingDog objects.
Each object can use the following methods:

l The setName() and getName() methods that WorkingDog inherits from the Animal class

l The speak() method that WorkingDog inherits from the Dog class

l The setHoursOfTraining() and getHoursOfTraining() methods contained within the
WorkingDog class

l The work() method that the WorkingDog class was required to contain when it used the
phrase implements Worker; the work() method also calls the speak() method contained
in the Dog class.

CH A P T E R 1 1 Advanced Inheritance Concepts

576

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public class DemoWorkingDogs
{

public static void main(String[] args)
{

WorkingDog aSheepHerder = new WorkingDog();
WorkingDog aSeeingEyeDog = new WorkingDog();
aSheepHerder.setName("Simon, the Border Collie");
aSeeingEyeDog.setName("Sophie, the German Shepherd");
aSheepHerder.setHoursOfTraining(40);
aSeeingEyeDog.setHoursOfTraining(300);

System.out.println(aSheepHerder.getName() + " says ");
aSheepHerder.speak();
aSheepHerder.work();
System.out.println(); // outputs a blank line for readability

System.out.println(aSeeingEyeDog.getName() + " says ");
aSeeingEyeDog.speak();
aSeeingEyeDog.work();

}
}

Figure 11-27 The DemoWorkingDogs application

Figure 11-28 shows the output when the DemoWorkingDogs application executes. Each
animal is introduced, then it “speaks,” and then each animal “works,” which includes
speaking a second time. Each Animal can execute the speak() method implemented in
its own class, and each can execute the work() method contained in the implemented
interface. Of course, the WorkingDog class was not required to implement the Worker
interface; instead, it could have just contained a work() method that all WorkingDog
objects could use. If WorkingDog was the only class that would ever use work(), such an
approach would probably be the best course of action. However, if many classes will be
Workers—that is, require a work() method—they all can implement work(). If you are
already familiar with the Worker interface and its method, when you glance at a class
definition for a WorkingHorse, WorkingBird, or Employee and see that it implements
Worker, you do not have to guess at the name of the method that shows the work the
class objects perform. Notice that when a class implements an interface, it represents a
situation similar to inheritance. Just as a WorkingDog “is a” Dog and “is an” Animal, so too
it “is a” Worker.

Creating and Using Interfaces

577

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You can compare abstract classes and interfaces as follows:

l Abstract classes and interfaces are similar in that you cannot instantiate concrete objects
from either one.

l Abstract classes differ from interfaces because abstract classes can contain nonabstract
methods, but all methods within an interface must be abstract.

l A class can inherit from only one abstract superclass, but it can implement any number of
interfaces.

Beginning programmers sometimes find it difficult to decide when to create an abstract
superclass and when to create an interface. Remember, you create an abstract class when you
want to provide data or methods that subclasses can inherit, but at the same time these
subclasses maintain the ability to override the inherited methods.

Suppose that you create a CardGame class to use as a base class for different card games.
It contains four methods named shuffle(), deal(), displayRules(), and keepScore().
The shuffle() method works the same way for every CardGame, so you write the
statements for shuffle() within the superclass, and any CardGame objects you create
later inherit shuffle(). The methods deal(), displayRules(), and keepScore() operate
differently for every subclass (for example, for TwoPlayerCardGames, FourPlayerCardGames,
BettingCardGames, and so on), so you force CardGame children to contain instructions
for those methods by leaving them empty in the superclass. The CardGame class,
therefore, should be an abstract superclass. When you write classes that extend the
CardGame parent class, you inherit the shuffle() method, and write code within the
deal(), displayRules(), and keepScore() methods for each specific child.

You create an interface when you know what actions you want to include, but you also want
every user to separately define the behavior that must occur when the method executes.
Suppose that you create a MusicalInstrument class to use as a base for different musical

Figure 11-28 Output of the DemoWorkingDogs application

CH A P T E R 1 1 Advanced Inheritance Concepts

578

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

instrument object classes such as Piano, Violin, and Drum. The parent MusicalInstrument
class contains methods such as playNote() and outputSound() that apply to every
instrument, but you want to implement these methods differently for each type of
instrument. By making MusicalInstrument an interface, you require every nonabstract
subclass to code all the methods.

An interface specifies only the messages to which an object can respond; an abstract class can include
methods that contain the actual behavior the object performs when those messages are received.

You also create an interface when you want a class to implement behavior from more than
one parent. For example, suppose that you want to create an interactive NameThatInstrument
card game in which you play an instrument sound from the computer speaker, and ask
players to identify the instrument they hear by clicking one of several cards that display
instrument images. This game class could not extend from two classes, but it could extend
from CardGame and implement MusicalInstrument.

When you create a class and use the implements clause to implement an interface but fail to code one of the
interface’s methods, the compiler error generated indicates that you must declare your class to be
abstract. If you want your class to be used only for extending, you can make it abstract. However, if your
intention is to create a class from which you can instantiate objects, do not make it abstract. Instead, find
out which methods from the interface you have failed to implement within your class and code those methods.

Java has many built-in interfaces with names such as Serializable, Runnable, Externalizable,
and Cloneable. See the documentation at the Java Web site for more details.

Creating Interfaces to Store Related Constants
Interfaces can contain data fields, but they must be public, static, and final. It makes sense
that interface data must not be private because interface methods cannot contain method
bodies; without public method bodies, you have no way to retrieve private data. It also
makes sense that the data fields in an interface are static because you cannot create interface
objects. Finally, it makes sense that interface data fields are final because, without methods
containing bodies, you have no way, other than at declaration, to set the data fields’ values,
and you have no way to change them.

