
APPEND I X C
Formatting Output

In this appendix, you will:

Round numbers

Use the printf() method

Use the DecimalFormat class

Unless noted otherwise, all images are © 2014 Cengage Learning

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Rounding Numbers
In Chapter 2 and Appendix B, you learned about the imprecision of floating-point numbers.
For example, if you write a program that subtracts 2.00 from 2.20, the result is not 0.20—it
is 0.20000000000000018. To eliminate odd-looking output and nonintuitive comparisons
caused by imprecise calculations in floating-point numbers, you can take the approach shown
in the class in Figure C-1. If you want to round a number to two decimal places, note the
shaded steps in the figure:

l Multiply the value by 100. So, for example, 0.20000000000000018 becomes
20.000000000000018.

l Add 0.5. This increases a value’s whole number part by 1 if the fractional part is 0.5 or
greater. For example, 41.6 would become 42.1. In this case, 20.000000000000018 becomes
20.500000000000018.

l Cast the value to an integer. In this case, 20.500000000000018 becomes 20.

l Divide by 100. In this case, the value becomes 0.20.

public class RoundingDemo1
{

public static void main(String[] args)
{

double answer = 2.20 - 2.00;
boolean isEqual;
isEqual = answer == 0.20;
System.out.println("Before conversion");
System.out.println("answer is " + answer);
System.out.println("isEqual is " + isEqual);
answer = answer * 100;
answer = answer + 0.5;
answer = (int) answer;
answer = answer / 100;
isEqual = answer == 0.20;
System.out.println("After conversion");
System.out.println("answer is " + answer);
System.out.println("isEqual is " + isEqual);

}
}

Figure C-1 The RoundingDemo1 class

Figure C-2 shows the output of the program. Without rounding, the displayed difference
between 2.20 and 2.00 is 0.2000000000000000018. However, after applying the rounding
technique, the result is displayed as 0.2 as expected.

1010

A P P E N D I X C Formatting Output

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



As an alternative, you can use the round() method that is supplied with Java’s Math class. The
round() method returns the nearest long value. Figure C-3 shows a program that multiplies
the double answer by 100, rounds it, and then divides by 100.0. The output is identical to that
shown in Figure C-2.

public class RoundingDemo2
{

public static void main(String[] args)
{

double answer = 2.20 - 2.00;
boolean isEqual;
isEqual = answer == 0.20;
System.out.println("Before conversion");
System.out.println("answer is " + answer);
System.out.println("isEqual is " + isEqual);
answer = answer * 100;
long roundedAnswer = Math.round(answer);
answer = roundedAnswer / 100.0;
isEqual = answer == 0.20;
System.out.println("After conversion");
System.out.println("answer is " + answer);
System.out.println("isEqual is " + isEqual);

}
}

Figure C-3 The RoundingDemo2 class

Using the printf() Method
When you display numbers using the println() method in Java applications, it sometimes
is difficult to make numeric values appear as you want. For example, in the output in
Figure C-2, the difference between 2.20 and 2.00 is displayed as 0.2. By default, Java eliminates

Figure C-2 Output of the RoundingDemo1 program

1011

Using the printf() Method

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



trailing zeros when floating-point numbers are displayed because they do not add any
mathematical information. You might prefer to see 0.20 because the original numbers were
both expressed to two decimal places, or, in particular, if the values represent currency.

Additionally, you frequently want to align columns of numeric values. For example,
Figure C-4 shows a NumberList application that contains an array of floating-point values.
The application displays the values using a for loop, but as the output in Figure C-5 shows,
the numbers are not aligned by the decimal point as you usually would want numbers to
be aligned. Because the println() method displays values as Strings, the displayed
values are left-aligned, just as series of words would be. The numeric values are accurate;
they just are not attractively arranged.

public class NumberList
{

public static void main(String[] args)
{

double[] list = {0.20, 2.00, 2.20, 22.22,
22.20, 222.00, 222.22};

int x;
for(x = 0; x < list.length; ++x)

System.out.println(list[x]);
}

}

Figure C-4 The NumberList application

The System.out.printf() method is used to format numeric values. It is a newer Java
feature that was first included in the Formatter class in Java 1.5.0. (This is the internal version
number of the Java Development Kit; the external version number is 5.0.) Because this class is
contained in the java.util package, you do not need to include any import statements to use
it. The printf() method allows you to format numeric values in two useful ways:

Figure C-5 Output of the NumberList application

1012

A P P E N D I X C Formatting Output

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



l By specifying the number of decimal places to display

l By specifying the field size in which to display values

The Formatter class contains many formats that are not covered here. To view the details of formatting
data types such as BigDecimal and Calendar, visit the Java Web site.

C programmers use a printf() function that is very similar to Java’s printf() method. Although the
printf() method is used in these examples, in Java, you can substitute System.out.format() for
System.out.printf(). There is no difference in the way you use these two methods.

