DATABASE DESIGN

This section presents a specific method you can follow to design a database when given a
set of requirements that the database must support. The determination of the require-
ments is part of the process known as systems analysis. A systems analyst interviews users,
examines existing and proposed documents, and examines organizational policies to deter-
mine exactly the type of data needs the database must support. This text does not cover
this analysis. Rather, it focuses on how to take the set of requirements that this process pro-
duces and determine the appropriate database design.

After presenting the database design method, this section presents a sample set of
requirements and illustrates the design method by designing a database to satisfy these

requirements.

<
Design Method

To design a database for a set of requirements, complete the following steps:

1. Read the requirements, identify the entities (objects) involved, and name the
entities. For example, when the design involves departments and employees,
you might use the entity names DEPARTMENT and EMPLOYEE. When the
design involves customers and sales reps, you might use the entity names
CUSTOMER and REP.

2. Identify the unique identifiers for the entities you identified in Step 1. For
example, when one of the entities is PART, determine what information is
required to uniquely identify each individual part. In other words, what infor-
mation does the organization use to distinguish one part from another? For
a PART entity, the unique identifier for each part might be a PART_NUM; for
a CUSTOMER entity, the unique identifier might be a CUSTOMER_NUM.
When no unique identifier is available from the data you know about the entity,
you need to create one. For example, you might use a unique number to iden-
tify parts when no part numbers exist.

3. Identify the attributes for all the entities. These attributes become the col-
amns in the tables. It is possible for two or more entities to contain the same
attributes. At Premiere Products, for example, reps and customers both have
addresses, cities, states, and zip codes. To clarify this duplication of attributes,
follow the name of the attribute with the corresponding entity in parentheses.
Thus, ADDRESS (CUSTOMER) is a customer address and ADDRESS (REP)

is a sales rep address.

4. Identify the functional dependencies that exist among the attributes. Ask your-
self the following question: if you know a unique value for an attribute, do you also

Chapter 2

know the unique values for other attributes? For example, when you have the

three attributes REP_NUM, LAST NAME, and FIRST NAME and you know a

unique value for REP_NUM, do you also know a unique value for LAST NAME

and FIRST _NAME? If so, then LAST_NAME and FIRST_NAME are functionally
dependent on REP_NUM (REP_NUM — LAST_NAME, FIRST_NAME).

5. Use the functional dependencies to identify the tables by placing each attribute
with the attribute or minimum combination of attributes on which it is func-
tionally dependent. The attribute or attributes for an entity on which all other
attributes are dependent will be the primary key of the table. The remaining
attributes will be the other columns in the table. Once you have deter-
mined all the columns in the table, you can give the table an appropriate name.
Usually the name will be the same as the name you identified for the entity
in Step 1.

6. Identify any relationships between tables. In some cases, you might be able

to determine the relationships directly from the requirements. It might be

clear, for example, that one rep is related to many customers and that each cus-
tomer is related to exactly one rep. When it is not, look for matching col-
umns in the tables you created. For example, if both the REP table and the

CUSTOMER table contain a REP_NUM column and the values in these col-

umns must match, you know that reps and customers are related. The fact that

the REP_NUM column is the primary key in the REP table tells you that the

REP table is the “one” part of the relationship and the CUSTOMER table is the

“many” part of the relationship.

In the next section, you will apply this process to produce the design for the Pre-
miere Products database using the collection of requirements that this database must

support.

Database Design Requirements
The analyst has interviewed users and examined documents at Premiere Products and has
determined that the database must support the following requirements:

1. For a sales rep, store the sales rep’s number, last name, first name, street
address, city, state, zip code, total commission, and commission rate.

2. For a customer, store the customer’s number, name, street address, city, state,
zip code, balance, and credit limit. In addition, store the number, last name,
and first name of the sales rep who represents this customer. The analyst has
also determined that a sales rep can represent many customers, but a cus-
tomer must have exactly one sales rep (in other words, a sales rep must rep-
resent a customer; a customer cannot be represented by zero or more than
one sales reps).

3. For a part, store the part’s number, description, units on hand, item class, the
number of the warehouse in which the part is located, and the price. All units
of a particular part are stored in the same warehouse.

4. For an order, store the order number, order date, the number and pame of the
customer that placed the order, and the number of the sales rep who repre-

sents that customer.