Your purpose in creating an interface containing constants is to provide a set of data that a
number of classes can use without having to redeclare the values. For example, the interface
class in Figure 11-29 provides a number of constants for a pizzeria. Any class written for the
pizzeria can implement this interface and use the permanent values. Figure 11-30 shows an
example of one application that uses each value, and Figure 11-31 shows the output. The
application in Figure 11-30 only needs a declaration for the current special price; all the
constants, such as the name of the pizzeria, are retrieved from the interface.

Creating and Using Interfaces

579

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

public interface PizzaConstants
{

public static final int SMALL_DIAMETER = 12;
public static final int LARGE_DIAMETER = 16;
public static final double TAX_RATE = 0.07;
public static final String COMPANY = "Antonio's Pizzeria";

}

Figure 11-29 The PizzaConstants interface

public class PizzaDemo implements PizzaConstants
{

public static void main(String[] args)
{

double specialPrice = 11.25;
System.out.println("Welcome to " + COMPANY);
System.out.println("We are having a special offer:\na " +

SMALL_DIAMETER + " inch pizza with four toppings\nor a " +
LARGE_DIAMETER +
" inch pizza with one topping\nfor only $" + specialPrice);

System.out.println("With tax, that is only $" +
(specialPrice + specialPrice * TAX_RATE));

}
}

Figure 11-30 The PizzaDemo application

Watch the video Interfaces.

Figure 11-31 Output of the PizzaDemo application

CH A P T E R 1 1 Advanced Inheritance Concepts

580

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TWO TRUTHS & A LIE

Creating and Using Interfaces

1. Java’s capability to inherit from more than one class is called multiple inheritance.

2. All of the methods in an interface are implicitly public and abstract, and all of
its data items (if any) are implicitly public, static, and final.

3. When a class inherits from another, the child class can use the nonprivate,
nonoverridden members of its parent’s class, but when a class uses an
interface, it must implement its own version of each method.

. ytili bat aht evaht on seod avaJ t ub, ecnati r ehni el pi tl u m
dell ac si ssal c eno naht er o m morf ti r ehni ot ytili ba ehT. 1# si t ne met at s esl af ehT

You Do It

Using an Interface

In this section, you create an Insured interface for use with classes that represent
objects that can be insured. For example, you might use this interface with classes
such as Jewelry or House. Also in this section, you extend Vehicle to create an
InsuredCar class that implements the Insured interface, and then you write a short
program that instantiates an InsuredCar object.

1. Open a new file in your text editor, and type the following Insured interface.
A concrete class that implements Insured will be required to contain
setCoverage() and getCoverage() methods.

public interface Insured
{

public void setCoverage();
public int getCoverage();

}

2. Save the file as Insured.java and compile it.

3. Open a new file in your text editor, and start the InsuredCar class that
extends Vehicle and implements Insured:

import javax.swing.*;
public class InsuredCar extends Vehicle implements Insured
{

(continues)

Creating and Using Interfaces

581

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4. Add a variable to hold the amount covered by the insurance:

private int coverage;

5. Add a constructor that calls the Vehicle superclass constructor, passing
arguments for the InsuredCar’s power source and number of wheels.

public InsuredCar()
{

super("gas", 4);
setCoverage();

}

6. Implement the setPrice() method required by the Vehicle class. The method
accepts the car’s price from the user and enforces a maximum value of
$60,000.

public void setPrice()
{

String entry;
final int MAX = 60000;
entry = JOptionPane.showInputDialog

(null, "Enter car price ");
price = Integer.parseInt(entry);
if(price > MAX)

price = MAX;
}

7. Implement the setCoverage() and getCoverage() methods required by the
Insured class. The setCoverage() method sets the coverage value for an
insured car to 90 percent of the car’s price:

public void setCoverage()
{

coverage = (int)(price * 0.9);
}
public int getCoverage()
{

return coverage;
}

8. Create a toString() method, followed by a closing brace for the class:

public String toString()
{

return("The insured car is powered by " + getPowerSource() +
"; it has " + getWheels() + " wheels, costs $" +
getPrice() + " and is insured for $" + getCoverage());

}
}

(continues)

(continued)

CH A P T E R 1 1 Advanced Inheritance Concepts

582

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

9. Save the file as InsuredCar.java and compile it.

10. Create a demonstration program that instantiates an InsuredCar object and
displays its values as follows:

import javax.swing.*;
public class InsuredCarDemo
{

public static void main(String[] args)
{

InsuredCar myCar = new InsuredCar();
JOptionPane.showMessageDialog(null,

myCar.toString());
}

}

11. Save the file as InsuredCarDemo.java. Compile and execute it. You will
be prompted to enter the car’s price. Figure 11-32 shows the output during
a typical execution.

Creating and Using Packages
Throughout most of this book, you have imported packages into your programs. As you
learned in Chapter 4, a package is a named collection of classes; for example, the java.lang
package contains fundamental classes and is automatically imported into every program you
write. You also have created classes into which you explicitly imported optional packages
such as java.util and javax.swing. When you create classes, you can place them in
packages so that you or other programmers can easily import your related classes into new
programs. Placing classes in packages for other programmers increases the classes’ reusability.
When you create a number of classes that inherit from each other, as well as multiple
interfaces that you want to implement with these classes, you often will find it convenient to
place these related classes in a package.

(continued)

Figure 11-32 Output of the InsuredCarDemo program

Creating and Using Packages

583

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Creating packages encourages others to reuse software because it makes it convenient to import many
related classes at once. In Chapter 3, you learned that if you do not use one of the three access specifiers
public, private, or protected for a class, then it has default access, which means that the unmodified
class is accessible to any other class in the same package.

