Controllers

—by Jon Galloway

WHAT’'S IN THIS CHAPTER?

» Understanding the controller’s role
> Setting up a sample application: The MVC Music Store
> Controller 101

This chapter explains how controllers respond to user HTTP requests and return information
to the browser. It focuses on the function of controllers and controller actions. We haven’t
covered views and models yet, so our controller action samples will be a little high level. This
chapter lays the groundwork for the following several chapters.

Chapter 1 discussed the Model-View-Controller (MVC) pattern in general and then followed up
with how ASP.NET MVC compares with ASP.NET Web Forms. Now it’s time to get into 2 bit
more detail about one of the core elements of the three-sided pattern that is MVC—the controller.

THE CONTROLLER’'S ROLE

Starting out with a quick definition and then diving into detail from there is probably best.
Keep this definition in mind while reading this chapter. It can help to ground the discussion
ahead with what a controller is all about and what it’s supposed to do.

Controllers within the MVC pattern are responsible for responding to user input, often mak-
ing changes to the model in response to user input. In this way, controllers in the MVC pattern
are concerned with the flow of the application, working with data coming in, and providing
data going out to the relevant view. '

Way back in the day, web servers served up HTML stored in static files on disk. As dynamic web
pages gained prominence, web servers served HTML generated on the fly from dynamic scripts

32 | CHAPTER2 CONTROLLERS

that were also located on disk. With MVC, it’s a little different. The URL tells the routing mechanism
(which yow'll begin to explore in the next few chapters, and learn about in depth in Chapter 9) which
controller class to instantiate and which action method to call, and supplies the required arguments
to that method. The controller’s method then decides which view to use, and that view then renders
the HTML.

Rather than having a direct relationship between the URL and a file living on the web server’s hard
drive, a relationship exists between the URL and a method on a controller class. ASPNET MVC
implements the front controller variant of the MVC pattern, and the controller sits in front of every-
thing except the routing subsystem, as discussed in Chapter 9.

A good way to think about how MVC works in a web scenario is that MVC serves up the results of
method calls, not dynamically generated (also known as scripted) pages.

A BRIEF HylS‘TO‘RY OF CONTROLLERS

~The MVC pattern has been around for a long time—decades before thls era of
‘modern web apphcatlons When MVC first developed, graphical user interfaces
{GUISs) were just a few years old, and the interaction patterns were still evolving.

Back then, when the user pressed a key or clicked the screen, a process would
“Jisten,” and that process was the controller. The controller was responsible for

- receiving that input, interpreting it and updating whatever data class was required
 (the model), and then notifying the user of changes or program updates (the view, -
iWhlch Chapter 3 covers in more detail).

1n the late 1970s and early 1980s, researchers at Xerox PARC (whxch comcxden-
tally, was where the MVC pattern was incubated) began working with the notion
 of the GUI, wherein users “worked” within a virtual “desktop” environment on
~ which they could click and drag items around. From this came the idea of event-
driven | p;ogmmmmgmexecutmg program actions based on events fired by a user,
such as the click of a mouse or the pressing of a key on the keypad.

‘Over tlme, as GUIs became the norm, it became clear that the MVC pattern wasn’t
 entirely appropriate for these new systems. In such a system, the GUI components
‘themqelves handled user input. If a button was clicked, it was the button that
_responded to the mouse click, not a controller. The button would, in turn, notify
. ianyobservers or listeners that it had been clicked. Patterns such as the Model-
View-Presenter (MVP) pmved to be more relevant to these modern systems than
the‘M“ c pattern. o

. ithe server mdicatmg that it has been clicked. The beauty of this approach is that it
}*saliows the developer to. Work ata hlgher level of abstraction when writing code.

The Controller’s Role

~ Digging under the hood a bit, however, reveals that a lot of work is going on to
: si‘mulate that Componenﬁzed‘event—dx:jivén‘ experience. At its core, when a ‘bqttolri e
 is clicked, the browser submits a request to the server containing the state of the |
_ controls on the page encapsulated in an encoded hidden input. On the server side
_in response to this request, ASP.NET has to rebuild the entire control hierarchy
_ and then interpret that request, using the contents of that request to restore the cur
 rent state of the application for the current user. All this happens because the Web,
by its nature, is stateless. With a rich-client Windows GUI app, no need exists to
rebuild the entire screen and control hierarchy every time the user clicks a Ul wid-
get, because the application doesn’t go away. ek

With the Web, the state of the app for the user essentially vanishes and then is
restored with every click. Well, that’s an oversimplification, but the user interface,
 in the form of HTML, is sent to the browser from the server. This raises the ques
here is the application?” For most web pages, the applicatior is a danc
ween clie t and server, each,,maintaiining\‘a;tinyf bit of state, perhaps a cooki
 the client or chunk of m'émpi:y~,~9n,fhelée‘r‘x‘(er,nfall?“carefully orchestrated o cover

up the Tiny Lie. The Lie is that the Internet and HTTP can be programmed again
_inastateful manner. : S : - St

