- AC AZ Access | Appendix A Relational Databases and Database Design

Tables

A relational database stores its data in tables. A table is a two-dimensional structure
made up of rows and columns. The terms table, record (row), and field (column) are
the popular names for the more formal terms relation (table), tuple (row), and attribute
(column), as shown in Figure A-1.

Figure A-1 A table (relation) consisting of records and fields

275 [Bubaa |Hemesey | 27
.:1519 S Lee Noordsy i 31 -
8005 |Pat |Amidon | 27
g112 |Chris |Wandzell | 24

The Employee table shown in Figure A-1 is an example of a relational database table,
a two-dimensional structure with the following characteristics:

e Each row is unique. Because no two rows are the same, you can easily locate and
update specific data. For example, you can locate the row for EmployeeNum 8005
and change the FirstName value, Pat, the LastName value, Amidon, or the DeptNum
value, 27.

e The order of the rows is unimportant. You can add or view rows in any order. For
example, you can view the rows in LastName order instead of EmployeeNum order.

« Each table entry contains a single value. At the intersection of each row and column,
you cannot have more than one value. For example, each row in Figure A-1 contains
one EmployeeNum value, one FirstName value, one LastName value, and one
DeptNum value.

e The order of the columns is unimportant. You can add or view columns in any order.

e Each column has a unique name called the field name. The field name allows you to

access a specific column without needing to know its position within the table.

Each row in a table describes, or shows the characteristics of, an entity. An entity

is a person, place, object, event, or idea for which you want to store and process

data. For example, EmployeeNum, FirstName, LastName, and DeptNum are

characteristics of the employees of a company. The Employee table represents all

the employee entities and their characteristics. That is, each row of the Employee

table describes a different employee of the company using the characteristics of

EmployeeNum, FirstName, LastName, and DeptNum. The Employee table includes

only characteristics of employees. Other tables would exist for the company’s other

entities. For example, a Department table would describe the company’s departments
and a Position table would describe the company’s job positions.

Knowing the characteristics of a table leads'directly to a definition of a relational
database. A relational database is a collection of tables (relations).

Note that this book uses singular table names, such as Employee and Department,
but some people use plural table names, such as Employees and Departments. You can
use either singular table names or plural table names, as long as you consistently use
the style you choose.

Appendix A Relational Databases and Database Design | Access \:\oH-¥]

Keys

Primary keys ensure that each row in a table is unique. A primary key is a column, or a
collection of columns, whose values uniquely identify each row in a table. In addition
to being unique, a primary key must be minimal (that is, contain no unnecessary extra
columns) and must not change in value. For example, in Figure A-2 the State table
contains one record per state and uses the StateAbbrev column as its primary key.

‘ - Figure A-2 A table and its keys-

State

CT - Con’ne_ ICUt | - 5 S Amériéén r’o;bink ¢ 3,590,347
M Mg | %l 9883360
SD - o :Skout};'Dakota o 40 | pheasant k 5 k k 833,354
N Teeses | 5 | mockingbind | ga5623
TX ' Texas = . 28 ’ mockingbird 26,059,203

Could any other column, or collection of columns, be the primary key of the
State table?

* Could the StateBird column serve as the primary key? No, because the StateBird
column does not have unique values (for example, the mockingbird is the state bird
of more than one state).

* Could the StatePopulation column serve as the primary key? No, because the
StatePopulation column values change periodically and are not guaranteed to be
unigue. :

* Could the StateAbbrev and StateName columns together serve as the primary key?
No, because the combination of these two columns is not minimal. Something less,
such as the StateAbbrev column by itself, can serve as the primary key.

* Could the StateName column serve as the primary key? Yes, because the StateName
column has unique values. In a similar way, you could select the EnteredUnionOrder
column as the primary key for the State table. One column, or a collection of
columns, that can serve as a primary key is called a candidate key. The candidate
keys for the State table are the StateAbbrev column, the StateName column, and
the EnteredUnionOrder column. You choose one of the candidate keys to be the
primary key, and each remaining candidate key is called an alternate key. The
StateAbbrev column is the State table’s primary key in Figure A-2, so the StateName
and EnteredUnionOrder columns become alternate keys in the table.

Figure A-3 shows a City table containing the fields StateAbbrev, CityName, and
CityPopulation.

Xel VY Access | Appendix A Relational Databases and Database Design

IO S) A table with a composite key

e
N | Neshiile | 569462
™ e | e
P e

What is the primary key for the City table? The values for the CityPopulation column
periodically change and are not guaranteed to be unique, so the CityPopulation column
cannot be the primary key. Because the values for each of the other two columns are
not unique, the StateAbbrev column alone cannot be the primary key and neither can
the CityName column (for example, there are two cities named Madison and two cities
named Portland). The primary key is the combination of the StateAbbrev and CityName
columns. Both columns together are needed to identify—uniquely and minimally—
each row in the City table. A multiple-column key is called a composite key or a
concatenated key. A multiple-column primary key is called a composite primary key.

The StateAbbrev column in the City table is also a foreign key. A foreign key is a
column, or a collection of columns, in one table in which each column value must
match the value of the primary key of some table or must be null. A null is the absence
of a value in a particular table entry. A null value is not blank, nor zero, nor any other
value. You give a null value to a column value when you do not know its value or
when a value does not apply. As shown in Figure A-4, the values in the City table’s
StateAbbrev column match the values in the State table’s StateAbbrev column. Thus, the
StateAbbrev column, the primary key of the State table, is a foreign key in the City table.
Although the field name StateAbbrev is the same in both tables, the names could be
different. As a rule, experts use the same name for a field stored in two or more tables to
broadcast clearly that they store similar values; however, some exceptions exist.