When you create professional classes for others to use, you most often do not want to provide
the users with your source code in the files that have .java extensions. You expend significant
effort developing workable code for your programs, and you do not want other programmers to
be able to copy your programs, make minor changes, and market the new product themselves.
Rather, you want to provide users with the compiled files that have .class extensions. These
are the files the user needs to run the program you have developed. Likewise, when other
programmers use the classes you have developed, they need only the completed compiled
code to import into their programs. The .class files are the files you place in a package so
other programmers can import them.

In the Java programming language, a package or class library is often delivered to users as a Java ARchive
(JAR) file. JAR files compress the data they store, which reduces the size of archived class files. The JAR
format is based on the popular Zip file format.

If you do not specify a package for a class, it is placed in an unnamed default package.
A class that will be placed in a nondefault package for others to use must be public. If a
class is not public, it can be used only by other classes within the same package. To place
a class in a package, you include a package declaration at the beginning of the source code file
that indicates the folder into which the compiled code will be placed. When a file contains
a package declaration, it must be the first statement in the file (excluding comments).
If there are import declarations, they follow the package declaration. Within the file, the
package statement must appear outside the class definition. The package statement, import
statements, and comments are the only statements that appear outside class definitions in
Java program files.

For example, the following statement indicates that the compiled file should be placed in a
folder named com.course.animals:

package com.course.animals;

That is, the compiled file should be stored in the animals subfolder inside the course subfolder
inside the com subfolder (or com\course\animals). The pathname can contain as many levels
as you want.

When you compile a file that you want to place in a package, you can copy or move the
compiled .class file to the appropriate folder. Alternatively, you can use a compiler option
with the javac command. The -d (for directory) option indicates that you want to place the
generated .class file in a folder. For example, the following command indicates that the
compiled Animal.java file should be placed in the directory indicated by the import statement
within the Animal.java file:

javac -d . Animal.java

CH A P T E R 1 1 Advanced Inheritance Concepts

584

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The dot (period) in the compiler command indicates that the path shown in the package
statement in the file should be created within the current directory.

If the Animal class file contains the statement package com.course.animals;, the Animal.
class file is placed in C:\com\course\animals. If any of these subfolders do not exist, Java
creates them. Similarly, if you package the compiled files for Dog.java, Cow.java, and so on,
future programs need only use the following statements to be able to use all the related
classes:

import com.course.animals.Dog;
import com.course.animals.Cow;

Because Java is used extensively on the Internet, it is important to give every package a unique
name. The creators of Java have defined a package-naming convention that uses your Internet
domain name in reverse order. For example, if your domain name is course.com, you begin all
of your package names with com.course. Subsequently, you organize your packages into
reasonable subfolders.

Creating packages using Java’s naming convention helps avoid naming conflicts—different
programmers might create classes with the same name, but they are contained in different
packages. Class-naming conflicts are sometimes called collisions. Because of packages, you
can create a class without worrying that its name already exists in Java or in packages
distributed by another organization. For example, if your domain name is course.com, then
you might want to create a class named Scanner and place it in a package named com.
course.input. The fully qualified name of your Scanner class is com.course.input.Scanner,
and the fully qualified name of the built-in Scanner class is java.util.Scanner.

TWO TRUTHS & A LIE

Creating and Using Packages

1. Typically, you place .class files in a package so other programmers can import
them into their programs.

2. A class that will be placed in a package for others to use must be protected so
that others cannot read your source code.

3. Java’s creators have defined a package-naming convention in which you use
your Internet domain name in reverse order.

. segakcap det ubi rt si d ni seli f ssal c. deli p moc
ecal p uoy , edoc ecr uos r uoy gni wei v morf sr eht ot never p oT. egakcap e mas eht

ni hti wsessal c r eht o yb yl no desu eb nacti , cilbupt on si ssal c afI . cilbup ebt su m
esu ot sr eht or of egakcap a ni decal p eblli wt aht ssal c A. 2# si t ne met at s esl af ehT

Creating and Using Packages

585

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You Do It

Creating a Package

Next, you place the Vehicle family of classes into a package. Assume you work
for an organization that sponsors a Web site at vehicleswesell.com, so you
name the package com.vehicleswesell. First, you must create a folder named
VehiclePackage in which to store your project. You can use any technique that is
familiar to you. For example, in Windows, you can double-click Computer, navigate
to the device or folder where you want to store the package, right-click, click New,
click Folder, replace “New Folder” with the new folder name (VehiclePackage), and
press Enter. Alternatively, from the command prompt, you can navigate to the drive
and folder where you want the new folder to reside by using the following
commands:

l If the command prompt does not indicate the storage device you want, type the
name of the drive and a colon to change the command prompt to a different
device. For example, to change the command prompt to the F drive on your
system, type F:.

l If the directory is not the one you want, type cd\ to navigate to the root directory.
The cd command stands for “change directory,” and the backslash indicates the
root directory. Then type cd followed by the name of the subdirectory you want.
You can repeat this command as many times as necessary to get to the correct
subdirectory if it resides many levels down the directory hierarchy.

Next, you can place three classes into a package.

1. Open the Vehicle.java file in your text editor.

2. As the first line in the file, insert the following statement:

package com.vehicleswesell.vehicle;

3. Save the file as Vehicle.java in the VehiclePackage folder.

4. At the command line, at the prompt for the VehiclePackage folder, compile
the file using the following command:

javac -d . Vehicle.java

Be certain that you type a space between each element in the command,
including surrounding the dot. Java creates a folder named
com\vehicleswesell\vehicle within the directory from which you compiled
the program, and the compiled Vehicle.class file is placed in this folder.

(continues)

CH A P T E R 1 1 Advanced Inheritance Concepts

586

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

If you see a list of compile options when you try to compile the file, you did not type the spaces within
the command correctly. Repeat Step 4 to compile again.