When creating numeric output, you can specify a number of decimal places to display by
using the printf() method with two types of arguments that represent the following:

l A format string

l A list of arguments

A format string is a string of characters; it includes optional text (that is displayed literally)
and one or more format specifiers. A format specifier is a placeholder for a numeric value.
Within a call to printf(), you include one argument (either a variable or a constant) for each
format specifier.

The format specifiers for general, character, and numeric types contain the following
elements, in order:

l A percent sign ( % ), which indicates the start of every format specifier

l An optional argument index, which is an integer indicating the position of the argument
in the argument list. The integer is followed by a dollar sign. You will learn more about
this option later in this appendix.

l Optional flags that modify the output format. The set of valid flags depends on the data
type you are formatting. You can find more details about this feature at the Java Web site.

l An optional field width, which is an integer indicating the minimum number of characters
to be written to the output. You will learn more about this option later in this appendix.

l An optional precision factor, which is a decimal point followed by a number and typically
used to control the number of decimal places displayed. You will learn more about this
option in the next section.

l The required conversion character, which indicates how its corresponding argument
should be formatted. Java supports a variety of conversion characters, but the three you
want to use most frequently are d, f, and s, the characters that represent decimal (base 10
integer), floating-point (float and double), and string values, respectively.

Other conversion characters include those used to display hexadecimal numbers and scientific notation.
If you need these display formats, you can find more details at the Java Web site.

1013

Using the printf() Method

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



For example, you can use the ConversionCharacterExamples class in Figure C-6 to display a
declared integer and double. The main() method of the class contains three printf()
statements. The three calls to printf() in this class each contain a format string; the first two
calls contain a single additional argument, and the last printf() statement contains two
arguments after the string. None of the format specifiers in this class use any of the optional
parameters—only the required percent sign and conversion character. The first printf()
statement uses %d in its format string as a placeholder for the integer argument at the end. The
second printf() statement uses %f as a placeholder for the floating-point argument at the end.
The last printf() statement uses both a %d and %f to indicate the positions of the integer and
floating-point values at the end, respectively. If you attempt to use a conversion character that is
invalid for the data type, the program will compile, but it will throw an exception during
execution when it encounters the wrong conversion character for the value being displayed.

public class ConversionCharacterExamples
{

public static void main(String[] args)
{

int age = 23;
double money = 123.45;
System.out.printf("Age is %d\n",age);
System.out.printf("Money is $%f\n", money);
System.out.printf

("Age is %d and money is $%f\n", age, money);
}

}

Figure C-6 The ConversionCharacterExamples application

Figure C-7 shows the output of the program, in which the values are inserted in the
appropriate places in their strings. Note that floating-point values are displayed with six
decimal positions by default.

Notice that in the ConversionCharacterExamples class, the output appears on three separate
lines only because the newline character (‘\n’) has been included at the end of each printf()
format string.Unlike the println() statement, printf()does not include an automatic new line.

Figure C-7 Output of the ConversionCharacterExamples application

1014

A P P E N D I X C Formatting Output

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Specifying a Number of Decimal Places to Display with printf()
You can control the number of decimal places displayed when you use a floating-point value
in a printf() statement by adding the optional precision factor to the format specifier.
Between the percent sign and the conversion character, you can add a decimal point and the
number of decimal positions to display. For example, the following statements produce the
output “Money is $123.45”, displaying the money value with just two decimal places instead of
six, which would occur without the precision factor:

double money = 123.45;
System.out.printf("Money is $%.2f\n", money);

Similarly, the following statements display 8.10. If you use the println() equivalent with
amount, only 8.1 is displayed; if you use a printf() statement without inserting the .2
precision factor, 8.100000 is displayed.

double amount = 8.1;
System.out.printf("%.2f",amount);

When you use a precision factor on a value that contains more decimal positions than you
want to display, the result is rounded. For example, the following statements produce 100.457
(not 100.456), displaying three decimals because of the precision factor.

double value = 100.45678;
System.out.printf("%.3f",value);

You cannot use the precision factor with an integer value; if you do, your program will throw
an IllegalFormatConversionException.

Specifying a Field Size with printf()
You can indicate a field size in which to display output by using an optional integer as the field
width. For example, the NumberList2 class in Figure C-8 displays each array element in a field
with a size of 6, using two decimal places. Figure C-9 shows the output of the application. Each
value is displayed right-aligned in its field; for example, 0.20 is preceded by two blank spaces, and
22.20 is precededby oneblank space. If a numeric value containsmore positions than you indicate
for its printf() field size, the field size is ignored, and the entire value is displayed.

public class NumberList2
{

public static void main(String[] args)
{

double[] list = {0.20, 2.00, 2.20, 22.22,
22.20, 222.00, 222.22};

int x;
for(x = 0; x < list.length; ++x)