Appendix A Relational Databases and Database Design | Access

StateAbbrev as a primary key (State table) and a foreign key (City table)

mockingbird | 24,782,302

€T | Hartford | 124,062

CT 'M‘ajdison L 18,803
CT |Portland | 9551

M g | i

A nonkey field is a field that is not part of the primary key. In the two tables shown
in Figure A-4, all fields are nonkey fields except the StateAbbrev field in the State
and City tables and the CityName field in the City table. “Key” is an ambiguous word
because it can refer to a primary, candidate, alternate, or foreign key. When the word
“key” appears alone, however, it means primary key and the definition for a nonkey
field consequently makes sense.

Relationships

In a database, a table can be associated with another table in one of three ways: a one-to-
many relationship, a many-to-many relationship, or a one-to-one relationship.

One-to-Many Relationship

The Department and Employee tables, shown in Figure A-5, have a one-to-many
relationship. A one-to-many relationship (abbreviated 1:M or 1:N) exists between two
tables when each row in the first table (sometimes called the primary table) matches
many rows in the second table and each row in the second table (sometimes called
the related table) matches at most one row in the first table. “Many” can mean zero

Access | Appe

ndix A Relational Databases and Database Design

rows, one row, or two Or more rows. As Figure A-5 shows, the DeptNum field, which
is a foreign key in the Employee table and the primary key in the Department table,

is the common field that ties together the rows of the two tables. Each department has
many employees; and each employee works in exactly one department or hasn’t been
assigned to a department, if the DeptNum field value for that employee is null.

Department

Hennessey

TP |Ameen | 7
‘kv‘i“:Chris . Wandze“ b 28

Many-to-Many Relationship

In Figure A-6, the Employee table (with the EmployeeNum field as its primary key)
and the Position table (with the positioniD field as its primary key) have a many-to-
many relationship. A many-to-many relationship (abbreviated as M:N) exists between
two tables when each row in the first table matches many rows in the second table
and each row in the second table matches many rows in the first table. In a relational
database, you must use a third table (often called an intersection table, junction
table, or link table) to serve as a bridge between the two many-to-many tables; the
third table has the primary keys of the two many-to-many tables as ifs primary key.
The original tables now each have a one-to-many relationship with the new table. The
EmployeeNum and PositionlD fields represent the primary key of the Employment
table that is shown in Figure A-6. The EmployeeNum field, which is a foreign key in
the Employment table and the primary key in the Employee table, is the common
field that ties together the rows of the Employee and Employment tables. Likewise,
the PositionID field is the common field for the Position and Employment tables. Each
employee may serve in many different positions within the company Over time, and
each position in the company will be filled by different employees over time.

Appendix A Relational Databases and Database Design | Access (Z:{e /- V4

‘ Figure A-6 A many-to-many relationship

Position

| Barbara | Hemn

| 12114720

| 04/23/2013 |

| 111172007 | 0472212013

| 06/05/2012 | 08/25/2013

07/02/2010 | 06/04/2012
a2sot2 |

| 10/04/2011 | 12/14/2012

One-to-One Relationship

In Figure A-5, recall that there’s a one-to-many relationship between the Department
table (the primary table) and the Employee table (the related table). Each department
has many employees, and each employee works in one department. The DeptNum field
in the Employee table serves as a foreign key to connect records in that table to records
with matching DeptNum field values in the Department table.

Furthermore, each department has a single employee who serves as the head of the
department, and each employee either serves as the head of a department or simply
works in a department without being the department head. Therefore, the Department
and Employee tables not only have a one-to-many relationship, but these two tables
also have a second relationship, a one-to-one relationship. A one-to-one relationship
(abbreviated 1:1) exists betweer two tables when each row in each table has at most
one matching row in the other table. As shown in Figure A-7, each DeptHead field
value in the Department table represents the employee number in the Employee table
of the employee who heads the department. In other words, each DeptHead field
value in the Department table matches exactly one EmployeeNum field value in the
Employee table. At the same time, each EmployeeNum field value in the Employee
table matches at most one DeptHead field value in the Department table—matching
one DeptHead field value if the employee is a department head, or matching zero
DeptHead field values if the employee is not a department head. For this one-to-one
relationship, the EmployeeNum field in the Employee table and the DeptHead field in
the Department table are the fields that link the two tables, with the DeptHead field
serving as a foreign key in the Department table and the EmployeeNum field serving
as a primary key in the Employee table.

Access | Appendix A Relational Databases and Database Design

Some database designers might use EmployeeNum instead of DeptHead as the

field name for the foreign key in the Department table because they both represent
the employee number for the employees of the company. However, DeptHead better
identifies the purpose of the field and would more commonly be used as the field name.

Figure A-7 A one-to-one relationship

Department

Employee

| Wandzet | 20

Entity Subtype
Suppose the company awards annual bonuses to a small number of employees who
fill director positions in selected departments. As shown in Figure A-8, you could
« store the Bonus field in the Employee table because a bonus is an attribute associated
k‘: with employees. The Bonus field would contain either the amount of the employee’s
bonus (record 4 in the Employee table) or a null value for employees without bonuses

(records 1 through 3 in the Employee table).

