
APPEND I X D
Generating Random
Numbers

In this appendix, you will:

Understand random numbers generated by computers

Use the Math.random() method

Use the Random class

Unless noted otherwise, all images are © 2014 Cengage Learning

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Understanding Random Numbers Generated
by Computers
A random number is a number whose value cannot be predicted. Many types of programs use
random numbers. For example, simulations that predict phenomena such as urban traffic
patterns, crop production, and weather systems typically use random numbers. You might
want to use random numbers to change your screen’s appearance; for example, screen savers
often use random numbers so that a changing pattern remains interesting.

Random numbers are also used in many computer game applications. When you play games
with human opponents, their choices are often unpredictable (and sometimes even
irrational). Computers usually are predictable and rational, so when you play a game against a
computer opponent, you frequently need to generate random numbers. For example, a
guessing game would not be very interesting if you were asked to guess the same number
every time you played.

Most computer programming languages, including Java, come with built-in methods that
generate random numbers. The random numbers are calculated based on a starting value,
called a seed. The random numbers generated using these methods are not truly random;
they are pseudorandom in that they produce the same set of numbers whenever the seed is
the same. Therefore, if you seed a random-number generator with a constant, you always
receive the same sequence of values. Many computer programs use the time of day as a
random number-generating seed. For game applications, this method works well, as a player
is unlikely to reset his computer’s clock and attempt to replay a game beginning at exactly the
same moment in time.

For applications in which randomness is more crucial than in game playing, you can use other methods (such
as using the points in time at which a radioactive source decays) to generate truly random starting numbers.

There are two approaches to generating random numbers in Java. Both techniques are
explained in this appendix and summarized in Table D-1.

Method/Class Advantages
Math.random() method You do not need to create an object

You do not need to understand constructors and multiple methods

Random class and its methods You can generate numbers in the format you need without arithmetic
manipulation
You can create reproducible results if necessary

Table D-1 Generating random numbers in Java

1022

A P P E N D I X D Generating Random Numbers

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using the Math.random() Method
Java’s Math class provides a random() method that returns a double value in the range of 0.0 up
to, but not including, 1.0. For example, the application in Figure D-1 generates three random
numbers and displays them. Figure D-2 shows three successive executions of the program.

public class SomeRandomNumbers
{

public static void main (String[] args)
{

double ran;
ran = Math.random();
System.out.println(ran);
ran = Math.random();
System.out.println(ran);
ran = Math.random();
System.out.println(ran);

}
}

Figure D-1 The SomeRandomNumbers class

The values displayed in Figure D-2 appear to be random, but they are not typical of the values
you need in a game-playing program. Usually, you need a relatively small number of whole
values. For example, a game that involves a coin flip might need only two values to represent
heads or tails, and a dice game might need only six values to represent rolls of a single die.
Even in a complicated game in which 40 types of space aliens might attack the player, you
need only 40 whole numbers generated to satisfy the program requirements.

Figure D-2 Three executions of the SomeRandomNumbers program

1023

Using the Math.random() Method

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

For example, suppose you need a random number from 1 to 10. To change any value
generated by the Math.random() method to fall between 0 and 10, you can multiply the
generated number by 10. For example, the last three numbers in Figure D-2 would become
approximately 2.75, 6.15, and 9.66. Then, you can eliminate the fractional part of each
number by casting it to an int; after this step, every generated number will be a value from 0
to 9 inclusive. Finally, you can add 1 to a value so it falls in the range from 1 to 10 instead of 0
to 9. In short, the following statement generates a random number from 1 through 10
inclusive, and assigns it to ran:

int ran = 1 + (int)(Math.random() * 10);

Suppose that, instead of 1 through 10, you need random numbers from 1 through 13. (For
example, standard decks of playing cards have 13 values from which you might want to
select.) When you use the modulus operator (%) to find a remainder, the remainder is always
a value from 0 to one less than the number. For example, if you divide any number by 4, the
remainder is always a value from 0 through 3. Therefore, to find a number from 1 through 13,
you can use a statement like the following:

int ranCardValue = ((int)(Math.random() * 100) % 13 + 1);

