
APPEND I X B
Learning About Data
Representation

In this appendix, you will:

Work with numbering systems

Represent numeric values

Represent character values

Unless noted otherwise, all images are © 2014 Cengage Learning

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Understanding Numbering Systems
You can use devices such as computers, cell phones, microwave ovens, and automobiles
without understanding how they work internally. Likewise, you can write many Java
programs without understanding how the data items they use are represented internally.
However, once you learn how data items are stored, you gain a deeper understanding of
computer programming in general and Java in particular. You also can more easily
troubleshoot some types of problems that arise in your programs.

The numbering system you know best is the decimal numbering system, which is based on
10 digits, 0 through 9. When you use the decimal system, no other symbols are available; if
you want to express a value larger than 9, you must use multiple digits from the same pool of
10, placing them in columns. Decimal numbers are also called base 10 numbers.

When you use the decimal system, you analyze a multicolumn number by mentally assigning
place values to each column. The value of the rightmost column is 1, the value of the next
column to the left is 10, the next column’s value is 100, and so on; you multiply the column
value by 10 as you move to the left. There is no limit to the number of columns you can use;
you simply add them to the left as you need to express higher values. For example, Figure B-1
shows how the value 305 is represented in the decimal system. You simply multiply the digit
in each column by the value of the column, and then add the values together.

The binary numbering system works in the same way as the decimal numbering system,
except that it uses only two digits, 0 and 1. When you use the binary system and you want to
express a value greater than 1, you must use multiple columns because no single symbol
represents any value other than 0 or 1. Instead of each new column to the left being 10 times
greater than the previous column, each new binary column is only two times the value of the
previous column. Binary numbers are called base 2 numbers.

For example, Figure B-2 shows how the numbers 9 and 305 are represented in the binary
system. Notice that both the binary and decimal systems allow you to create numbers with 0
in one or more columns. As with the decimal system, the binary system has no limit to the
number of columns—you can use as many as it takes to express a value.

100s 10s 1s

3 0 5

Value is
 3 ! 100 = 300
 0 ! 10 = 0
 5 ! 1 = 5

305

Figure B-1 Representing 305 in the decimal system

1002

A P P E N D I X B Learning About Data Representation

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Va
lu
e
is

 1
 !

 8

 =
 8

 0
 !

 4

 =
 0

 0
 !

 2

 =
 0

 1
 !

 1

 =
 1 --
- 9

4s
2s

1s

1
0

0
1

8s
4s

2s
1s

1
1

1
1

0
0

0
0

0
8s

64
s

32
s

16
s

12
8s

25
6s

Va
lu
e

is

 1
 !

 2
56

 =
 2
56

 0
 !

 1
28

 =

 0

 0
 !

 6
4

 =

 0

 1
 !

 3
2

 =

32

 1
 !

 1
6

 =

16

 0
 !

 8

 =

 0

 0
 !

 4

 =

 0

 0
 !

 2

 =

 0

 1
 !

 1

 =

 1

--
--
--

30
5

Fi
gu

re
B-
2

Re
pr
es
en
tin
g
de

ci
m
al
va
lu
es

9
an
d
30

5
in
th
e
bi
na
ry

sy
st
em

1003

Understanding Numbering Systems

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A computer stores every piece of data it uses as a set of 0s and 1s. Each 0 or 1 is known as a
bit, which is short for binary digit. Every computer uses 0s and 1s because all its values are
stored as electronic signals that are either on or off. This two-state system is most easily
represented using just two digits.

Representing Numeric Values
In Chapter 2, you learned that a floating-point number contains decimal positions. The term
floating-point comes from the fact that the decimal point can be at any location in the stored
value, allowing a much larger range of possible values to be stored in the same amount of
memory. For example, assume that a computer could store only four digits and that the
decimal point had to fall after the first two. The positive values that could be stored would
then range from 00.00 through 99.99. However, if the decimal point could fall anywhere, the
values could range from .0000 through 9999. Computers use more storage for each value, and
store negative values as well, but the principle is the same.

Because of the binary nature of computers, representing floating-point numbers is imprecise.
For example, suppose you want to represent the value 1/10 (0.10). You could try using each of
the following techniques:

l If you use two bits to store the value, only four combinations are available (00, 01, 10,
and 11), so they can only represent 0/4, 1/4, 2/4 (or 1/2), and 3/4. None of these is exactly
1/10, but 0/4 is the closest.

l Suppose you use three bits. This allows twice as many combinations, or eight, and the
closest to 1/10 is 1/8. The approximation is closer than with two bits, but still not exact.

l Suppose you use four bits, which allows 16 combinations. The closest value to 1/10 is
2/16. This value is no closer to 1/10 than you could achieve with three bits.

l Suppose you use eight bits. Now, there are 256 bit combinations from 0/256 through
255/256. The value of 26/256, at 0.1015625, is closer than any of the other values so far,
but it’s still not exact.

l No matter how many bits you add to the representation, doubling the number of
combinations each time, you can never express 0.1 exactly.

Although you cannot store 0.1 exactly, you can still display it. For example, the following two
lines of code display 0.1 as expected:

double oneTenth = 0.1;
System.out.println(oneTenth);

When Java displays a floating-point number, it always displays at least one digit after the
decimal. After that, it uses only as many digits as necessary to distinguish the number from
the nearest floating-point value it can represent.