‘EBonus field added to the Employee table

Employee

| Barbara | Hennessey | 27

» Lee Noordsy -
P [Amiden | @ |

[Chis |Wendesl | 20 |$20000

Figure A-9 shows an alternative approach, in which the Bonus field is placed in a
separate table, the EmployeeBonus table. The EmployeeBonus table’s primary key is the
EmployeeNum field, and the table contains one row for each employee earning a bonus.
Because some employees do not earn a bonus, the EmployeeBonus table has fewer rows
than the Employee table. However, each row in the EmployeeBonus table has a matching
row in the Employee table, with the EmployeeNum field serving as the common field;
the EmployeeNunm field is the primary key in the Employee table and is a foreign key in

the EmployeeBonus table.

Appendix A Relational Databases and Database Design | Access {L{&:X]

' ' Figure A-9 Bonus values stored in a separate table, an entity subtype

Employee

EmployeeBonus

The EmployeeBonus table, in this situation, is called an entity subtype, a table
whose primary key is a foreign key to a second table and whose fields are additional
fields for the second table. Database designers create an entity subtype in two
situations. In the first situation, some users might need access to all employee fields,
including employee bonuses, while other employees might need access to all employee
fields except bonuses. Because most DBMSs allow you to control which tables a user
can access, you can specify that some users can access both tables and that other users
can access the Employee table but not the EmployeeBonus table, keeping the employee
bonus information hidden from the latter group. In the second situation, you can create
an entity subtype when a table has fields that could have nulls, as was the case for
the Bonus field stored in the Employee table in Figure A-8. You should be aware that
database experts debate the validity of the use of nulls in relational databases, and
many experts insist that you should never use nulls. This warning against nulls is partly
based on the inconsistent way different RDBMSs treat nulls and partly due to the lack
of a firm theoretical foundation for how to use nulls. In any case, entity subtypes are an
alternative to the use of nulls.

Entity-Relationship Diagrams

A common shorthand method for describing tables is to write the table name followed
by its fields in parentheses, underlining the fields that represent the primary key and
identifying the foreign keys for a table immediately after the table. Using this method,
the tables that appear in Figures A-5 through A-7 and Figure A-9 are described in the
following way:

Department (DeptNum, DeptName, DeptHead)
Foreign key: DeptHead to Employee table

Employee (EmployeeNum, FirstName, LastName, DeptNum)
Foreign key: DeptNum to Department table

Position (PositionlD, PositionDesc, PayGrade)

Employment (EmployeeNum, PositionlD, StartDate, EndDate)
Foreign key: EmployeeNum to Employee table
Foreign key: PositionID to Position table

EmployeeBonus (EmployeeNum, Bonus)
Foreign key: EmployeeNum to Employee table

Another popular way to describe tables and their relationships is with entity-
relationship diagrams. An entity-relationship diagram (ERD) shows a database’s enti;;:,es
and the relationships among the entities in a symbolic, visual way. In an ERD, an enti

Access | Appendix A Relational Databases and Database Design

and a table are equivalent. Figure A-10 shows an entity-relationship diagram for the
tables that appear in Figures A-5 through A-7 and Figure A-9.

. Figure A-10 An entity-relationship diagram (ERD)

PK | Depthium
Y Firsth
rstName
DeptName
LastName
DeptHead FKL | DeptNum

e
P

PositionDesc
PayGrade
FK1 | EmployseNum

PK,FK1,FK2

PositioniD
StartDate
EndDate

ERDs have the following characteristics:

« A table is represented by a rectangle that contains the table name and lists the field
names. Within each rectangle, the primary key is identified with the abbreviation PK,
and any foreign keys are designated with FK. Required fields are formatted in bold.

« Relationships are identified by lines joining the tables. A solid relationship line
between two tables indicates there could be 1 or more related records. A dotted rela-
tionship line between two tables indicates there could be 0 or more related records.

Appendix A Relational Databases and Database Design | Access X 8-¥ i)

* At the ends of each relationship line, symbols identify the minimum and maximum
possible number of related records from each entity in the relationship. A single
perpendicular line represents 1 record, a circle represents 0 records, and a group of
three branching lines—known as a crow’s foot—represents many records. A one-
to-many relationship is represented by a 1 at one end of the relationship line and a
crow’s foot at the opposite end of the relationship line. For example, the Department
and Employee tables have a one-to-many relationship. In a similar manner, a many-
to-many relationship exists between the Employee and Position entities and one-to-
one relationships exist between the Department and Employee entities and between
the Employee and EmployeeBonus entities. The relationships in Figure A-10 illustrate
all the possible designations for the ends of lines except for “one or many,” which is
represented by a single perpendicular line with a crow’s foot.

Integrity Constraints

A database has integrity if its data follows certain rules; each rule is called an integrity
constraint. The ideal is to have the DBMS enforce all integrity constraints. If a DBMS
can enforce some integrity constraints but not others, the other integrity constraints
must be enforced by other programs or by the people who use the DBMS. Integrity
constraints can be divided into three groups: primary key constraints, foreign key
constraints, and domain integrity constraints.

* One primary key constraint is inherent in the definition of a primary key, which says
that the primary key must be unique. The entity integrity constraint says that the
primary key cannot be null. For a composite key, none of the individual fields can
be null. The uniqueness and nonnull properties of a primary key ensure that you can
reference any data value in a database by supplying its table name, field name, and
primary key value.