Database Design Fundamentals

5. Ror each line item within an order, store the part number and description, the
number ordered, and the quoted price. The analyst also obtained the follow-
ing information concerning orders:

a. There is only one customer per order.

b. On a given order, there is at most one line item for a given part. For
example, part DR93 cannot appear on several lines within the same order.

¢. The quoted price might differ from the actual price when the sales rep dis-
counts a certain part on a specific order.

Database Design Process Example

The following steps apply the design process to the requirements for Premiere Products to
produce the appropriate database design:

Step 1: There appear to be four entities: reps, customers, parts, and orders. The names
assigned to these entities are REP, CUSTOMER, PART, and ORDERS, respectively.

Step 2: From the collection of entities, review the data and determine the unique iden-
tifier for each entity. For the REP, CUSTOMER, PART, and ORDERS entities, the unique
identifiers are the rep number, customer number, part number, and order number,
respectively. These unique identifiers are named REP_NUM, CUSTOMER_NUM,
PART_NUM, and ORDER_NUM, respectively.

Step 3: The attributes mentioned in the first requirement all refer to sales reps. The spe-
cific attributes mentioned in the requirement are the sales rep’s number, name, street
address, city, state, zip code, total commission, and commission rate. Assigning appropri-
ate names to these attributes produces the following list:

REP_NUM
LAST_NAME
FIRST_NAME
STREET
CITY

STATE

ZIP

COMMISSION
RATE

The attributes mentioned in the second requirement refer to customers. The specific
attributes are the customer’s number, name, street address, city, state, zip code, bal-
ance, and credit limit. The requirement also mentions the number, first name, and last
name of the sales rep who represents this customer. Assigning appropriate names to
these attributes produces the following list:

CUSTOMER_NUM
CUSTOMER_NAME
STREET

CITY

STATE

Z1p

BALANCE
CREDIT_LIMIT
REP_NUM

LAST NAME
FIRST_NAME

Chapter 2

There are attributes named STREET, CITY, STATE, and ZIP for sales reps as well as
attributes named STREET, CITY, STATE, and ZIP for customers. To distinguish these
attributes in the final collection, follow the name of the attribute by the name of the cor-
responding entity. For example, the street for a sales rep is STREET (REP) and the street

for a customer is STREET (CUSTOMER).
The attributes mentioned in the third requirement refer to parts. The specific attributes

are the part’s number, description, units on hand, item class, the number of the ware-
house in which the part is located, and the price. Assigning appropriate names to these

attributes produces the following list:

PART_NUM
DESCRIPTION
ON__HAND
CLASS
WAREHOUSE
PRICE

oned in the fourth requirement refer to orders. The specific
order date, number and name of the customer that

p who represents the customer. Assigning

The attributes menti
attributes include the order number,

placed the order, and number of the sales re

appropriate names to these attributes produces the following list:

ORDER_NUM

ORDER_DATE

CUSTOMER_NUM

CUSTOMER_NAME

REP_NUM

ment in the requirements concerning

ber (to determine the order to which the line item corre-

sponds), part number, description, number ordered, and quoted price. If the quoted price

must be the same as the price, you could simply call it PRICE. According to require-
ght differ from the price, so you must add the quoted

ment Sc, however, the quoted price mi
price to the list. Assigning appropriate names to these attributes produces the following list:

The specific attributes associated with the state

line items are the order num

ORDER_NUM
PART_NUM
DESCRIPTION
NUM_ORDERED
QUOTED_PRICE

The complete list grouped by entity is as follows:
REP

REP_NUM

LAST_NAME

FIRST_NAME

STREET (REP)

CITY (REP)

STATE (REP)

2IP (REP) ' .
COMMISSION

RATE

Database Design Fundamentals

Chapter 2

CUSTOMER
CUSTOMER_NUM
CUSTOMER_NAME
STREET (CUSTOMER)
CITY (CUSTOMER)
STATE (CUSTOMER)
ZIP (CUSTOMER)
BALANCE
CREDIT_LIMIT
REP_NUM
LAST_NAME

" FIRST_NAME

PART
PART_NUM
DESCRIPTION
ON_HAND
CLASS
WAREHOUSE
PRICE

ORDER
ORDER_NUM
ORDER_DATE
CUSTOMER_NUM
CUSTOMER_NAME
REP_NUM

For line items within an order
ORDER_NUM

PART_NUM

DESCRIPTION

NUM_ORDERED

QUOTED_PRICE

Step 4: The fact that the unique identifier for sales reps is the rep number gives the fol-
lowing functional dependencies:

REP_NUM -» LAST_NAME, FIRST NAME, STREET (REP}, CITY (REP),
STATE (REP), ZIP (REP), COMMISSION, RATE

This notation indicates that the LAST_NAME, FIRST_NAME, STREET (REP), CITY
(REP), STATE (REP), ZIP (REP), COMMISSION, and RATE are all functionally dependent
on REP_NUM.