However, when you use 0.1 in an arithmetic statement, the imprecision becomes evident.
Figure B-3 shows a simple program that declares two variables named oneTenth and
threeTenths; the variables contain the values 0.1 and 0.3, respectively. Figure B-4 shows the

1004

A P P E N D I X B Learning About Data Representation

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

result of summing oneTenth three times and of comparing that sum to threeTenths. Because
of floating-point imprecision, the first value is calculated to be slightly more than 0.3, so the
comparison of oneTenth + oneTenth + oneTenth to threeTenths is false.

import java.util.Scanner;
public class FloatingPointTest
{

public static void main(String[] args)
{

double oneTenth = 0.1;
double threeTenths = 0.3;
System.out.println(oneTenth + oneTenth + oneTenth);
System.out.println(oneTenth + oneTenth + oneTenth ==

threeTenths);
}

}

Figure B-3 The FloatingPointTest class

For many purposes, you do not care about the small imprecisions generated by floating-point
calculations, but sometimes they can make a difference. For example, several popular movies
have used the idea that small amounts of extra money can be sliced off bank balances when
compounding interest and then siphoned to a criminal’s account. Many programmers
recommend that you use the Java class BigDecimal when working with monetary or scientific
values where precision is important. Additionally, be aware that when you test two floating-
point values for equivalency, you might not get the expected results.

When precision is not an issue, but better-looking output is important, you can format the
output to eliminate the small imprecisions that occur far to the right of the decimal point.
Appendix C teaches you many techniques for formatting output to a desired number of
decimal places.

Figure B-4 Output of the FloatingPointTest program

1005

Representing Numeric Values

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Representing Character Values
The characters used in Java are represented in Unicode, which is a 16-bit coding scheme
for characters. For example, the letter A actually is stored in computer memory as a set of
16 zeros and ones as 0000 0000 0100 0001 (a space is inserted after each set of four digits
for readability). Because 16-digit numbers are difficult to read, programmers often use a
shorthand notation called the hexadecimal numbering system, or base 16. The hexadecimal
system uses 16 values, 0 through 9 and A through F, to represent the decimal values 0
through 15. In hexadecimal shorthand, 0000 becomes 0, 0100 becomes 4, and 0001 becomes
1, so the letter A is represented in hexadecimal as 0041. You tell the compiler to treat the
four-digit hexadecimal 0041 as a single character by preceding it with the \u escape sequence.
Therefore, there are two ways to store the character A:

char letter = 'A';
char letter = '\u0041';

For more information about Unicode, go to www.unicode.org.

The second option, using hexadecimal, is obviously more difficult and confusing than the first
method, so it is not recommended that you store letters of the alphabet using hexadecimal
values. However, you can produce some interesting output using the Unicode format. For
example, the sequence ‘\u0007’ produces a bell-like noise if you send it to output. Letters from
foreign alphabets that use characters instead of letters (Greek, Hebrew, Chinese, and so on)
and other special symbols (foreign currency symbols, mathematical symbols, geometric
shapes, and so on) are available using Unicode but not on a standard keyboard, so it may be
important that you know how to use Unicode characters.

Two-digit, base 16 numbers can be converted to base 10 numbers by multiplying the left digit by 16 and
adding the right digit. For example, hexadecimal 41 is 4 times 16 plus 1, or 65.

In the United States, the most widely used character set traditionally has been ASCII
(American Standard Code for Information Interchange). The ASCII character set contains
128 characters. You can create any Unicode character by adding eight 0s to the beginning of
its ASCII character equivalent. This means that the decimal value of any ASCII character is
the same as that of the corresponding Unicode character. For example, B has the value 66 in
both character sets. The decimal values are important because they allow you to show
nonprintable characters, such as a carriage return, in decimal codes. Also, the numeric values
of the coding schemes are used when a computer sorts numbers and strings. When you sort
characters in ascending order, for example, numbers are sorted first (because their Unicode
values begin with decimal code 48), followed by capital letters (starting with decimal 65), and
then lowercase letters (starting with decimal 97).

1006

A P P E N D I X B Learning About Data Representation

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.unicode.org

Chapter 2 contains a list of Unicode values for some commonly used characters. For a
complete list, see www.unicode.org/charts. There you will find Greek, Armenian, Hebrew,
Tagalog, Cherokee, and a host of other character sets. Unicode also contains characters for
mathematical symbols, geometric shapes, and other unusual characters. The ASCII character
set is more limited than Unicode because it contains only letters and symbols used in the
English language.

Key Terms
The decimal numbering system is based on 10 digits, 0 through 9, in which each column
represents a value 10 times higher than the column to its right.

The binary numbering system is based on two digits, 0 and 1, in which each column
represents a value two times higher than the column to its right.

A bit is each binary digit, 0 or 1, used to represent computerized values.

Unicode is a 16-bit coding scheme for representing characters.

The hexadecimal numbering system is based on 16 digits, 0 through F, in which each
column represents a value 16 times higher than the column to its right.

ASCII (American Standard Code for Information Interchange) is a character set widely used
to represent computer data.

1007

Key Terms

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.unicode.org/charts

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

