ghtstone, Sam S., and Nadeau, To
organ Kaufmann. All rights reserv

INTRODUCTION

CHAPTER OUTLINE

Data and Database Management 2

Database Life Cycle 3

Conceptual Data Modeling 9

Summary 10

Tips and Insights for Database Professionals 10
Literature Summary 11

Database technology has evolved rapidly in the past three
decades since the rise and eventual dominance of relational
database systems. While many specialized database systems
(object-oriented, spatial, multimedia, etc.) have found sub-
stantial user communities in the sciences and engineering,
relational systems remain the dominant database technology
for business enterprises.

Relational database design has evolved from an art to a
science that has been partially implementable as a set of soft-
ware design aids. Many of these design aids have appeared as
the database component of computer-aided software engi-
neering (CASE) tools, and many of them offer interactive
modeling capability using a simplified data modeling
approach. Logical design—that is, the structure of basic data
relationships and their definition in a particular database
system—is largely the domain of application designers. The
work of these designers can be eftectively done with tools
such as the ERwin Data Modeler or Rational Rose with
Unified Modeling Language (UML), as well as with a purely
manual approach. Physical design—the creation of efficient
data storage and retrieval mechanisms on the computing
platform you are using—is typically the domain of the

m. The Morgan Kaufmann Series in Data Management Systems : Database Modeling and Design : Logical Design (5). Saint Louis, US: Morgan Kaufmann, 2011. ProQuest ebrary. Web. 9 March 2017.
ed.

2 Chapter 1 INTRODUCTION

database administrator (DBA). Today's DBAs have a variety of
vendor-supplied tools available to help design the most effi-
cient databases. This book is devoted to the logical design
methodologies and tools most popular for relational
databases today. Physical design methodologies and tools
are covered in a separate book.

In this chapter, we review the basic concepts of data-
base management and introduce the role of data modeling
and database design in the database life cycle.

Data and Database Management

The basic component of a file in a file system is a data
item, which is the smallest named unit of data that has
meaning in the real world—for example, last name, first
name, street address, ID number, and political party. A
group of related data items treated as a unit by an applica-
tion is called a record. Examples of types of records are order,
salesperson, customer, product, and department. A file is a
collection of records of a single type. Database systems have
built upon and expanded these definitions: In a relational
database, a data item is called a column or attribute, a record
is called a row or tuple, and a file is called a table.

A database is a more complex object; it is a collection of
interrelated stored data that serves the needs of multiple
users within one or more organizations—that is, an interre-
lated collection of many different types of tables. The moti-
vation for using databases rather than files has been greater
availability to a diverse set of users, integration of data for
easier access and update for complex transactions, and less
redundancy of data.

A database management system (DBMS) is a generalized
software system for manipulating databases. A DBMS
supports a logical view (schema, subschema); physical
view (access methods, data clustering); data definition lan-
guage; data manipulation language; and important utilities
such as transaction management and concurrency control,
data integrity, crash recovery, and security. Relational data-
base systems, the dominant type of systems for well-for-
matted business databases, also provide a greater degree
of data independence than the earlier hierarchical and

, Tol ., Lightstone, Sam S., and Nadeau, Tom. The Morgan Kaufmann Series in Data Management Systems : Database Modeling and Design : Logical Design (5). Saint Louis, US: Morgan Kaufmann, 2011. ProQuest ebrary. Web. 9 March 2017.

. Morgan Kaufmann. All rights reserved.

Chapter 1 INTRODUCTION 3

network (CODASYL) database management systems. Data
independence is the ability to make changes in either the
logical or physical structure of the database without
requiring reprogramming of application programs. It also
makes database conversion and reorganization much eas-
ier. Relational DBMSs provide a much higher degree of
data independence than previous systems; they are the
focus of our discussion on data modeling.

Database Life Cycle

The database life cycle incorporates the basic steps
involved in designing a global schema of the logical database,
allocating data across a computer network, and defining
local DBMS-specific schemas. Once the design is completed,
the life cycle continues with database implementation and
maintenance. This chapter contains an overview of the data-
base life cycle, as shown in Figure 1.1. In succeeding chapters
we will focus on the database design process from the
modeling of requirements through logical design (Steps I
and II below). We illustrate the result of each step of the life
cycle with a series of diagrams in Figure 1.2. Each diagram
shows a possible form of the output of each step so the reader
can see the progression of the design process from an idea
to an actual database implementation. These forms are
discussed in much more detail in Chapters 2-6.

I. Requirements analysis. The database requirements are
determined by interviewing both the producers and users
of data and using the information to produce a formal
requirements specification. That specification includes
the data required for processing, the natural data
relationships, and the software platform for the database
implementation. As an example, Figure 1.2 (Step 1) shows
the concepts of products, customers, salespersons, and
orders being formulated in the mind of the end user dur-
ing the interview process.