In this statement, a randomly generated value (for example, 0.447) is multiplied by 100
(producing 44.7). The result is converted to an int (44). The remainder after dividing by 13 is
5. Finally, 1 is added so the result is 1 through 13 instead of 0 through 12 (giving 6). In short,
the general format for assigning a random number to a variable is:

int result = ((int)(Math.random() * 100) %
HIGHEST_VALUE_WANTED + LOWEST_VALUE_WANTED);

Instead of using 100 as the multiplier, you might prefer to use a higher value such as 1,000 or 10,000. For
most games, the randomness generated using 100 is sufficient.

Using the Random Class
The Random class provides a generator that creates a list of random numbers. To use this class,
you must use one of the following import statements:

import java.util.*;
import java.util.Random;

You also must instantiate a random-number generator object using one of the following
constructors:

l Random(), in which the seed comes from the operating system. This constructor sets the
seed of the random-number generator to a value that is probably distinct from any other
invocation of this constructor.

l Random(long seed), in which you provide a starting seed so that your results are
reproducible

1024

A P P E N D I X D Generating Random Numbers

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

After you create a random-number generator object, you can use any of the methods in
Table D-2 to get the next random number from the generator.

For example, Figure D-3 contains an application that declares a Random generator named ran,
using the version of the constructor that takes no arguments. This ensures that the results are
different each time the application runs. The program then defines LIMIT as 10 and calls ran.
nextInt(LIMIT) three times, displaying the results (see Figure D-4).

import java.util.*;
public class SomeRandomNumbers2
{

public static void main(String[] args)
{

Random ran = new Random();
final int LIMIT = 10;
System.out.print(ran.nextInt(LIMIT) + " ");
System.out.print(ran.nextInt(LIMIT) + " ");
System.out.println(ran.nextInt(LIMIT));

}
}

Figure D-3 The SomeRandomNumbers2 class

Method Explanation
nextInt(int n) Returns a pseudorandom int value between 0 (inclusive) and the specified

value n (exclusive), drawn from the random-number generator’s sequence

nextInt() Returns a pseudorandom int value between 0 (inclusive) and 1.0 (exclusive),
drawn from the random-number generator’s sequence

nextLong() Returns the next pseudorandom long value from the generator’s sequence

nextFloat() Returns the next pseudorandom float value between 0.0 and 1.0 from the
generator’s sequence

nextDouble() Returns the next pseudorandom double value between 0.0 and 1.0 from the
generator’s sequence

nextBoolean() Returns the next pseudorandom boolean value from the generator’s sequence

Table D-2 Selected Random class methods

1025

Using the Random Class

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In Figure D-4, each displayed value falls between 0 and LIMIT. (Of course, to select values
between 1 and LIMIT inclusive, you could add 1 to each result.)

Figure D-5 shows a class using the version of the Random constructor that takes an argument
(shaded). In this example, a value between 0 and 6 inclusive is generated 15 times. Figure D-6
shows the output when the program is run three times. Although the 15 numbers displayed
for each execution constitute a random list, the list is identical in each program execution.
You use a seed when you want random but reproducible results. For games, you usually want
to use the no-argument version of the Random constructor.

import java.util.*;
public class SomeRandomNumbers3
{

public static void main(String[] args)
{

Random ran = new Random(129867L);
final int TIMES = 15;
final int LIMIT = 7;
for(int x = 0; x < TIMES; ++x)

System.out.print(ran.nextInt(LIMIT) + " ");
System.out.println();

}
}

Figure D-5 The SomeRandomNumbers3 class

Figure D-4 Three executions of the SomeRandomNumbers2 program

1026

A P P E N D I X D Generating Random Numbers

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Key Terms
A random number is a number whose value cannot be predicted.

A seed is a starting value.

Pseudorandom numbers appear to be random but are the same set of numbers whenever the
seed is the same.

Figure D-6 Three executions of the SomeRandomNumbers3 program

1027

Key Terms

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