The fact that the unique identifier for customers is the customer number gives the fol-
lowing functional dependencies:

CUSTOMER_NUM ~—» CUSTOMER_NAME, STREET (CUSTOMER),
CITY (CUSTOMER), STATE (CUSTOMER), ZIP (CUSTOMER]),
BALANCE, CREDIT_LIMIT, REP_NUM, LAST NAME, FIRST NAME

Thus, the functional dependencies for the CUSTOMER entity are as follows:

CUSTOMER_NUM —» CUSTOMER_NAME, STREET (CUSTOMER),
CITY (CUSTOMER), STATE (CUSTOMER)}, ZIP (CUSTOMER),
BALANCE, CREDIT_LIMIT, REP_NUM

The fact that the unique identifier for parts is the part number gives the following func-
tional dependencies:

PART_NUM —> DESCRIPTION, ON_HAND, CLASS, WAREHOUSE, PRICE

The fact that the unique identifier for orders is the order number gives the following
functional dependencies:

ORDER_NUM --» ORDER_DATE, CUSTOMER_NUM, CUSTOMER_NAME,
REP_NUM

The functional dependencies for the ORDERS entity are as follows:

ORDER_NUM -» ORDER_DATE, CUSTOMER_NUM

The final attributes to be examined are those associated with the line items within the
order: PART_NUM, DESCRIPTION, NUM_ORDERED, and QUOTED_PRICE.

. Database Design Fundamentals

The following shorthand representation indicates that the combination of ORDER_NUM
and PART_NUM functionally determines NUM_ORDERED and QUOTED_PRICE:

ORDER_NUM, PART_NUM —» NUM_ORDERED, QUOTED_PRICE

The complete list of functional dependencies is as follows:

REP_NUM — LAST _NAME, FIRST_NAME, STREET (REP), CITY (REP)
STATE (REP), ZIP(REP), COMMISSION, RATE
CUSTOMER_NUM -» CUSTOMER_NAME, STREET (CUSTOMER),
CITY (CUSTOMER), STATE (CUSTOMER), ZIP (CUSTOMER),
BALANCE, CREDIT_LIMIT, REP_NUM
PART _NUM —» DESCRIPTION, ON_HAND, CLASS, WAREHOUSE, PRICE
ORDER_NUM — ORDER_DATE, CUSTOMER_NUM
ORDER_NUM, PART_NUM — NUM_ORDERED, QUOTED_PRICE

Step §: Using the functional dependencies, you can create tables with the attribute(s)
to the left of the arrow being the primary key and the items to the right of the arrow being
the other columns. For relations corresponding to those entities identified in Step 1, you can
use the name you already determined. Because you did not identify any entity that had a
unique identifier that was the combination of ORDER_NUM and PART_NUM, you need
to assign a name to the table whose primary key consists of these two columns. Because
this table represents the individual lines within an order, the name ORDER_LINE is a good
choice. The final collection of tables is as follows:

REP (REP_NUM, LAST NAME, FIRST _NAME, STREET,
CITY, STATE, ZIP, COMMISSION, RATE)
CUSTOMER (CUSTOMER_NUM, CUSTOMER_NAME, STREET,
CITY, STATE, ZIP, BALANCE, CREDIT_LIMIT,
REP_NUM)

PART (PART NUM, DESCRIPTION, ON_HAND, CLASS,
WAREHOUSE, PRICE)

ORDERS (ORDER_NUM, ORDER_DATE, CUSTOMER_NUM)

ORDER_LINE (QRDER_NUM, PART NUM, NUM_ORDERED,
QUOTED_PRICE)