II. Logical design. The global schema, a conceptual data
model diagram that shows all the data and their
relationships, is developed using techniques such as
entity-relationship (ER) or UML. The data model con-
structs must be ultimately transformed into tables.

organ Kaufmann. All rights reserved.

ghtstone, Sam S., and Nadeau, Tom. The Morgan Kaufmann Series in Data Management Systems : Database Modeling and Design : Logical Design (5). Saint Louis, US: Morgan Kaufmann, 2011. ProQuest ebrary. Web. 9 March 2017.

4 Chapter 1 INTRODUCTION

Figure 1.1 The database life
cycle.

»

\L Information Requirements

@etermine requiremen@{

Logical Design

[multiple views]

A4
(Model)% }(Integrate views)

[single view]

Gran sform to SQL table@{

v
—(Normalize)

CS elect in dexes)

Physical Design

v

\b [special requirements]

Q }CDEHDf’FﬂﬂliIE)

[else]

%CImplement){
[else]
CMDI“IitDI’ and detect changing requirements; }<>
[defunct]

Implementation

®

a. Conceptual data modeling. The data requirements are

analyzed and modeled by using an ER or UML dia-
gram that includes many features we will study in
Chapters 2 and 3, for example, semantics for optional
relationships, ternary relationships, supertypes, and
subtypes (categories). Processing requirements are
typically specified using natural language expressions
or SQL commands along with the frequency of occur-
rence. Figure 1.2 (Step Il.a) shows a possible ER

Teorey, Toby J., Lightstone, Sam S., and Nadeau, Tom. The Morgan Kaufmann Series in Data Management Systems : Database Modeling and Design : Logical Design (5). Saint Louis, US: Morgan Kaufmann, 2011. ProQuest ebrary. Web. 9 March 2017.

Copyright © 2011. Morgan Kaufmann. All rights reserved.

Chapter 1 INTRODUCTION 5

Database Life Cycle

Step | Information Requirements (reality)

s O C}. Salespersons

Step ll.a Conceptual data modeling

customer b @ N | product
Retall N N
salesperson
view served-by sold-by

1

N

Step Il Logical design

salesperson

Step ll.b View integration

Customer view i T
N N /’\’_
customer | places order h_f,r//
N

N N
/\,L ’ Figure 1.2 Life cycle
served-by salesperson product results, step by step
\\/ (continued on following
Integration of retail salesperson’s and customer’s views pa QE}.

model representation of the product/customer data-
base in the mind of the end user.

b. View integration. Usually, when the design is large and
more than one person is involved in requirements anal-
ysis, multiple views of data and relationships occur,
resulting in inconsistencies due to variance in taxon-
omy, context, or perception. To eliminate redundancy
and inconsistency from the model, these views must

Teorey, Toby J., Lightstone, Sam S., and Nadeau, Tom. The Morgan Kaufmann Series in Data Management Systems : Database Modeling and Design : Logical Design (5). Saint Louis, US: Morgan Kaufmann, 2011. ProQuest ebrary. Web. 9 March 2017.
Copyright © 2011. Morgan Kaufmann. All rights reserved.

6 Chapter 1 INTRODUCTION

Figure 1.2, cont'd
Further life cycle results,
step by step.

Step ll.c Transformation of the conceptual data model to SQL tables

Customer

cust-no

cust-name

Product

prod-no

prod-name

gty-in-stock

Salesperson

create table customer
(cust_no integer,
cust_name char(15),
cust_addr char(30),
sales_name char(15),
prod_no integer,
primary key (cust_no),
foreign key (sales_name)
references salesperson,
foreign key (prod_no)
references product):

sales-name

addr

dept

job-level

vacation-days

Order

order-no

sales-name

cust-no

Step ll.d Normalization of SQL tables

Order-product

order-no prod-no

Decomposition of tables and removal of update anomalies.

Salesperson

SalesVacations

sales-name

addr

dept

job-level

job-level vacation-days

Step lll Physical Design

Indexing
Clustering
Partitioning

Materialized views

Denormalization

be “rationalized” and consolidated into a single global
view. View integration requires the use of ER semantic
tools such as identification of synonyms, aggregation,
and generalization. In Figure 1.2 (Step II.b), two possi-
ble views of the product/customer database are merged
into a single global view based on common data for
customer and order. View integration is also important
when applications have to be integrated, and each may
be written with its own view of the database.

Teorey, Toby J., Lightstone, Sam S., and Nadeau, Tom. The Morgan Kaufmann Series in Data Management Systems : Database Modeling and Design : Logical Design (5). Saint Louis, US: Morgan Kaufmann, 2011. ProQuest ebrary. Web. 9 March 2017.

Copyright © 2011. Morgan Kaufmann. All rights reserved.