* Foreign keys provide the mechanism for forming a relationship between two tables,
and referential integrity ensures that only valid relationships exist. Referential
integrity is the constraint specifying that each nonnull foreign key value must match
a primary key value in the primary table. Specifically, referential integrity means that
you cannot add a row containing an unmatched foreign key value. Referential integ-
rity also means that you cannot change or delete the related primary key value and
leave the foreign key orphaned. In some RDBMSs, when you create a relationship,
you can specify one of these options: restricted, cascades, or nullifies. If you specify
restricted and then change or delete a primary key, the DBMS updates or deletes the
value only if there are no matching foreign key values. If you choose cascades and
then change a primary key value, the DBMS changes the matching foreign key values
to the new primary key value, or, if you delete a primary key value, the DBMS also
deletes the matching foreign key rows. If you choose nullifies and then change or
delete a primary key value, the DBMS sets all matching foreign key values to null.

* A domain is a set of values from which one or more fields draw their actual values.

A domain integrity constraint is a rule you specify for a field. By choosing a data type
for a field, you impose a constraint on the set of values allowed for the field. You can
create specific validation rules for a field to [imit its domain further. As you make a
field’s domain definition more precise, you exclude more and more unacceptable values
for the field. For example, in the State table, shown in Figures A-2 and A-4, you could
define the domain for the EnteredUnionOrder field to be a unique integer between

T and 50 and the domain for the StateBird field to be any text string containing 25 or
fewer characters.

7Xe AP J Access | Appendix A Relational Databases and Database Design

Dependencies and Determinants

Just as tables are related to other tables, fields are also related to other fields. Consider
the modified Employee table shown in Figure A-11. Its description is:

Employee (EmployeeNum, PositionlD, LastName, PositionDesc, StartDate, HealthPlan,
PlanDesc)

w table combining fields from three tables

2 |H i 8 | Managed HMO

1 |Noordsy |Director | 04/23/ A | Managed PPO

3 |Noordsy |Analyst 11/11/2007| A | Managed PPO.

"3 |Amidon | Analyst 106/05/2012| € | Health Savings

a Amidon | Clerkk 07/02/2010| C Health Savings

2 | 1 |Wandzell |Director 12/15/2012| A Managed PPO
.z 5> |Wandzell | Manager | 10/04/2011| A | Managed PPO

The modified Employee table combines several fields from the Employee, Position, and
Employment tables that appeared in Figure A-6. The EmployeeNum and LastName fields

1 are from the Employee table. The PositionID and PositionDesc fields are from the Position
\ table. The EmployeeNum, PositionlD, and StartDate fields are from the Employment

“; table. The HealthPlan and PlanDesc fields are new fields for the Employee table, whose

; primary key is now the combination of the EmployeeNum and PositionlD fields.

| In the Employee table, each field is related to other fields. To determine field relation-
|

ships, you ask “Does a value for a particular field give me a single value for another
field?” If the answer is Yes, then the two fields are functionally related. For example, a
value for the EmployeeNum field determines a single value for the LastName field, and
a value for the LastName field depends on the value of the EmployeeNum field. In other
words, EmployeeNum functionally determines LastName, and LastName is functionally
dependent on EmployeeNum. In this case, EmployeeNum is called a determinant. A
determinant is a field, or a collection of fields, whose values determine the values of
another field. A field is functionally dependent on another field (or a collection of fields)
if that other field is a determinant for it.

You can graphically show a table’s functional dependencies and determinants in a
bubble diagram; a bubble diagram is also called a data model diagram or a functional
dependency diagram. Figure A-12 shows the bubble diagram for the Employee table
shown in Figure A-11.

Appendix A Relational Databases and Database Design | Access

. Figure A-12 A bubble diagram for the modified Employee table

e D

‘ Healt ”Ff"!‘aniv .

" PositioniD “F‘:’ésitiopD‘eéc_

You can read the bubble diagram in Figure A-12 as follows:

* The EmployeeNum field is a determinant for the LastName, HealthPlan, and
PlanDesc fields.

* The PositionlD field is a determinant for the PositionDesc field.

* The StartDate field is functionally dependent on the EmployeeNum and Position!D
fields together.

* The HealthPlan field is a determinant for the PlanDesc field.

Note that EmployeeNum and PositionID together serve as a determinant for the
StartDate field and for all fields that depend on the EmployeeNum field alone and the
PositionlD field alone. Some experts include these additional fields and some don't.
The previous list of determinants does not include these additional fields.

An alternative way to show determinants is to list the determinant, a right arrow, and
then the dependent fields, separated by commas. Using this alternative, the determi-
nants shown in Figure A-12 are:

EmployeeNum —» LastName, HealthPlan, PlanDesc
PositionlD - PositionDesc

EmployeeNum, PositionlD = StartDate

HealthPlan = PlanDesc

Only the StartDate field is functionally dependent on the table’s full primary key,
the EmployeeNum and PositionID fields. The LastName, HealthPlan, and PlanDesc
fields have partial dependencies because they are functionally dependent on the
EmployeeNum field, which is part of the primary key. A partial dependency is a
functional dependency on part of the primary key, instead of the entire primary key.
Does another partial dependency exist in the Employee table? Yes, the PositionDesc
field has a partial dependency on the Position!D field.

? Access | Appendix A Relational Databases and Database Design

Because the EmployeeNum field is a determinant of both the HealthPlan and
PlanDesc fields, and the HealthPlan field is a determinant of the PlanDesc field, the
HealthPlan and PlanDesc fields have a transitive dependency. A transitive dependency
is a functional dependency between two nonkey fields, which are both dependent on a
third field.

How do you know which functional dependencies exist among a collection of fields,
and how do you recognize partial and transitive dependencies? The answers lie with the
questions you ask as you gather the requirements for a database application. For each
field and entity, you must gain an accurate understanding of its meaning and relation-
ships in the context of the application. Semantic object modeling is an entire area of
study within the database field devoted to the meanings and relationships of data.