System.out.printf("%6.2f\n", list[x]);
}

}

Figure C-8 The NumberList2 class

1015

Using the printf() Method

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Throughout this book, you have been encouraged to use named constants for numeric values
instead of literal constants, so that your programs are clearer. In the program in Figure C-9,
you could define constants such as:

final int DISPLAY_WIDTH = 6;
final int DISPLAY_DECIMALS = 2;

Then the printf() statement would be:

System.out.printf("%" + DISPLAY_WIDTH + "." +
DISPLAY_DECIMALS + "f\n", list[x]);

Another, perhaps clearer alternative is to define a format string such as the following:

final String FORMAT = "%6.2f\n";

Then the printf() statement would be:

System.out.printf(FORMAT, list[x]);

You can specify that a value be left-aligned in a field instead of right-aligned by inserting
a negative sign in front of the width. Although you can do this with numbers, most often
you choose to left-align strings. For example, the following code displays five spaces
followed by “hello” and then five spaces followed by “there”. Each string is left-aligned in
a field with a size of 10.

String string1 = "hello";
String string2 = "there";
System.out.printf("%-10s%-10s", string1, string2);

Using the Optional Argument Index with printf()
The argument index is an integer that indicates the position of an argument in the argument
list of a printf() statement. To separate it from other formatting options, the argument
index is followed by a dollar sign ( $ ). The first argument is referenced by "1$", the second by
"2$", and so on.

Figure C-9 Output of the NumberList2 class

1016

A P P E N D I X C Formatting Output

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



For example, the printf() statement in the following code contains four format specifiers
but only two variables in the argument list:

int x = 56;
double y = 78.9;
System.out.printf("%1$6d%2$6.2f%1$6d%2$6.2f", x, y);

The printf() statement displays the value of the first argument, x, in a field with a size of 6,
and then it displays the second argument, y, in a field with a size of 6 with two decimal places.
Then, the value of x is displayed again, followed by the value of y. The output appears as
follows:

56 78.90 56 78.90

Using the DecimalFormat Class
The DecimalFormat class provides ways to easily convert numbers into strings, allowing you
to control the display of leading and trailing zeros, prefixes and suffixes, grouping (thousands)
separators, and the decimal separator. You specify the formatting properties of
DecimalFormat with a pattern String. The pattern String is composed of symbols that
determine what the formatted number looks like; it is passed to the DecimalFormat class
constructor.

The symbols you can use in a pattern String include:

l A pound sign ( # ), which represents a digit

l A period ( . ), which represents a decimal point

l A comma ( , ), which represents a thousands separator

l A zero (0), which represents leading and trailing zeros when it replaces the pound sign

The pound sign is typed using Shift+3 on standard computer keyboards. It also is called an octothorpe, a
number sign, a hash sign, square, tic-tac-toe, gate, and crunch.

For example, the following lines of code result in value being displayed as 12,345,678.90.

double value = 12345678.9;
DecimalFormat aFormat = new DecimalFormat("#,###,###,###.00");
System.out.printf("%s\n", aFormat.format(value));

A DecimalFormat object is created using the pattern #,###,###,###.00. When the object’s
format() method is used in the printf() statement, the first two pound signs and the
comma between them are not used because value is not large enough to require those
positions. The value is displayed with commas inserted where needed, and the decimal
portion is displayed with a trailing 0 because the 0s at the end of the pattern indicate that they
should be used to fill out the number to two places.

1017

Using the DecimalFormat class

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



When you use the DecimalFormat class, you must use the import statement import
java.text.*;. Figure C-10 shows a class that creates a String pattern that it passes to the
DecimalFormat constructor to create a moneyFormat object. The class displays an array of
values, each in a field that is 10 characters wide. Some of the values require commas, and
some do not. Figure C-11 shows the output.

import java.text.*;
public class DecimalFormatTest
{

public static void main(String[] args)
{

String pattern = "###,###.00";
DecimalFormat moneyFormat = new DecimalFormat(pattern);
double[] list = {1.1, 23.23, 456.249, 7890.1, 987.5678, 65.0};
int x;
for(x = 0; x < list.length; ++x)

System.out.printf("%10s\n", moneyFormat.format(list[x]));
}

}

Figure C-10 The DecimalFormatTest class

Key Terms
The System.out.printf() method is used to format numeric values.

A format string in a printf() statement is a string of characters; it includes optional text
(that is displayed literally) and one or more format specifiers.

A format specifier in a printf() statement is a placeholder for a numeric value.

Figure C-11 Output of the DecimalFormatTest program

1018

A P P E N D I X C Formatting Output

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The argument index in a printf() statement is an integer that indicates the position of an
argument in the argument list.

The DecimalFormat class provides ways to easily convert numbers into strings, allowing you
to control the display of leading and trailing zeros, prefixes and suffixes, grouping (thousands)
separators, and the decimal separator.

A pattern String is composed of symbols that determine what a formatted number looks
like; it is passed to the DecimalFormat class constructor.

An octothorpe is a pound sign.

1019

Key Terms

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.