Chapter 1 INTRODUCTION 7

c. Transformation of the conceptual data model to SQL
tables. Based on a categorization of data modeling con-
structs and a set of mapping rules, each relationship
and its associated entities are transtormed into a set of
DBMS-specific candidate relational tables. We will
show these transformations in standard SQL in Chapter
5. Redundant tables are eliminated as part of this pro-
cess. In our example, the tables in Step Il.c of Figure 1.2
are the result of transformation of the integrated ER
model in Step I1.b.

d. Normalization of tables. Given a table (R), a set of

attributes (B) is functionally dependent on another
set of attributes (A) if, at each instant of time, each
A value is associated with exactly one B value. Func-
tional dependencies (FDs) are derived from the con-
ceptual data model diagram and the semantics of
data relationships in the requirements analysis. They
represent the dependencies among data elements
that are unique identifiers (keys) of entities. Addi-
tional FDs, which represent the dependencies
between key and nonkey attributes within entities,
can be derived from the requirements specification.
Candidate relational tables associated with all
derived FDs are normalized (i.e., modified by
decomposing or splitting tables into smaller tables)
using standard normalization techniques. Finally,
redundancies in the data that occur in normalized
candidate tables are analyzed further for possible
elimination, with the constraint that data integrity
must be preserved. An example of normalization of
the Salesperson table into the new Salesperson and
SalesVacations tables is shown in Figure 1.2 from
Step Il.c to Step I1.d.
We note here that database tool vendors tend to use
the term logical model to refer to the conceptual data
model, and they use the term physical model to refer
to the DBMS-specific implementation model (e.g.,
SQL tables). We also note that many conceptual data
models are obtained not from scratch, but from the
process of reverse engineering from an existing
DBMS-specific schema (Silberschatz et al., 2010).

, Tol ., Lightstone, Sam S., and Nadeau, Tom. The Morgan Kaufmann Series in Data Management Systems : Database Modeling and Design : Logical Design (5). Saint Louis, US: Morgan Kaufmann, 2011. ProQuest ebrary. Web. 9 March 2017.

. Morgan Kaufmann. All rights reserved.

8 Chapter 1 INTRODUCTION

I11. Physical design. The physical design step involves the
selection of indexes (access methods), partitioning,
and clustering of data. The logical design methodology
in Step II simplifies the approach to designing large rela-
tional databases by reducing the number of data
dependencies that need to be analyzed. This is accom-
plished by inserting the conceptual data modeling and
integration steps (Steps Il.a and I1.b of Figure 1.2) into
the traditional relational design approach. The objective
of these steps is an accurate representation of reality.
Data integrity is preserved through normalization of the
candidate tables created when the conceptual data
model is transformed into a relational model. The pur-
pose of physical design is to then optimize performance.
As part of the physical design, the global schema can
sometimes be refined in limited ways to retlect pro-
cessing (query and transaction) requirements if there
are obvious large gains to be made in efficiency. This
is called denormalization. It consists of selecting domi-
nant processes on the basis of high frequency, high vol-
ume, or explicit priority; defining simple extensions to
tables that will improve query performance; evaluating
total cost for query, update, and storage; and consider-
ing the side effects, such as possible loss of integrity.
This is particularly important for online analytical pro-
cessing (OLAP) applications.

IV. Database implementation, monitoring, and modifica-
tion. Once the design is completed, the database can be

created through implementation of the formal schema
using the data definition language (DDL) of a DBMS. Then
the data manipulation language (DML) can be used to
query and update the database, as well as to set up indexes
and establish constraints, such as referential integrity.
The language SQL contains both DDL and DML con-
structs; for example, the create table command represents
DDL, and the select command represents DML.
As the database begins operation, monitoring
indicates whether performance requirements are being
met. If they are not being satisfied, modifications should
be made to improve performance. Other modifications
may be necessary when requirements change or end

, Tol ., Lightstone, Sam S., and Nadeau, Tom. The Morgan Kaufmann Series in Data Management Systems : Database Modeling and Design : Logical Design (5). Saint Louis, US: Morgan Kaufmann, 2011. ProQuest ebrary. Web. 9 March 2017.

. Morgan Kaufmann. All rights reserved.

Chapter 1 INTRODUCTION 9

user expectations increase with good performance. Thus,
the life cycle continues with monitoring, redesign, and
modifications. In the next two chapters we look first
at the basic data modeling concepts; then, starting in
Chapter 4, we apply these concepts to the database
design process.

Conceptual Data Modeling

Conceptual data modeling is the driving component of
logical database design. Let us take a look of how this
important component came about and why it is important.
Schema diagrams were formalized in the 1960s by Charles
Bachman. He used rectangles to denote record types and
directed arrows from one record type to another to denote
a one-to-many relationship among instances of records of
the two types. The entity-relationship (ER) approach for
conceptual data modeling, one of the two approaches
emphasized in this book, and described in detail in Chapter
2, was first presented in 1976 by Peter Chen. The Chen form
of ER models uses rectangles to specity entities, which are
somewhat analogous to records. It also uses diamond-shaped
objects to represent the various types of relationships, which
are differentiated by numbers or letters placed on the lines
connecting the diamonds to the rectangles.