Step 6: Examining the tables and identifying common columns gives the following list
of relationships between the tables:

e« The CUSTOMER and REP tables are related using the REP_NUM columns.
Because the REP_NUM column is the primary key for the REP table, this indi-
cates a one-to-many relationship between REP and CUSTOMER (one rep to
many customers).

e The ORDERS and CUSTOMER tables are related using the CUSTOMER_NUM
columns. Because the CUSTOMER_NUM column is the primary key for the
CUSTOMER table, this indicates a one-to-many relationship between
CUSTOMER and ORDERS (one customer to many orders).

e The ORDER_LINE and ORDERS tables are related using the ORDER_NUM
columns. Because the ORDER_NUM column is the primary key for the
ORDERS table, this indicates a one-to-many relationship between ORDERS
and ORDER_LINE (one order to many order lines).

s The ORDER_LINE and PART tables are related using the PART_NUM columns.
Because the PART_NUM column is the primary key for the PART table, this
indicates a one-to-many relationship between PART and ORDER_LINE (one
part to many order lines).

NORMALIZATION

After creating the database design, you must analyze it to make sure it is free of potential
problems. To do so, you follow a process called normalization, in which you identify the
existence of potential problems, such as data duplication and redundancy, and implement
ways to correct these problems.

The goal of normalization is to convert unnormalized relations (tables that satisfy the
definition of a relation except that they might contain repeating groups) into various types
of normal forms. A table in a particular normal form possesses a certain desirable col-
lection of properties. Although there are several normal forms, the most common are first
normal form, second normal form, and third normal form. Normalization is a process in
which a table that is in first normal form is better than a table that is not in first normal form,
a table that is in second normal form is better than one that is in first normal form, and
so on. The goal of this process is to allow you to take a table or collection of tables and pro-
duce a new collection of tables that represents the same information but is free of
problems.

First Normal Form

According to the definition of a relation, a relation (table) cannot contain a repeating group
in which multiple entries exist on 2 single row. However, in the database design process,
you might create a table that has all the other properties of a relation, but contains a repeat-
ing group. Removing repeating groups is the starting point when converting an unnormal-
ized collection of data into a table that is in first normal form. A table (relation) is in first
normal form (1NF) when it does not contain a repeating group.

Database Design Fundamentals

For example, in the design process you might create the following ORDERS table, in
which there is a repeating group consisting of PART_NUM and NUM_ORDERED. The nota-

tion for this table is as follows:
ORDERS (ORDER_NUM, ORDER_DATE, (PART _NUM, NUM_ORDERED))

This notation describes a table named ORDERS that consists of a primary key,
ORDER_NUM, and a column named ORDER_DATE. The inner parentheses indicate a repeat-
ing group that contains two columns, PART " NUM and NUM_ORDERED. This table contains
one row per order with values in the PART _NUM and NUM_ORDERED columns for each order
with the number ORDER_NUM and placed on ORDER_DATE. Figure 2-7 shows a single order
with multiple combinations of a part number and a corresponding number of units ordered.

ORDERS

ORDER_ ORDER_ PART_ NUM_
NUM DATE NUM ~ ORDERED

FIGURE 2-7 Unnormalized order data

To convert the table to first normal form, you remove the repeating group as follows:

ORDERS (ORDER_NUM, ORDER_DATE, PART _NUM, NUM_ORDERED)

Chapter 2

in
ota-

eat-
as
rder
der

Figure 2-8 shows the table in first normal form.

ORDERS

ORDER_ . ORDER_ . . PART. NUM_
NUM = DATE =+ NUM: " ORDERED

FIGURE 2-8 Order data converted to first normal form

In Figure 2-7, the second row indicates that part DR93 and part DW11 are both included
in order 21610. In Figure 2-8, this information is represented by two rows, the second and
third. The primary key for the unnormalized ORDERS table was the ORDER_NUM col-
umn alone. The primary key for the normalized table is now the combination of the
ORDER_NUM and PART_NUM columns.

When you convert an unnormalized table to a table in first normal form, the primary
key of the table in first normal form is usually the primary key of the unnormalized table
concatenated with the key for the repeating group, which is the column in the repeating
group that distinguishes one occurrence of the repeating group from another within a
given row in the table. In the ORDERS table, PART_NUM was the key to the repeating group
and ORDER_NUM was the primary key for the table. When converting the unnormalized
data to first normal form, the primary key becomes the concatenation of the ORDER_NUM
and PART_NUM columns.