The development tool GRASP generates software visualizations to make programs easier to understand. A
copy of this tool is included with your downloadable student files. If you are using jGRASP to compile your
Java programs, you also can use it to set compiler options. To set a compiler option to –d, do the following:

l Open a jGRASP project workspace. Click the Settings menu, point to
Compiler Settings, and then clickWorkspace. The Settings for workspace
dialog box appears.

l Under the FLAGS or ARGS section of the dialog box, click the dot inside
the square next to the Compile option and enter the compiler option (-d).
Then click the Apply button.

l Click the OK button to close the dialog box, and then compile your
program as usual.

5. Examine the folders on your storage device, using any operating system program
with which you are familiar. For example, if you are compiling at the DOS
command line, type dir at the command-line prompt to view the folders stored
in the current directory. You can see that Java created a folder named com.
(If you have too many files and folders stored, it might be difficult to locate the
com folder. If so, type dir com*.* to see all files and folders in the current
folder that begin with “com”.) Figure 11-33 shows the command to compile the
Vehicle class and the results of the dir command, including the com folder.

(continued)

(continues)

Figure 11-33 Compiling the Vehicle.java file in a package and viewing the results

Creating and Using Packages

587

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Alternatively, to view the created folders in a Windows operating system, you
can double-click Computer, double-click the appropriate storage device, and
locate the com folder. Within the com folder is a vehicleswesell folder, and
within vehicleswesell is a vehicle folder. The Vehicle.class file is within the
vehicle subfolder and not in the same folder as the .java source file where it
ordinarily would be placed.

If you cannot find the com folder on your storage device, you probably are not looking in the same folder
where you compiled the class. Repeat Steps 4 and 5, but be certain that you first change to the command
prompt for the directory where your source code file resides.

6. You could now delete the copy of the Vehicle.java file from the VehiclePackage
folder (although you most likely want to retain a copy elsewhere). There is no
further need for this source file in the folder you will distribute to users because
the compiled .class file is stored in the com\vehicleswesell\vehicle folder. Don’t
delete the copy of your code from its original storage location; you might want to
retain a copy of the code for modification later.

7. Open the Sailboat.java file in your text editor. For the first line in the file, insert
the following statement:

package com.vehicleswesell.vehicle;

8. Save the file in the same directory as you saved Vehicle.java. At the command
line, compile the file using the following command:

javac -d . Sailboat.java

Then you can delete the Sailboat.java source file from the VehiclePackage folder
(not from its original location—you want to retain a copy of your original code).

9. Repeat Steps 7 and 8 to perform the same operations using the Bicycle.java file.

10. Open the VehicleDatabase.java file in your text editor. Insert the following
statements at the top of the file:

import com.vehicleswesell.vehicle.Vehicle;
import com.vehicleswesell.vehicle.Sailboat;
import com.vehicleswesell.vehicle.Bicycle;

11. Save the file as VehiclePackage\VehicleDatabase.java. Compile the file, and
then run the program. The program’s output should be the same as it was before
you added the import statements. Placing the Vehicle-related class files in a package
is not required for the VehicleDatabase program to execute correctly; you ran it
in exactly the same manner before you learned about creating packages.

Placing classes in packages gives you the ability to more easily isolate and
distribute files.

(continued)

CH A P T E R 1 1 Advanced Inheritance Concepts

588

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Don’t Do It
l Don’t write a body for an abstract method.

l Don’t forget to end an abstract method header with a semicolon.

l Don’t forget to override any abstract methods in any subclasses you derive.

l Don’t mistakenly overload an abstract method instead of overriding it; the subclass
method must have the same parameter list as the parent’s abstract method.

l Don’t try to instantiate an abstract class object.

l Don’t forget to override all the methods in an interface that you implement.

l When you create your own packages, don’t try to use the wildcard format to import
multiple classes. This technique works only with built-in packages.

Key Terms
Concrete classes are nonabstract classes from which objects can be instantiated.

An abstract class is one from which you cannot create any concrete objects but from which
you can inherit.

Virtual classes is the name given to abstract classes in other programming languages, such as
C++.

An abstract method is declared with the keyword abstract. It is a method with no body—no
curly braces and no method statements—just a return type, a method name, an optional
argument list, and a semicolon. You are required to code a subclass method to override the
empty superclass method that is inherited.

Dynamic method binding is the ability of an application to select the correct method during
program execution.

Late method binding is another term for dynamic method binding.

Static or fixed method binding is the opposite of dynamic method binding; it occurs when a
method is selected when the program compiles rather than while it is running.

Ad-hoc polymorphism occurs when a single method name can be used with a variety of data
types because various implementations exist; it is another name for method overloading.

Pure polymorphism or inclusion polymorphism occurs when a single method implementation
can be used with a variety of related objects because they are objects of subclasses of the
parameter type.

Key Terms

589

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The Object class is defined in the java.lang package that is imported automatically
every time you write a program; it includes methods that you can use or override. When
you define a class, if you do not explicitly extend another class, your class is an extension
of the Object class.

The Object class toString() method converts an Object into a String that contains
information about the Object.

A hash code is a calculated number used to identify an object.

The Object class equals() method takes a single argument, which must be the same type as
the type of the invoking object, and returns a Boolean value indicating whether two object
references are equal.

Multiple inheritance is the capability to inherit from more than one class.

An interface looks much like a class, except that all of its methods must be abstract and all of
its data (if any) must be static final; it declares method headers but not the instructions
within those methods.

A Java ARchive (JAR) file compresses the stored data.

A default package is the unnamed one in which a class is placed if you do not specify a
package for the class.

Collision is a term that describes a class-naming conflict.