The Unified Modeling Language (UML) was introduced
in 1997 by Grady Booch and James Rumbaugh and has
become a standard graphical language for specitying and
documenting large-scale software systems. The data
modeling component of UML (now UML-2) has a great
deal of similarity with the ER model, and will be presented
in detail in Chapter 3. We will use both the ER model and
UML to illustrate the data modeling and logical database
design examples throughout this book.

In conceptual data modeling, the overriding emphasis is
on simplicity and readability. The goal of conceptual
schema design, where the ER and UML approaches are
most useful, is to capture real-world data requirements in
a simple and meaningful way that is understandable by
both the database designer and the end user. The end user
is the person responsible for accessing the database and

organ Kaufmann. All rights reserved.

ghtstone, Sam S., and Nadeau, Tom. The Morgan Kaufmann Series in Data Management Systems : Database Modeling and Design : Logical Design (5). Saint Louis, US: Morgan Kaufmann, 2011. ProQuest ebrary. Web. 9 March 2017.

10 Chapter 1 INTRODUCTION

executing queries and updates through the use of DBMS
software, and therefore has a vested interest in the data-
base design process.

Summary

Knowledge of data modeling and database design tec-
hniques is important for database practitioners and appli-
cation developers. The database life cycle shows what
steps are needed in a methodical approach to designing a
database, from logical design, which is independent of
the system environment, to physical design, which is based
on the details of the database management system chosen
to implement the database. Among the variety of data
modeling approaches, the ER and UML data models are
arguably the most popular in use today because of their
simplicity and readability.

Tips and Insights for Database
Professionals

Tip 1. Work methodically through the steps of the
life cycle. Each step is clearly defined and has pro-
duced a result that can serve as a valid input to the
next step.
Tip 2. Correct design errors as soon as possible by going
back to the previous step and trying new alternatives.
The later you wait, the more costly the errors and the lon-
ger the fixes.
Tip 3. Separate the logical and physical design com-
pletely because you are trying to satisty completely dif-
ferent objectives.
Logical design. The objective is to obtain a feasible
solution to satisfy all known and potential queries
and updates. There are many possible designs; it is
not necessary to find a “best” logical design, just a
teasible one. Save the effort for optimization for phys-
ical design.
Physical design. The objective is to optimize perfor-
mance for known and projected queries and updates.

, Tol ., Lightstone, Sam S., and Nadeau, Tom. The Morgan Kaufmann Series in Data Management Systems : Database Modeling and Design : Logical Design (5). Saint Louis, US: Morgan Kaufmann, 2011. ProQuest ebrary. Web. 9 March 2017.

. Morgan Kaufmann. All rights reserved.

Chapter 1 INTRODUCTION 11

htstone, Sam S., and Nadeau, To
organ Kaufmann. All rights reserved

Literature Summary

Much of the early data modeling work was done by
Bachman (1969, 1972), Chen (1976), Senko et al. (1973),
and others. Database design textbooks that adhere to a sig-
nificant portion of the relational database life cycle
described in this chapter are Teorey and Fry (1982), Muller
(1999), Stephens and Plew (2000), Silverston (2001),
Harrington (2002), Bagui (2003), Hernandez and Getz
(2003), Simsion and Witt (2004), Powell (2005), Ambler and
Sadalage (2006), Scamell and Umanath (2007), Halpin and
Morgan (2008), Mannino (2008), Stephens (2008), Churcher
(2009), and Hoberman (2009).

Temporal (time-varying) databases are defined and
discussed in Jenson and Snodgrass (1996) and Snodgrass
(2000). Other well-used approaches for conceptual data
modeling include IDEF1X (Bruce, 1992; IDEF1X, 2005)
and the data modeling component of the Zachmann
Framework (Zachmann, 1987; Zachmann Institute for
Framework Advancement, 2005). Schema evolution during
development, a frequently occurring problem, is addressed
in Harriman, Hodgetts, and Leo (2004).

m. The Morgan Kaufmann Series in Data Management Systems : Database Modeling and Design : Logical Design (5). Saint Louis, US: Morgan Kaufmann, 2011. ProQuest ebrary. Web. 9 March 2017.

This page intentionally left blank

Teorey, Toby J., Lightstone, Sam S., and Nadeau, Tom. The Morgan Kaufmann Series in Data Management Systems : Database Modeling and Design : Logical Design (5). Saint Louis, US: Morgan Kaufmann, 2011. ProQuest ebrary. Web. 9 March 2017.
Copyright © 2011. Morgan Kaufmann. All rights reserved.