Second Normal Form
The following ORDERS table is in first normal form, because it does not contain a repeat-
ing group:

ORDERS (ORDER_NUM, ORDER_DATE, PART_NUM, DESCRIPTION,
NUM_ORDERED, QUOTED_PRICE)

The table contains the following functional dependencies:

ORDER_NUM —s» ORDER_DATE
PART_NUM —» DESCRIPTION
ORDER_NUM, PART NUM — NUM_ORDERED, QUOTED_PRICE

Database Design Fundamentals

This notation indicates that ORDER_NUM alone determines ORDER_DATE, and
PART_NUM alone determines DESCRIPTION, but it requires both an ORDER_NUM and a
PART NUM to determine either NUM_ORDERED or QUOTED_PRICE. Consider the
sample of this table shown in Figure 2:9.

ORDERS

ORDER_" ORDER_ PART_ DEéCRlPTION NUM_ --QUOTED_
NUM DATE NUM ORDERED PRICE

FIGURE 2-9 Sample ORDERS table

Although the ORDERS table is in first normal form (because it contains no repeating
groups), problems exist within the table that require you to restructure it.

The description of a specific part, DR93 for example, occurs twice in the table. This
duplication (formally called redundancy) causes several problems. It is certainly wasteful
of space, but that is not nearly as serious as some of the other problems. These other prob-
lems are called update anomalies and they fall into four categories:

1. Updates: If you need to change to the description of part DR93, you must
change it twice—once in each row on which part DR93 appears. Updating the
part description more than once makes the update process much more cum-
bersome and time consuming.

Inconsistent data: There is nothing about the design that prohibits part DR93
from having two different descriptions in the database. In fact, if part DR93
oceurs on 20 rows in the table, it is possible for this part to have 20 different
descriptions in the database.

Additions: When you try to add a new part and its description to the database,
you will face a real problem. Because the primary key for the ORDERS table con-
sists of both an ORDER_NUM and a PART_NUM, you need values for both of these
columns to add a new row to the table. If you add a part to the table that does
not yet have any orders, what do you use for an ORDER_NUM? The only solu-
tion is to create a dummy ORDER_NUM and then replace

Chapter 2

it with a real ORDER_NUM once an order for this part is actually received. Cer-
tainly this is not an acceptable solution.

Deletions: If you delete order 21608 from the database and it is the only order
that contains part AT94, deleting the order also deletes all information about
part AT94. For example, you would no longer know that part AT94 is an iron.

These problems occur because you have a column, DESCRIPTION, that is dependent
on only a portion of the primary key, PART_NUM, and not on the complete primary key.
This situation leads to the definition of second normal form. Second normal form repre-
sents an improvement over first normal form because it eliminates update anomalies in
these situations. A table (relation) is in second normal form (2NF) when it is in first
normal form and no nonkey column (that is, a column that is not part of the primary key)
is dependent on only a portion of the primary key.

You can identify the fundamental problem with the ORDERS table: it is not in second
normal form. Although it is important to identify the problem, what you really need is a
method to correct it; you want to be able to convert tables to second normal form. First, take
each subset of the set of columns that make up the primary key, and begin a new table with
this subset as its primary key. For the ORDERS table, the new design is:

(ORDER_NUY,
(PART_NUM,
(ORDER_NUM, PART _NUM,

Next, place each of the other columns with the appropriate primary key; that is, place
each one with the minimal collection of columns on which it depends. For the ORDERS
table, add the new columns as follows:

(ORDER_NUM, ORDER_DATE)
{PART NUM, DESCRIPTION)
(ORDER_NUM, PART NUM, NUM_ORDERED, QUOTED_PRICE)

Each of these new tables is given a descriptive name based on the meaning and con-

tents of the table, such as ORDERS, PART, and ORDER_LINE. Figure 2-10 shows samples of
these tables.

Database Design Fundamentals

ORDERS
ORDER_ ORDER_ . NUM_ QUOTED_
ORDERED - PRICE

-

ORDER_LINE

ORDER_ ORDER_ DESCRIPTION ORDER_ PART NUM_ QUOTED._
NUM NUM - ORDERED: PRICE

NUM

FIGURE 2-10 ORDERS table converted to second normal form

Chapter 2

!
!
:
¢
t

In Figure 2-10, converting the original ORDERS table to a new ORDERS table, a PART
table, and an ORDER_LINE table eliminates the update anomalies. A description appears
only once for each part, so you do not have the redundancy that existed in the original
table design. Changing the description of part DR93 from Gas Range to Deluxe Range, for
example, is now a simple process involving a single change. Because the description for a
part occurs in a single place, it is not possible to have multiple descriptions for a single part
in the database at the same time.