Chapter Summary
l A class that you create only to extend from, but not to instantiate from, is an abstract

class. Usually, abstract classes contain one or more abstract methods—methods with no
method statements. You must code a subclass method to override any inherited abstract
superclass method.

l When you create a superclass and one or more subclasses, each object of the subclass “is
a” superclass object, so you can convert subclass objects to superclass objects. The ability
of a program to select the correct method during execution based on argument type is
known as dynamic method binding. You can create an array of superclass object
references but store subclass instances in it.

l Every class in Java is an extension of the Object class, whether or not you explicitly extend
it. Every class inherits several methods from Object, including toString(), which
converts an Object into a String, and equals(), which returns a boolean value
indicating whether one object is a reference to another. You can override these methods
to make them more useful for your classes.

CH A P T E R 1 1 Advanced Inheritance Concepts

590

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

l When you create a useful, extendable superclass, you save development time because
much of the code needed for the class has already been written. In addition, you save
testing time and, because the superclass code is reliable, you reduce the time it takes to
learn the new class features. You also maintain superclass integrity.

l An interface is similar to a class, but all of its methods are implicitly public and abstract, and
all of its data (if any) is implicitly public, static, and final.When you create a class that uses
an interface, you include the keyword implements and the interface name in the class header.
This notation serves to require class objects to include code for all themethods in the interface.

l Abstract classes and interfaces are similar in that you cannot instantiate concrete objects
from either. Abstract classes differ from interfaces because abstract classes can contain
nonabstract methods, but all methods within an interface must be abstract. A class can
inherit from only one abstract superclass, but it can implement any number of interfaces.

l You can place classes in packages so you or other programmers can easily import related
classes into new classes. The convention for naming packages uses Internet domain
names in reverse order to ensure that your package names do not conflict with those of
any other Internet users.

Review Questions

1. Parent classes are than their child classes.

a. less specific
b. more specific

c. easier to understand
d. more cryptic

2. Abstract classes differ from other classes in that you .

a. must not code any methods within them
b. must instantiate objects from them
c. cannot instantiate objects from them
d. cannot have data fields within them

3. Abstract classes can contain .

a. abstract methods
b. nonabstract methods

c. both of the above
d. none of the above

4. An abstract class Product has two subclasses, Perishable and NonPerishable.
None of the constructors for these classes requires any arguments. Which of the
following statements is legal?

a. Product myProduct = new Product();

b. Perishable myProduct = new Product();

c. NonPerishable myProduct = new NonPerishable();

d. none of the above

Review Questions

591

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5. An abstract class Employee has two subclasses, Permanent and Temporary. The
Employee class contains an abstract method named setType(). Before you can
instantiate Permanent and Temporary objects, which of the following statements
must be true?

a. You must code statements for the setType() method within the Permanent
class.

b. You must code statements for the setType() method within both the
Permanent and Temporary classes.

c. You must not code statements for the setType() method within either the
Permanent or Temporary class.

d. You can code statements for the setType() method within the Permanent
class or the Temporary class, but not both.

6. When you create a superclass and one or more subclasses, each object of the
subclass superclass object.

a. overrides the
b. “is a”

c. “is not a”
d. is a new

7. Which of the following statements is true?

a. Superclass objects are members of their subclass.
b. Superclasses can contain abstract methods.
c. You can create an abstract class object using the new operator.
d. An abstract class cannot contain an abstract method.

8. When you create a in Java, you create a variable name in which
you can hold the memory address of an object.

a. field
b. pointer

c. recommendation
d. reference

9. An application’s ability to select the correct subclass method to execute is known
as method binding.

a. polymorphic
b. dynamic

c. early
d. intelligent

10. Which statement creates an array of five references to an abstract class named
Currency?

a. Currency[] = new Currency[5];

b. Currency[] currencyref = new Currency[5];

c. Currency[5] currencyref = new Currency[5];

d. Currency[5] = new Currency[5];

CH A P T E R 1 1 Advanced Inheritance Concepts

592

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

11. You override the toString() method in any class you create.

a. cannot
b. can

c. must
d. must implement StringListener to

12. The Object class equals() method takes .

a. no arguments
b. one argument
c. two arguments
d. as many arguments as you need

13. Assume the following statement appears in a working Java program:

if(thing.equals(anotherThing)) x = 1;

You know that .

a. thing is an object of the Object class
b. anotherThing is the same type as thing

c. Both of the above are correct.
d. None of the above are correct.

14. The Object class equals() method considers two object references to be equal if
they have the same .

a. value in all data fields
b. value in any data field
c. data type
d. memory address

15. Java subclasses have the ability to inherit from parent class(es).

a. one
b. two

c. multiple
d. no

16. The alternative to multiple inheritance in Java is known as a(n) .

a. superobject
b. abstract class

c. interface
d. none of the above

17. When you create a class that uses an interface, you include the
keyword and the interface’s name in the class header.

a. interface

b. implements

c. accouterments

d. listener

Review Questions

593

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

18. You can instantiate concrete objects from a(n) .

a. abstract class
b. interface

c. either a or b
d. neither a nor b

19. In Java, a class can .

a. inherit from one abstract superclass at most
b. implement one interface at most
c. both a and b
d. neither a nor b

20. When you want to provide some data or methods that subclasses can inherit,
but you want the subclasses to override some specific methods, you should write
a(n) .

a. abstract class
b. interface

c. final superclass
d. concrete object

Exercises

Programming Exercises

1. a. Create an abstract class named Book. Include a String field for the book’s title
and a double field for the book’s price. Within the class, include a constructor
that requires the book title, and add two get methods—one that returns the title
and one that returns the price. Include an abstract method named setPrice().
Create two child classes of Book: Fiction and NonFiction. Each must include a
setPrice() method that sets the price for all Fiction Books to $24.99 and for
all NonFiction Books to $37.99. Write a constructor for each subclass, and
include a call to setPrice() within each. Write an application demonstrating
that you can create both a Fiction and a NonFiction Book and display their
fields. Save the files as Book.java, Fiction.java, NonFiction.java, and
UseBook.java.

b. Write an application named BookArray in which you create an array that holds
10 Books, some Fiction and some NonFiction. Using a for loop, display details
about all 10 books. Save the file as BookArray.java.