Anomalies

When you use a DBMS, you are more likely to get results you can trust if you create
your tables carefully. For example, problems might occur with tables that have partial
and transitive dependencies, whereas you won't have as much trouble if you ensure
that your tables include only fields that are directly related to each other. Also, when
you remove data redundancy from a table, you improve that table. Data redundancy
occurs when you store the same data in more than one place.

The problems caused by data redundancy and by partial and transitive
dependencies are called anomalies because they are undesirable irregularities of
tables. Anomalies are of three types: insertion, deletion, and update.

To examine the effects of these anomalies, consider the modified Employee table
that is shown again in Figure A-13.

WA table with insertion, deletion, and update anomalies

Employee

"5 |Hennessey| Manager

"7 [Noordsy |Director |

3 Amidon | An

4 | Amidon 'Clér‘kk; 2/2010 1 o :

"1 | Wandzell | Direct /15/2012] A | Managed PPO.
"2 | Wondsell | Manager [10/04/2011] A | Managed PPO_

« An insertion anomaly occurs when you cannot add a record to a table because you
do not know the entire primary key value. For example, you cannot add the new
employee Cathy Corbett with an EmployeeNum of 3322 to the Employee table if you
do not know her position in the company. Entity integrity prevents you from leaving
any part of a primary key null. Because the PositionID field is part of the primary
key, you cannot leave it null. To add the new employee, your only option is to make
up a PositionlD field value, until you determine the correct position. This solution
misrepresents the facts and is unacceptable, if a better approach is available.

Appendix A Relational Databases and Database Design | Access a8 L¥E)

* A deletion anomaly occurs when you delete data from a table and unintentionally lose
other critical data. For example, if you delete EmployeeNum 2173 because Hennessey
is no longer an employee, you also lose the only instance of HealthPlan B in the data-
base. Thus, you no longer know that HealthPlan B is the “Managed HMO" plan.

* An update anomaly occurs when a change to one field value requires the DBMS to
make more than one change to the database, and a failure by the database to make
all the changes results in inconsistent data. For example, if you change a LastName,
HealthPlan, or PlanDesc field value for EmployeeNum 8005, the DBMS must change
multiple rows of the Employee table. If the DBMS fails to change all the rows, the
LastName, HealthPlan, or PlanDesc field now has different values in the database
and is inconsistent.

Normalization

Database design is the process of determining the content and structure of data in a
database in order to support some activity on behalf of a user or group of users. After
you have determined the collection of fields users need to support an activity, you
need to determine the precise tables needed for the collection of fields and then place
those fields into the correct tables. Understanding the functional dependencies of all
fields; recognizing the anomalies caused by data redundancy, partial dependencies,
and transitive dependencies when they exist; and knowing how to eliminate the
anomalies are all crucial to good database design. Failure to eliminate anomalies leads
to data redundancy and can cause data integrity and other problems as your database
grows in size.

The process of identifying and eliminating anomalies is called normalization. Using
normalization, you start with a collection of tables, apply sets of rules to eliminate
anomalies, and produce a new collection of problem-free tables. The sets of rules are
called normal forms. Of special interest for our purposes are the first three normal forms:
first normal form, second normal form, and third normal form. First normal form improves
the design of your tables, second normal form improves the first normal form design, and
third normal form applies even more stringent rules to produce an even better design.
Note that normal forms beyond third normal form exist; these higher normal forms can
improve a database design in some situations but won't be covered in this section.

First Normal Form

Consider the Employee table shown in Figure A-14. For each employee, the table
contains EmployeeNum, which is the primary key; the employee’s first name, last name,
health plan code and description; and the ID, description, pay grade, and start date of
each position held by the employee. For example, Barbara Hennessey has held one
position, while the other three employees have held two positions. Because each entry
in a table must contain a single value, the structure shown in Figure A-14 does not meet
the requirements for a table, or relation; therefore, it is called an unnormalized relation.
The set of fields that includes the PositionlD, PositionDesc, PayGrade, and StartDate
fields, which can have more than one value, is called a repeating group.

Access | Appendix A Relational Databases and Database Design

i w Repeating groups of data in an unnormalized Employee table

A | Anabse |0 o300 |osiosioia | | Health Savings
LU e 20 07/02/2010 b

Wandzell | Director 4 12/15/2012 | A Managed PPO

1 Manager | -10/04/2011 | T

First-normal form addresses this repeating-group situation. A table is in first normal
form (1NF) if it does not contain repeating groups. To remove a repeating group and
convert to first normal form, you expand the primary key to include the primary key of
the repeating group, forming a composite key. Performing the conversion step produces
the 1NF table shown in Figure A-15.

Employee

Barbara Hennessey| Manager ‘ (142/14/2011 B Managed HMO

" [lee |Noordsy |Director | 45 04/23/2013} A Managed PPO
“tee |Noordsy |Analyst 30 |11/11/2007| A |Managed PPO
Pat. |Amidon [Analyst | 30 06/05/2012| C Health Savings

~ |Amidon [Clerk | 20 lozo2/2010 € Health Savings

| Wandzell | Director 45 |12/15/2012) A Managed PPO

'Wahdzeﬂ . Manager 40 10/04/2011| A | Managed PPO

The alternative way to describe the 1NF table is:

Employee (EmployeeNum, PositionlD, FirstName, LastName, PositionDesc, PayGrade,
StartDate, HealthPlan, PlanDesc)

Appendix A Relational Databases and Database Design | Access (1€ LVY

The Employee table is now a true table and has a composite key. The table, however,
suffers from insertion, deletion, and update anomalies. (As an exercise, find examples
of the three anomalies in the table.) The EmployeeNum field is a determinant for the
FirstName, LastName, HealthPlan, and PlanDesc fields, so partial dependencies exist
in the Employee table. It is these partial dependencies that cause the anomalies in the
Employee table, and second normal form addresses the partial-dependency problem.

