
APPEND I X E
Javadoc

In this appendix, you will:

Learn about the Javadoc documentation generator

Understand Javadoc comment types

Generate Javadoc documentation

Unless noted otherwise, all images are © 2014 Cengage Learning

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The Javadoc Documentation Generator
Javadoc is a documentation generator created by Sun Microsystems that allows you to
generate Application Programming Interface (API) documentation in Hypertext Markup
Language (HTML) format from Java source code. In Chapter 1, you learned that you can
place both line and block comments anywhere in a program to provide documentation that
can be useful both to yourself and others. A Javadoc comment is a special form of block
comment that provides a standard way to document Java code. After you write Javadoc
comments, they can be interpreted by special utility programs that generate an HTML
document. The resulting HTML document provides an attractive format for the
documentation when you open it in a browser. Most class libraries, both commercial and
open source, provide Javadoc documents. If you have visited the Java Web site to research
how to use a class, you most likely have viewed documentation created by the Javadoc
utility.

In Chapter 1, you learned that block comments start with /* and end with */ and can span as
many lines as necessary, and that Javadoc comments start with /** and end with */. For
symmetry, many developers end their Javadoc comments with **/. By convention, asterisks
start intermediate lines in a Javadoc comment. This is not required, but it helps you more
easily distinguish comments from code.

Javadoc comments can contain tags. A Javadoc tag is a keyword within a comment that the
Javadoc tool can process. Tags begin with an at-sign (@) and use a limited vocabulary of
keywords. Some commonly used Javadoc tags include:

l @author: Describes the author of a document

l @param: Describes a parameter of a method or constructor

l @return: Describes the return type of a method

l @throws: Describes an exception a method may throw

l @exception: Describes an exception

Javadoc Comment Types
There are two types of Javadoc comments:

l Class-level comments that provide a description of a class

l Member-level comments that describe the purposes of class members

Class-level Javadoc comments provide a description of a class; you place class-level
comments above the code that declares a class. Class-level comments frequently contain
author tags and a description of the class. Figure E-1 shows a shaded class-level comment in a
class.

1030

A P P E N D I X E Javadoc

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

/**
* @author Joyce Farrell.
* The Employee class contains data about one employee.
* Fields include an ID number and an hourly pay rate.
*/

public class Employee
{

private int idNum;
private double hourlyPay;
public Employee(int id, double pay)
{

idNum = id;
hourlyPay = pay;

}
int getIdNum()
{

return idNum;
}
void setIdNum(int id)
{

idNum = id;
}

}

Figure E-1 An Employee class with class-level comments

Member-level Javadoc comments describe the fields, methods, and constructors of a class.
Method and constructor comments may contain tags that describe the parameters, and
method comments may also contain return tags. Figure E-2 shows a class with some shaded
member-level comments.

/**
* @author Joyce Farrell.
* The Employee2 class contains data about one employee.
* Fields include an ID number and an hourly pay rate.
*/

public class Employee2
{

/**
* Employee ID number
*/

private int idNum;
/**
* Employee hourly pay
*/

Figure E-2 An Employee2 class with class-level and member-level comments (continues)

1031

Javadoc Comment Types

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

private double hourlyPay;
/**
* Sole constructor for Employee2
*/

public Employee2(int id, double pay)
{

idNum = id;
hourlyPay = pay;

}
/**
* Returns the Employee2 ID number
*
* @return int
*/

int getIdNum()
{

return idNum;
}
/**
* Sets the Employee2 ID number
*
* @param id employee ID number
*/

void setIdNum(int id)
{

idNum = id;
}

}

Figure E-2 An Employee2 class with class-level and member-level comments

Like all program comments, Javadoc comments can contain anything. However, you should
follow the conventions for Javadoc comments. For example, developers expect all Javadoc
comments to begin with an uppercase letter, and they recommend that method comments
start with a verb such as “Returns” or “Sets.” For more information, go to the Java Web site.

Generating Javadoc Documentation
To generate the Javadoc documentation from your class, you should do the following:

1. Create a folder in which to store your class. For example, you might store the
Employee2.java file in a folder named Employee2.