CH A P T E R 1 1 Advanced Inheritance Concepts

594

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. a. The Talk-A-Lot Cell Phone Company provides phone services for its
customers. Create an abstract class named PhoneCall that includes a String
field for a phone number and a double field for the price of the call. Also
include a constructor that requires a phone number parameter and that sets
the price to 0.0. Include a set method for the price. Also include three abstract
get methods—one that returns the phone number, another that returns the
price of the call, and a third that displays information about the call. Create
two child classes of PhoneCall: IncomingPhoneCall and OutgoingPhoneCall.
The IncomingPhoneCall constructor passes its phone number parameter to
its parent’s constructor and sets the price of the call to 0.02. The method that
displays the phone call information displays the phone number, the rate, and
the price of the call (which is the same as the rate). The OutgoingPhoneCall
class includes an additional field that holds the time of the call in minutes. The
constructor requires both a phone number and the time. The price is 0.04 per
minute, and the display method shows the details of the call, including the
phone number, the rate per minute, the number of minutes, and the total
price. Write an application that demonstrates you can instantiate and display
both IncomingPhoneCall and OutgoingPhoneCall objects. Save the files as
PhoneCall.java, IncomingPhoneCall.java, OutgoingPhoneCall.java, and
DemoPhoneCalls.java.

b. Write an application in which you assign data to a mix of 10 IncomingPhoneCall
and OutgoingPhoneCall objects into an array. Use a for loop to display the
data. Save the file as PhoneCallArray.java.

3. Create an abstract Auto class with fields for the car make and price. Include get
and set methods for these fields; the setPrice() method is abstract. Create two
subclasses for individual automobile makers (for example, Ford or Chevy), and
include appropriate setPrice() methods in each subclass (for example, $20,000 or
$22,000). Finally, write an application that uses the Auto class and subclasses to
display information about different cars. Save the files as Auto.java, Ford.java,
Chevy.java, and UseAuto.java.

4. Create an abstract Division class with fields for a company’s division name and
account number, and an abstract display() method. Use a constructor in the
superclass that requires values for both fields. Create two subclasses named
InternationalDivision and DomesticDivision. The InternationalDivision
includes a field for the country in which the division is located and a field for
the language spoken; its constructor requires both. The DomesticDivision
includes a field for the state in which the division is located; a value for this field
is required by the constructor. Write an application named UseDivision that
creates InternationalDivision and DomesticDivision objects for two different
companies and displays information about them. Save the files as Division.java,
InternationalDivision.java, DomesticDivision.java, and UseDivision.java.

Exercises

595

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5. Create an abstract class named Element that holds properties of elements, including
their symbol, atomic number, and atomic weight. Include a constructor that requires
values for all three properties and a get method for each value. (For example, the
symbol for carbon is C, its atomic number is 6, and its atomic weight is 12.01. You
can find these values by reading a periodic table in a chemistry reference or by
searching the Web.) Also include an abstract method named describeElement().

Create two extended classes named MetalElement and NonMetalElement. Each
contains a describeElement() method that displays the details of the element and a
brief explanation of the properties of the element type. For example, metals are good
conductors of electricity, while nonmetals are poor conductors. Write an application
named ElementArray that creates and displays an array that holds at least two
elements of each type. Save the files as Element.java, MetalElement.java,
NonMetalElement.java, and ElementArray.java.

6. Create a class named NewspaperSubscriber with fields for a subscriber’s street
address and the subscription rate. Include get and set methods for the subscriber’s
street address, and include get and set methods for the subscription rate. The set
method for the rate is abstract. Include an equals() method that indicates two
Subscribers are equal if they have the same street address. Create child classes
named SevenDaySubscriber, WeekdaySubscriber, and WeekendSubscriber. Each
child class constructor sets the rate as follows: SevenDaySubscribers pay $4.50 per
week, WeekdaySubscribers pay $3.50 per week, and WeekendSubscribers pay
$2.00 per week. Each child class should include a toString() method that returns
the street address, rate, and service type. Write an application named Subscribers
that prompts the user for the subscriber’s street address and requested service, and
then creates the appropriate object based on the service type. Do not let the user
enter more than one subscription type for any given street address. Save the files as
NewspaperSubscriber.java, WeekdaySubscriber.java, WeekendSubscriber.
java, SevenDaySubscriber.java, and Subscribers.java.

7. Picky Publishing House publishes stories in three categories and has strict require-
ments for page counts in each category. Create an abstract class named Story that
includes a story title, an author name, a number of pages, and a String message.
Include get and set methods for each field. The method that sets the number of pages
is abstract. Also include constants for the page limits in each category. Create three
Story subclasses named Novel, Novella, and ShortStory, each with a unique
setPages() method. A Novel must have more than 100 pages, a Novella must have
between 50 and 100 pages inclusive, and a ShortStory must have fewer than
50 pages. If the parameter passed to any of the set methods in the child class is out of
range, set the page value but also create and store a message that indicates how many
pages must be added or cut to satisfy the rules for the story type.Write an application
named StoryDemo that creates an array of at least six objects to demonstrate how
the methods work for objects created both with valid and invalid page counts for
each story type. For each story, display the title, author, page count, and message
if any was generated. Figure 11-34 shows a sample execution. Save the files as
Story.java, Novel.java, Novella.java, ShortStory.java, and StoryDemo.java.