To add a new part and its description, you create a new row in the PART table, regard-
less of whether that part has pending or actual orders. Also, deleting order 21608 does not
delete part number AT94 from the database because it still exists in the PART table.
Finally, you have not lost any information by converting the ORDERS table to second nor-
mal form. You can reconstruct the data in the original table from the data in the new tables.

Third Normal Form
Problems can still exist with tables that are in second normal form. For example, suppose
that you create the following CUSTOMER table:

CUSTOMER (CUSTOMER_NUM, CUSTOMER_NAME, BALANCE, CREDIT_LIMIT,
REP_NUM, LAST NAME, FIRST_NAME)

This table has the following functional dependencies:

CUSTOMER_NUM —> CUSTOMER_NAME, BALANCE, CREDIT_LIMIT,
REP_NUM, LAST NAME, FIRST_NAME
REP_NUM '— LAST_NAME, FIRST_NAME

CUSTOMER_NUM determines all the other columns. In addition, REP_NUM deter-
mines LAST_NAME and FIRST_NAME.

When a table’s primary key is a single column, the table is automatically in second nor-
mal form. (If the table were not in second normal form, some column would be depen-
dent on only a portion of the primary key, which is impossible when the primary key is just
one column.) Thus, the CUSTOMER table is in second normal form.

Although this table is in second normal form, Figure 2.11 shows that it still possesses
update problems similar to those identified for the ORDERS table shown in Figure 2-9. In

Figure 2-11, the sales rep name occurs mamny times in the table.

Database Design Fundamentals

CUSTOMER

QUST&)MER; CUSTOMER_NAME BALANCE - CREDIT_ REP_-LAST_ FIRST_
NUM : LIMIT © NUM “NAME NAME

e

FIGURE 2-11 Sample CUSTOMER table

The redundancy of including a sales rep number and name in the CUSTOMER table
results in the same set of problems that existed for the ORDERS table. In addition to the
problem of wasted space, you have the following update anomalies:

1. Updates: Changing the sales rep name requires changes to multiple rows in
the table.

2 Inconsistent data: The design does not prohibit multiple iterations of sales rep
names in the database. For example, a sales rep might represent 20 custom-
ers and his name might be entered 20 different ways in the table.

Additions: To add sales rep 87 (Emily Daniels) to the database, she must rep-
resent at least one customer. If Emily does not yet represent any customers,
you either cannot record the fact that her name is Emily Daniels or you must
create a fictitious customer for her to represent until she represents an actual
customer. Neither of these solutions is desirable.

4. Deletions: If you delete all the customers of sales rep 35 from the database,
you will also lose all information about sales rep 35.

These update anomalies are due to the fact that REP_NUM determines LAST_NAME
and FIRST_NAME, but REP_NUM is not the primary key. As a result, the same REP_NUM
and consequently the same LAST_NAME and FIRST_NAME can appear on many
different rows.)

You have seen that tables in second normal form represent an improvement over tables
in first normal form, but to eliminate problems with tables in second normal form, you
need an even better strategy for creating tables. Third normal form provides that strategy.

Chapter 2

Before looking at third normal form, however, you need to become familiar with the spe-
cial name that is given to any column that determines another column (like REP_NUM in the
CUSTOMER table). Any column (or collection of columns) that determines another col-
umn is called a determinant. A table’s primary key is a determinant. In fact, by defini-
tion, any candidate key is a determinant. (Remember that a candidate key is a column or
collection of columns that could function as the primary key.) In Figure 2-11, REP_NUM is
a determinant, but it is not a candidate key, and that is the problem.

A table is in third normal form (3NF) when it is in second normal form and the only
determinants it contains are candidate keys.

Now you have identified the problem with the CUSTOMER table: it is not in third nor-
mal form. There are several steps for converting tables to third normal form.

First, for each determinant that is not a candidate key, remove from the table the col-
umns that depend on this determinant (but do not remove the determinant). Next, cre-
ate a new table containing all the columns from the original table that depend on this
determinant. Finally, make the determinant the primary key of this new table.