Second Normal Form

A table in TNF is in second normal form (2NF) if it does not contain any partial
dependencies. To remove partial dependencies from a table and convert it to second
normal form, you perform two steps. First, identify the functional dependencies for
every field in the table. Second, if necessary, create new tables and place each field
in a table such that the field is functionally dependent on the entire primary key,
not part of the primary key. If you need to create new tables, restrict them to tables
with a primary key that is a subset of the original composite key. Note that partial
dependencies occur only when you have a composite key; a table in first normal form
with a single-field primary key is automatically in second normal form.

First, identifying the functional dependencies leads to the following determinants for
the Employee table:

EmployeeNum = FirstName, LastName, HealthPlan, PlanDesc
PositionID — PositionDesc, PayGrade

EmployeeNum, PositionID = StartDate

HealthPlan = PlanDesc

The EmployeeNum field is a determinant for the FirstName, LastName, HealthPlan,
and PlanDesc fields. The PositionID field is a determinant for the PositionDesc and
PayGrade fields. The composite key EmployeeNum and PositionlD is a determinant
for the StartDate field. The HealthPlan field is a determinant for the PlanDesc field.
Performing the second step in the conversion from first normal form to second form
produces the three 2NF tables shown in Figure A-16.

IW@/NT1 7 Access | Appendix A Relational Databases and Database Design

Figure A-16 After conversion to 2NF

Employee

. Maﬁaggd:HM(q
| Managed PPO_

: Héaltﬁ;sévi‘,‘r\'gé;:‘

Managed PPO

o iD‘(re'(;tdr o

Maeew | %

ey

comprité primary key.

Employment

a0 2 12/14/2011

Tase | 1 |owmpons

519 11/11/2007

3;
go05s | 3 | 06/05/2012
‘ 4

8005 07/02/2010°

e L 12/15/2012

a2 | 2 10/04/2011

The alternative way to describe the 2NF tables is:

Employee (EmployeeNum, FirstName, LastName, HealthPlan, PlanDesc)
Position (PositioniD, PositionDesc, PayGrade)
Employment (EmployeeNum, PositionlD, StartDate)

Foreign key: EmployeeNum to Employee table

Foreign key: PositioniD to Position table

Appendix A Relational Databases and Database Design | Access (GL8LYE]

All three tables are in second normal form. Do anomalies still exist? The Position
and Employment tables show no anomalies, but the Employee table suffers from
anomalies caysed by the transitive dependency between the HealthPlan and PlanDesc
fields. (As an exercise, find examples of the three anomalies caused by the transitive
dependency.) That is, the HealthPlan field is a determinant for the PlanDesc field, and
the EmployeeNum field is a determinant for the HealthPlan and PlanDesc fields. Third
normal form addresses the transitive-dependency problem.

Third Normal Form

A table in 2NF is in third normal form (3NF) if every determinant is a candidate

key. This definition for 3NF is referred to as Boyce-Codd normal form (BCNF) and

is an improvement over the original version of 3NF. What are the determinants in

the Employee table? The EmployeeNum and HealthPlan fields are the determinants;
however, the EmployeeNum field is a candidate key because it's the table’s primary
key, and the HealthPlan field is not a candidate key. Therefore, the Employee table is in
second normal form, but it is not in third normal form.

To convert a table to third normal form, remove the fields that depend on the non-
candidate-key determinant and place them into a new table with the determinant as
the primary key. For the Employee table, the PlanDesc field depends on the HealthPlan
field, which is a non-candidate-key determinant. Thus, you remove the PlanDesc
field from the table, create a new HealthBenefits table, place the PlanDesc field in
the HealthBenefits table, and then make the HealthPlan field the primary key of the
HealthBenefits table. Note that only the PlanDesc field is removed from the Employee
table; the HealthPlan field remains as a foreign key in the Employee table. Figure A-17
shows the database design for the four 3NF tables.

'Xe'V1] J Access | Appendix A Relational Databases and Database Design

Figure A-17 After conversion to 3NF

Employee

‘ﬁri?héry‘ key

HealthBenefits Position

(cqnﬁposite,primérjkéy .

Employment

The alternative way to describe the 3NF relations is:

Employee (EmployeeNum, FirstName, LastName, HealthPlan)
Foreign key: HealthPlan to HealthBenefits table
HealthBenefits (HealthPlan, PlanDesc)
Position (PositionlD, PositionDesc, PayGrade)
Employment (EmployeeNum, PositionlD, StartDate)
Foreign key: EmployeeNum to Employee table
Foreign key: PositiontD to Position table

Appendix A Relational Databases and Database Design | Access \(ieLvAl

The four tables have no anomalies because you have eliminated all the data redun-
dancy, partial dependencies, and transitive dependencies. Normalization provides
the framework for eliminating anomalies and delivering an optimal database design,
which you should always strive to achieve. You should be aware, however, that experts
sometimes denormalize tables to improve database performance—specifically, to
decrease the time it takes the database to respond to a user’s commands and requests.
Typically, when you denormalize tables, you combine separate tables into one table to
reduce the need for the DBMS to join the separate tables to process queries and other
informational requests. When you denormalize a table, you reintroduce redundancy to
the table. At the same time, you reintroduce anomalies. Thus, improving performance
exposes a database to potential integrity problems. Only database experts should
denormalize tables, but even experts first complete the normalization of their tables.