CH A P T E R 1 1 Advanced Inheritance Concepts

596

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8. a. Create an interface named Turner, with a single method named turn(). Create a
class named Leaf that implements turn() to display “Changing colors”. Create a
class named Page that implements turn() to display “Going to the next page”.
Create a class named Pancake that implements turn() to display “Flipping”.
Write an application named DemoTurners that creates one object of each of these
class types and demonstrates the turn() method for each class. Save the files as
Turner.java, Leaf.java, Page.java, Pancake.java, and DemoTurners.java.

b. Think of two more objects that use turn(), create classes for them, and then
add objects to the DemoTurners application, renaming it DemoTurners2.java.
Save the files, using the names of new objects that use turn().

9. Write an application named UseInsurance that uses an abstract Insurance class
and Health and Life subclasses to display different types of insurance policies
and the cost per month. The Insurance class contains a String representing the
type of insurance and a double that holds the monthly price. The Insurance class
constructor requires a String argument indicating the type of insurance, but the
Life and Health class constructors require no arguments. The Insurance class
contains a get method for each field; it also contains two abstract methods named
setCost() and display(). The Life class setCost() method sets the monthly fee
to $36, and the Health class sets the monthly fee to $196. Write an application
named UseInsurance that prompts the user for the type of insurance to be

Figure 11-34 Typical execution of the StoryDemo application

Exercises

597

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

displayed, and then create the appropriate object. Save the files as Life.java,
Health.java, Insurance.java, and UseInsurance.java.

10. Create an abstract class called GeometricFigure. Each figure includes a height, a
width, a figure type, and an area. Include an abstract method to determine the area of
the figure. Create two subclasses called Square and Triangle. Create an application
that demonstrates creating objects of both subclasses, and store them in an array.
Save the files as GeometricFigure.java, Square.java, Triangle.java, and
UseGeometric.java.

11. Modify Exercise 10, adding an interface called SidedObject that contains a method
called displaySides(); this method displays the number of sides the object possesses.
Modify the GeometricFigure subclasses to include the use of the interface to display
the number of sides of the figure. Create an application that demonstrates the use of
both subclasses. Save the files as GeometricFigure2.java, Square2.java, Triangle2.
java, SidedObject.java, and UseGeometric2.java.

12. Create an interface called Player. The interface has an abstract method called play()
that displays a message describing the meaning of “play” to the class. Create classes
called Child, Musician, and Actor that all implement Player. Create an application
that demonstrates the use of the classes. Save the files as Player.java, Child.java,
Actor.java, Musician.java, and UsePlayer.java.

13. Create an abstract class called Student. The Student class includes a name and a
Boolean value representing full-time status. Include an abstract method to determine
the tuition, with full-time students paying a flat fee of $2,000 and part-time students
paying $200 per credit hour. Create two subclasses called FullTime and PartTime.
Create an application that demonstrates how to create objects of both subclasses.
Save the files as Student.java, FullTime.java, PartTime.java, and UseStudent.java.

14. Create a Building class and two subclasses, House and School. The Building
class contains fields for square footage and stories. The House class contains
additional fields for number of bedrooms and baths. The School class contains
additional fields for number of classrooms and grade level (for example, elementary
or junior high). All the classes contain appropriate get and set methods. Place the
Building, House, and School classes in a package named com.course.buildings.
Create an application that declares objects of each type and uses the package.
Save the necessary files as Building.java, House.java, School.java, and
CreateBuildings.java.

15. Sanchez Construction Loan Co. makes loans of up to $100,000 for construction
projects. There are two categories of Loans—those to businesses and those to
individual applicants.

Write an application that tracks all new construction loans. The application must also
calculate the total amount owed at the due date (original loan amount + loan fee).
The application should include the following classes:

CH A P T E R 1 1 Advanced Inheritance Concepts

598

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

l Loan—A public abstract class that implements the LoanConstants interface. A
Loan includes a loan number, customer last name, amount of loan, interest rate,
and term. The constructor requires data for each of the fields except interest
rate. Do not allow loan amounts over $100,000. Force any loan term that is not
one of the three defined in the LoanConstants class to a short-term, one-year
loan. Create a toString() method that displays all the loan data.

l LoanConstants—A public interface class. LoanConstants includes constant
values for short-term (one year), medium-term (three years), and long-term
(five years) loans. It also contains constants for the company name and the
maximum loan amount.

l BusinessLoan—A public class that extends Loan. The BusinessLoan constructor
sets the interest rate to 1 percent over the current prime interest rate.

l PersonalLoan—A public class that extends Loan. The PersonalLoan constructor
sets the interest rate to 2 percent over the current prime interest rate.

l CreateLoans—An application that creates an array of five Loans. Prompt the
user for the current prime interest rate. Then, in a loop, prompt the user for a
loan type and all relevant information for that loan. Store the created Loan
objects in the array. When data entry is complete, display all the loans.

Save the files as Loan.java, LoanConstants.java, BusinessLoan.java, PersonalLoan.
java, and CreateLoans.java.

Debugging Exercises
1. Each of the following files in the Chapter11 folder of your downloadable student files

has syntax and/or logic errors. In each case, determine the problem and fix the
program. After you correct the errors, save each file using the same filename preceded
with Fix. For example, DebugEleven1.java will become FixDebugEleven1.java.

a. DebugEleven1.java
b. DebugEleven2.java
c. DebugEleven3.java
d. DebugEleven4.java
e. Three other Debug files in the Chapter11 folder

Game Zone

1. In Chapter 10, you created an Alien class as well as two descendant classes, Martian
and Jupiterian. Because you never create any “plain” Alien objects, alter the Alien
class so it is abstract. Verify that the Martian and Jupiterian classes can still inherit
from Alien and that the CreateAliens program still works correctly. Save the
altered Alien file as Alien.java.