In the CUSTOMER table, for example, remove LAST_NAME and FIRST_NAME because
they depend on the determinant REP_NUM, which is not a candidate key. A new table is
formed, consisting of REP_NUM as the primary key, and the columns LAST_NAME and
FIRST_NAME, as follows: -

CUSTOMER (CUSTOMER_NUM, CUSTOMER_NAME, BALANCE,
CREDIT_LIMIT, REP_NUM)

and

REP (REP_NUM, LAST NAME, FIRST_NAME)

Figure 2-12 shows the original CUSTOMER table and the tables created when convert-
ing the original table to third normal form.

. Database Design Fundamentals

CUSTOMER

CUSTOMER_ CUSTOMER_NAME BALANCE . CREDIT_ ‘REP_ LAST_ FIRST_
LIMIT NAME . NAME

o Gy

pra—
CUSTOMER
- CUSTOMER " CUSTOMER_NAME BALANCE " CREDIT_LIMIT - REP_NUM

FIGURE 2-12 CUSTOMER table converted to third normal form

Chapter 2

Has this new design for the CUSTOMER table corrected all of the previously identi-
fied problems? A sales rep’s name appears only once, thus avoiding redundancy and sim-
plifying the process of changing a sales rep’s name. This design prohibits a sales rep from
having different names in the database. To add a new sales rep to the database, you add a
row to the REP table; it is not necessary for a new rep to represent a customer. Finally,
deleting all customers of a given sales rep will not remove the sales rep’s record from the REP
table, retaining the sales rep’s name in the database. You can reconstruct all the data in the
original table from the data in the new collection of tables. All previously mentioned
problems have indeed been solved.

. Database Design Fundamentals

DIAGRAMS FOR DATABASE DESIGN

For many people, an illustration of a database’s structure is quite useful. A popular type of
illustration used to represent the structure of a database is the entity-relationship (E-R)
diagram. In an E-R diagram, a rectangle represents an entity (table). One-to-many relation-
ships between entities are drawn as lines between the corresponding rectangles.

Several different styles of E-R diagrams are used to diagram a database design. In the
version shown in Figure 2-13, an arrowhead indicates the “many” side of the relation-
ship between tables. In the relationship between the REP and CUSTOMER tables, for
example, the arrow points from the REP table to the CUSTOMER table, indicating that
one sales rep is related to many customers. The ORDER_LINE table has two one-to-many
relationships, as indicated by the line from the ORDERS table to the ORDER_LINE table

and the line from the PART table to the ORDER_LINE table.

Rectangle
REP represents an
entity Arrow represents
a one-to-many
relationship
CUSTOMER
Arrowhead points
to the “many” part of
the relationship
ORDERS » ORDER_LINE PART

FIGURE 2-13 E-R diagram for the Premiere Products database with rectangles and arrows

Chapter 2

CUSTOMER

Crow's foot
represents the “many”
part of the relationship

Another style of E-R diagram is to represent the “many” side of a relationship between
tables with a crow’s foot, as shown in Figure 2-14.

ORDERS

ORDER_LINE

PART

FIGURE 2-14 E-R diagram for the Premiere Products database with a crow'’s foot

The E-R diagram shown in Figure 2-15 represents the original style of E-R diagrams. In
this style, relationships are indicated in diamonds that describe the relationship. The relation-
ship between the REP and CUSTOMER tables, for example, is named REPRESENTS, reflect-
ing the fact that a sales rep represents a customer. The relationship between the CUSTOMER
and ORDERS table is named PLACED, reflecting the fact that customers place orders. The
relationship between the ORDERS and ORDER_LINE tables is named CONTAINS, reflecting
the fact that an order contains order lines. The relationship between the PART and
ORDER_LINE tables is named IS_ON, reflecting the fact that a given part is on many orders.
In this style of E-R diagram, the number 1 indicates the “one” side of the relationship and the

letter “n” represents the “many” side of the relationship.

Database Design Fundamentals

"One" part of
a relationship

Diamond represents
and describes a
relationship

n "Many" part of

a relationship

CUSTOMER
1
n
1 n n 1
ORDERS ¢ ORDER_LINE PART

FIGURE 2-15 E-R diagram for the Premiere Products database with named relationships

Chapter 2