Natural, Artificial, and Surrogate Keys

When you complete the design of a database, your tables should be in third normal
form, free of anomalies and redundancy. Some tables, such as the State table (see
Figure A-2), have obvious third normal form designs with obvious primary keys. The
State table’s description is:

State (StateAbbrev, StateName, EnteredUnionOrder, StateBird, StatePopulation)

Recall that the candidate keys for the State table are StateAbbrev, StateName, and
EnteredUnionOrder. Choosing the StateAbbrev field as the State table’s primary key
makes the StateName and EnteredUnionOrder fields alternate keys. Primary keys such
as the StateAbbrev field are sometimes called natural keys. A natural key (also called a
logical key or an intelligent key) is a primary key that consists of a field, or a collection
of fields, that is an inherent characteristic of the entity described by the table and that
is visible to users. Other examples of natural keys are the ISBN (International Standard
Book Number) for a book, the SSN (Social Security number) for a U.S. individual,
the UPC (Universal Product Code) for a product, and the VIN (vehicle identification
number) for a vehicle.

Is the PositionID field, which is the primary key for the Position table (see Figure A-17),
a natural key? No, the PositionID field is not an inherent characteristic of a position.
Instead, the PositionID field has been added to the Position table only as a way to identify
each position uniquely. The PositionID field is an artificial key, which is a field that you
add to a table to serve solely as the primary key and that is visible to users.

Another reason for using an artificial key arises in tables that allow duplicate
records. Although relational database theory and most experts do not allow duplicate
records in a table, consider a database that tracks donors and their donations.

Figure A-18 shows a Donor table with an artificial key of DonorlD and with the
DonorFirstName and DonorLastName fields. Some cash donations are anonymous,
which accounts for the fourth record in the Donor table. Figure A-18 also shows the
Donation table with the DonoriD field, a foreign key to the Donor table, and the
DonationDate and DonationAmt fields.

T ——

ING'VY1) Access | Appendix A Relational Databases and Database Design

Figure A-18 D Donor and Donation tables

Donor

Donation

ooote

| o |

What is the primary key of the Donation table? No single field is unique, and nei-
ther is any combination of fields. For example, on 10/10/2016, two anonymous donors
(DonorlD value of 4) donated $50 each. You need to add an artificial key, DonationlD
for example, to the Donation table. The addition of the artificial key makes every
record in the Donation table unique, as shown in Figure A-19.

Appendix A Relational Databases and Database Design | Access {3\ 87.v&]

Figure A-19 Donation table after adding DonationlD, an artificial key

Donation

| 09/30/2016 |

| 10/03/2016 |

| 10072016 | 5000
101072016 | $50.00

10112006 |

Njolalslwln

5 | 10132016 | $50.00

The descriptions of the Donor and Donation tables now are:

Donor (DonorlD, DonorFirstName, DonorlastName)
Donation (Donation!D, DonorlD, DonationDate, DonationAmt)
Foreign key: DonorlD to Donor table

For another common situation, consider the 3NF tables you reviewed in the previous
section (see Figure A-17) that have the following descriptions:

Employee (EmploveeNum, FirstName, LastName, HealthPlan)
Foreign key: HealthPlan to HealthBenefits table
HealthBenefits (HealthPlan, PlanDesc)
Position (PositionlD, PositionDesc, PayGrade)
Employment (EmployeeNum, PositionlD, StartDate)
Foreign key: EmployeeNum to Employee table
Foreign key: PositionlD to Position table

Recall that a primary key must be unique, must be minimal, and must not change
in value. In theory, primary keys don’t change in value. However, in practice, you
might have to change EmployeeNum field values that you incorrectly entered in the
Employment table. Further, if you need to change an EmployeeNum field value in
the Employee table, the change must cascade to the EmployeeNum field values in
the Employment table. Also, changes to a PositioniD field value in the Position table
must cascade to the Employment table. For these and other reasons, many experts add
surrogate keys to their tables. A surrogate key (also called a synthetic key) is a system-
generated primary key that is hidden from users. Usually you can use an automatic
numbering data type, such as the Access AutoNumber data type, for a surrogate key.
Figure A-20 shows the four tables with surrogate keys added to each table.

INe. VX8 J Access | Appendix A Relational Databases and Database Design

Figure A-20 Using surrogate keys

Employee

| Hennessey |

Noordsy | 1

e ‘Aﬁii&of\" 3

 |wandzet | 1

HealthBenefits

Position

| Director

|Analys | 20

slw| sl

ek | 200

foreign key

Employment

112/14/2011
| 04/23/2013.
3 | 11/11/2007
4 |07/02/2010
o 12/15/20\12
2 | 10/04/2011

o
slaluwie| s m

The HealthSK field replaces the HealthPlan field as a foreign key in the
Employee table, and the EmployeeSK field replaces the EmployeeNum field in the
Employment table. Now when you change an incorrectly entered EmployeeNum
field value in the Employee table, you don’t need to cascade the change to the
Employment table. Likewise, when you change an incorrectly entered HealthPlan
field value in the HealthBenefits table, you don’t need to cascade the change to the
Employee table.