Exercises

599

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. a. Create an abstract CardGame class similar to the one described in this chapter.
The class contains a “deck” of 52 playing cards that uses a Card class to hold a suit
and value for each Card object. It also contains an integer field that holds the
number of cards dealt to a player in a particular game. The class contains a
constructor that initializes the deck of cards with appropriate values (e.g.,
“King of Hearts”), and a shuffle() method that randomly arranges the
positions of the Cards in the array. The class also contains two abstract methods:
displayDescription(), which displays a brief description of the game in each
of the child classes, and deal(), which deals the appropriate number of Card
objects to one player of a game. Save the file as CardGame.java.

b. Create two child classes that extend CardGame. You can choose any games you
prefer. For example, you might create a Poker class or a Bridge class. Create a
constructor for each child class that initializes the field that holds the number
of cards dealt to the correct value. (For example, in standard poker, a player
receives five cards, but in bridge, a player receives 13.) Create an appropriate
displayDescription() and deal() method for each child class. Save each file
using an appropriate name—for example, Poker.java or Bridge.java.

c. Create an application that instantiates one object of each game type and
demonstrates that the methods work correctly. Save the application as
PlayCardGames.java.

Case Problems

1. a. In previous chapters, you have created several classes for Carly’s Catering. Now,
create a new abstract class named Employee. The class contains data fields for
an employee’s ID number, last name, first name, pay rate, and job title. The class
contains get and set methods for each field; the set methods for pay rate and job
title are abstract. Save the file as Employee.java.

b. Create three classes that extend Employee named Waitstaff, Bartender, and
Coordinator. The method that sets the pay rate in each class accepts a
parameter and assigns it to the pay rate, but no Waitstaff employee can have a
rate higher than 10.00, no Bartender can have a rate higher than 14.00, and no
Coordinator can have a rate higher than 20.00. The method that sets the job
title accepts no parameters—it simply assigns the string “waitstaff”, “bartender”,
or “coordinator” to the object appropriately. Save the files as Waitstaff.java,
Bartender.java, and Coordinator.java.

c. In Chapter 10, you created a DinnerEvent class that holds event information,
including menu choices. Modify the class to include an array of 15 Employee
objects representing employees who might be assigned to work at a
DinnerEvent. Include a method that accepts an Employee array parameter
and assigns it to the Employee array field, and include a method that returns the
Employee array. The filename is DinnerEvent.java.

CH A P T E R 1 1 Advanced Inheritance Concepts

600

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

d. Write an application that declares a DinnerEvent object, prompts the user for
an event number, number of guests, menu options, and contact phone number,
and then assigns them to the object. Also prompt the user to enter data for as
many Employees as needed based on the number of guests. A DinnerEvent
needs one Waitstaff Employee for every event, two if an event has 10 guests or
more, three if an event has 20 guests or more, and so on. A DinnerEvent also
needs one Bartender for every 25 guests and one Coordinator no matter how
many guests attend. All of these Employees should be stored in the Employee
array in the DinnerEvent object. (For many events, you will have empty
Employee array positions.) After all the data values are entered, pass the
DinnerEvent object to a method that displays all of the details for the event,
including all the details about the Employees assigned to work. Save the
program as StaffDinnerEvent.java.

2. a. In previous chapters, you have created several classes for Sammy’s Seashore
Supplies. Now, Sammy has decided to restructure his rates to include different
fees for equipment types in addition to the fees based on rental length and to
charge for required lessons for using certain equipment. Create an abstract
class named Equipment that holds fields for a numeric equipment type, a
String equipment name, and a fee for renting the equipment. Include a final
array that holds the equipment names—jet ski, pontoon boat, rowboat, canoe,
kayak, beach chair, umbrella, and other. Also include a final array that
includes the surcharges for each equipment type—$50, $40, $15, $12, $10, $2,
$1, and $0, respectively. Include a constructor that requires an equipment
type and sets the field to the type unless it is out of range, in which case the
type is set to the “other” code. Include get and set methods for each field, and
include an abstract method that returns a String explaining the lesson policy
for the type of equipment. Save the file as Equipment.java.

b. Create two classes that extend Equipment—EquipmentWithoutLesson and
EquipmentWithLesson. The constructor for each class requires that the
equipment type be in range—that is, jet skis, pontoon boats, rowboats, canoes,
and kayaks are EquipmentWithLesson objects, but other equipment types are
not. In both subclasses, the constructors set the equipment type to “other” if it
is not in range. The constructors also set the equipment fee, as described in part
2a. Each subclass also includes a method that returns a message indicating
whether a lesson is required, and the cost ($27) if it is. Save the files as
EquipmentWithoutLesson.java and EquipmentWithLesson.java.

c. In Chapter 8, you created a Rental class. Now, modify it to contain an
Equipment data field and an additional price field that holds a base price before
equipment fees are added. Remove the array of equipment Strings from the
Rental class as well as the method that returns an equipment string. Modify the
Rental constructor so that it requires three parameters: contract number,
minutes for the rental, and an equipment type. The method that sets the hours
and minutes now sets a base price before equipment fees are included. Within

Exercises

601

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

the constructor, set the contract number and time as before, but add statements
to create either an EquipmentWithLesson object or an EquipmentWithoutLesson
object, and assign it to the Equipment data field. Assign the sum of the base
price (based on time) and the equipment fee (based on the type of equipment)
to the price field. Save the file as Rental.java.

d. In Chapter 8, you created a RentalDemo class that displays details for four Rental
objects. Modify the class as necessary to use the revised Rental class that
contains an Equipment field. Be sure to modify the method that displays details
for the Rental to include all the pertinent data for the equipment. Figure 11-35
shows the output from a typical execution. Save the file as RentalDemo.java.

Figure 11-35 Output of typical RentalDemo execution

CH A P T E R 1 1 Advanced Inheritance Concepts

602

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