2. Within the folder, you can create a Documents subfolder to hold the documentation
that you generate. However, if you omit this step and use the syntax described in Step
3, the folder is created for you automatically.

(continued)

1032

A P P E N D I X E Javadoc

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. Go to the command prompt, and navigate to the directory that holds the Employee2.
java file. (See Appendix A for information on finding the command prompt and
changing directories.) From the command prompt, run the following command:

javadoc -d Documents *.java

The –d is the directory option. If you omit it, all the generated files are saved in the
current directory. By including this option, you indicate that the files should be saved
in the Documents directory.

To see the author’s name in the resulting documentation, change the Javadoc command to the following:
javadoc -d Documents -author *.java

If you are using the jGRASP development environment to create your Java programs, you can execute the
Javadoc command with a button click. You can download the jGRASP program from http://jGRASP.org.

4. Navigate to the Documents folder. You will see a number of generated files, as shown
in Figure E-3. The list includes HTML documents with information about all the
constants in your class, all the deprecated methods in your class, and so on. (The
Employee2 class has no constants or deprecated methods, but you can open the files
and view the format that the contents would take if they existed.)

Figure E-3 Contents of the Employee2 Documents folder in Internet Explorer

1033

Generating Javadoc Documentation

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://jGRASP.org

The index.html file provides an index of all class interface, constructor, field, andmethod names;
when you double-click it, the file opens in your default browser. Figure E-4 shows how the first
part of the index.html file for Employee2 appears in Internet Explorer. If you have searched the
Java Web site for documentation, the format of the page in Figure E-4 is familiar to you. The
class name and other information appear in a font and style consistent with other classes in the
Java API. You can see information about the class constructor and the notes that you added in
your comments. You see inheritance information—Employee2 descends directly from Object.
The format of this documentation is familiar to users, making it much easier for them to find
what they need than if each developer created documentation formats independently.

The Javadoc tool will run on .java source files that are stub files with no method bodies. This means you can
write documentation comments and run the Javadoc tool when you are first designing classes, before you
have written implementations for the class’s methods.

Writing acceptable Javadoc comments requires adherence to some style standards. For
example, professionals recommend that multiple @author tags should be listed in
chronological order, with the creator of the class listed at the top, and that multiple @param
tags should be listed in argument-declaration order. Additionally, Javadoc comments can

Figure E-4 The Employee2 class documentation in Internet Explorer

1034

A P P E N D I X E Javadoc

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

provide hyperlinks that allow navigation from one document to another. For example, when a
class contains a field that is an object of another class, you might want to link to the other
class’s documentation. For more information, see the recommendations from Java developers
at the Java Web site.

Specifying Visibility of Javadoc Documentation
By default, Javadoc documents only public and protected members of an API. In other
words, even if you write Javadoc comments for private members, the comments do not
appear in the generated documentation unless you take special action to make them visible.
Although the index.html file contains details about the Employee2 class’s constructor and
methods, there is no information about the private fields idNum and hourlyPay. To generate that
documentation, you must specify private visibility by using the following javadoc command:

javadoc -d Documents -private *.java

Figure E-5 shows the documentation generated by this command. You can see that the newly
generated documentation includes a Field Summary section. It lists the fields in alphabetical
order preceded by their access specifiers and data types. Each field identifier is followed by the
appropriate description that was provided in the Javadoc comment in the source code.

Figure E-5 The Employee2 class documentation when private members are included

1035

Generating Javadoc Documentation

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You can specify four types of visibility:

l public—Displays public members only

l protected—Displays public and protected members only; this is the default option

l package—Displays package classes and members in addition to public and protected
members

l private—Displays all members

Key Terms
Javadoc is a documentation generator created by Sun Microsystems that allows you to
generate Application Programming Interface (API) documentation in Hypertext Markup
Language (HTML) format from Java source code.

A Javadoc comment is a special form of block comment that provides a standard way to
document Java code.

A Javadoc tag is a keyword within a comment that the Javadoc tool can process.

Class-level Javadoc comments provide a description of a class; you place class-level
comments above the code that declares a class.

Member-level Javadoc comments describe the fields, methods, and constructors of a class.

1036

A P P E N D I X E Javadoc

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