Appendix A Relational Databases and Database Design | Access \Gatavad

As you design a database, you should not consider the use of surrogate keys, and
you should use an artificial key only for the rare table that has duplicate records. Atthe
point when you implement a database, you might choose to use artificial and surrogate
keys, but be aware that database experts debate their use and effectiveness. You need to
consider the following tradeoffs between natural and surrogate keys:

* You use surrogate keys to avoid cascading updates to foreign key values. Surrogate
keys can also replace lengthier foreign keys when those foreign keys reference
composite fields.

* You don't need a surrogate key for a table whose primary key is not used as a foreign

key in another table because cascading updates is not an issue.

Tables with surrogate keys require more joins than do tables with natural keys. For

example, if you need to know all employees with a HealthPlan field value of A, the

surrogate key in Figure A-20 requires that you join the Employee and HealthBenefits
tables to answer the question. Using natural keys as shown in Figure A-17, the

HealthPlan field appears in the Employee table, so no join is necessary.

Although surrogate keys are meant to be hidden from users, they cannot be hidden

from users who create SQL statements and use other ad hoc tools.

* Because you need a unique index for the natural key and a unique index for the
surrogate key, your database size is larger and index maintenance takes more time
when you use a surrogate key. On the other hand, a foreign key using a surrogate key
is usually smaller than a foreign key using a natural key, especially when the natural
key is a composite key, so those indexes are smaller and faster to access for lookups
and joins.

Microsoft Access Naming Conventions

In the early 1980s, Microsoft's Charles Simonyi introduced an identifier naming
convention that became known as Hungarian notation. Microsoft and other companies
use this naming convention for variable, control, and other object naming in Basic,
Visual Basic, and other programming languages. When Access was introduced in
the early 1990s, Stan Leszynski and Greg Reddick adapted Hungarian notation for
Microsoft Access databases; their guidelines became known as the Leszynski/Reddick
naming conventions. In recent years, the Leszynski naming conventions, the Reddick
naming conventions, and other naming conventions have been published. Individuals
and companies have created their own Access naming conventions, but many are
based on the Leszynski/Reddick naming conventions, as are the naming conventions
covered in this section.

An Access database can contain thousands of objects, fields, controls, and other
items, and keeping track of their names and what they represent is a difficult task.
Consequently, you should use naming conventions that identify the type and purpose
of each item in an Access database. You can use naming conventions that identify items
generally or very specifically.

For an object, include a prefix tag to identify the type of object, as shown in
Figure A-21. In each example in Figure A-21, the final object name consists of a
three-character tag prefixed to the base object name. For example, the form name of
frmEmployeesAndPositions consists of the frm tag and the EmployeesAndPositions
base form name.

‘ ecess | Appendix A Relational Databases and Database Design

eview A ss:gnments

What are the formal names for a table for a row, and for a column? What are the _popular names
for arow and for a column?

2. What is a domain?
. What is an entity? o ; i
.- What is the relationship between a pnmary key and a candndate key? e
. What is a composite key? ‘ L
. What is a foreign key? :
. Look for and describe an example of a one-to-one relationship, an example of a one-to-many

‘relationshtp, and an example of a many-to- many relatlonshlp ina newspaper magazine, book,
or everyday situation you encounter.

8. When do you use an entity subtype?
. . What is the entity integrity 1 constramt?
. What is referential integrity? :
. What does the cascades option, which is used Wlth referential integrity, accomphsh?
2. What are pamal and transitive dependenc:es?
. What three types of anomahes can be exhibited by a table and what problems do they cause?

. Figure A-24 shows the Employee, Position, and Employment tables with primary keys
EmployeeNum, PositionlD, and both EmployeeNum and PositionlD, respectively: Which two
-integrity constraints do these tab!es \uolate and why?

Figure A-24 Integrity constraint vic

Position

Employment

15. The State and Clty tables, shown ;
State (S tateAbbrev, StateName, Entere
City (StateAbbrev
;Forelgn key:

: A'gc;éssk}iApp" ndix A Relational Datébases and Database Design

Iy, gnve e folloy ,
D, DancerName, DancerAddr, DancerPhone, Clasle CI

raint violations

Department

New York

| Houston

| Chicago

out patlents of !
Howmg dependencies exist in the Patient tabl

; SemceCode -) ServxceDesc SerwceFee

20.

21.
22.

- PatientID, DoctorlD, ServiceCode —» PatientName, BalanceOwed, DoctorName,S

Appendix A Relational Databases and Database Design [Access NG 8:¥1

ServiceFee, ServiceDate
a. Based on the dependencies, convert the Patient table to first normal form.
b. Next, convert the Patient table to third normal form. ~ o
Suppose you need to track data for mountain climbing expeditions. Each member of an
expedition is called a climber, and one of the climbers is named to lead an expedition. Climbers
can be members of many expeditions over time. The climbers in each expedition attemptto
ascend one or more peaks by scaling one of the many faces of the peaks. The data youneedto
track includes the name of the expedition, the leader of the expedition, and comments about
the expedition; the first name, last name, nationality, birth date, death date, and comments .
about each climber; the name, location, height, and comments about each peak; the name and
comments about each face of a peak; comments about each climber for each expedition; and
the highest height reached and the date for each ascent attempt by a climber on a face with
commentary.

a. Create the tables for the expedition database and describe them using the alternative method.
Be sure the tables are in third normal form.

b. Draw an entity-relationship diagram for the expedition database.
What is the difference among natural, artificial, and surrogate keys?
Why should you use naming conventions for the identifiers in a database?

I T T EORETE i