'kf:ally',' teful platfor 'Givé‘n,this,"the”indiist:y" has seen the resurgenc

_ ally stateful platform. Give the industry e of the MVC
 partern, albeit with a few slight modifications. o

-f;{0né,examplé of such a modification is that in traditional MVC, the model can
“observe” the view via an indirect association to the view. This allows the model to

_ sent 1o the bre ser, the model is generally no longer in memory and does not have
: zthe;abi‘iity'td-dbs‘érve events on the view. (Note that exceptions to this change exist,

as described in Chapter 8, regarding the application of Ajax to MVC)
Wn:hMVC for the Web, the controller is once again at the forefront. Applying this

ler is entirely responsible for interpreting that request, manipulating the mode
necessary, and then selecting a view to send back to the user via the response.

: Theunderpmmngofevent-dnven ,p‘r'ogrém:miﬁg(the”iicq‘nccpt,bf state) is Iost Whe:@ -
~ programming for th Web, and many are not willing to embrace the Lie of a virtu-

~ change itself based on view events. With MVC for the Web, by the time the view is

pattern requires that every user inputtoa web application simply take the form of

request. :Fotkexample,“wit\h ASP.NET MVC, each request is r,out,ed‘(u’ski‘ng ‘ro:\diting‘,':
discussed in Chapter 9) to a method on a controller (called an action). The control- -

1if

that, you can just create a new MVC § application using the Internet Application template
Razor view engine, as shown in Figure 1-9 in the previous chapter.

With that bit of theory out of the way, let’s dig into ASP.NET MVC’s specific implementation of
controllers. You’ll be continuing from the new project you created in Chapter 1. If you skipped over

and the

34 | CHAPTER2 CONTROLLERS

A SAMPLE APPLICATION: THE MVC MUSIC STORE

As mentioned in Chapter 1, we will use the MVC Music Store application for a lot of our

samples in this book. You can find out more about the MVC Music Store application at http://
mvemusicstore . codeplex . com. The Music Store tutorial is intended for beginners and moves at a
pretty slow pace; because this is a Professional Series book, we’ll move faster and cover some more
advanced background detail. If you want a slower, simpler introduction to any of these topics,

feel free to refer to the MVC Music Store tutorial. It’s available online in HTML format and as a
150-page downloadable PDF. MVC Music Store was published under the Creative Commons license
to allow for free reuse, and we’ll be referencing it at times.

The MVC Music Store application is a simple music store that includes basic shopping, checkout,

and administration, as shown in Figure 2-1.

Home Page~ MVC Music

10,000 Black Light MR 73Ty LLAnd

! Days Syndrome Justice For
All

myvcmusicstore codeplex.com

admin

FIGURE 2-1

A Sample Application: The MVC Music Store | 35

The following store features are covered:

> Browse: Browse through music by genre and artist, as shown in Figure 2-2.

Altemnative
Classical

Sampie Rap
Latin

Blues

Electronic

Biue Moods Come Away
With Me

Elegant. Metal
Gypsy

Sl

Login

Heart of the
Night

Kind of Blue

Live on Earlh Miles Ahead

Morming Qutbreak
Dance

Quanta Gente
Veio ver—
@ém}s Be

Quiet Songs

Rooi Down The Best Of
Billy Cobham

} ! hitp://localhost:43524/ Store/Browse?Genre=Jazz k

FIGURE 2-2

» Add: Add songs to your cart, as shown in Figure 2-3.

The Essential The Essentiat
Mies Davis Miles Davis
[Disc 1} {Disc 2]

mycmusicsiore codeplex.com

admin

warner 25
Anos

Worlds

38 | CHAPTER2Z CONTROLLERS

tndex ~ MYC Music Store

. ASPINET VG Music Store

Index
Create New
Name Name Tite price
oo wemmwox TesestorMeMenAtvo. Ts899 Eqt{Detals | Delete

Metal VMetal!iCa - AndJustlce For All $899 Edit{éééilsiDeleie
s pemew wenmw sese oo Detete
e como Tayiem. Backlgnsmione $599 E6t|Detai| Dee
e T

Electronic Supreme Beings of Leisure Tt 2 Edit | Details | Delete

Indie Soul-Junk 1960 . £dit | Detaiis | Detete

Electronic deadmaud 4x4=12 . Edit | Details | Delele
Classical London Symphony Orchestra A Copland Celebration, Vo... . £dit | Details { Delele
Efechronic Paul Oakenfold A Lively Mind Edit | Details | Delele

Rock iron Maiden A Matter of Life and Deat... Edit | Details | Delete

Metal Iron Maiden A Real Dead One Edit | Details | Delete

Metal fron Maiden A Real Live One Fdit | Details | Delete

Rock Coldptay A Rush of Biood to the He... 99 Edit| Details | Delete
Classical Britten Sinfonia, vor Bo... A Soprano Inspired Edit | Details | Delete

myemusicstore.codeplex.com

FIGURE 2-6

CONTROLLER BASICS

Getting started with MVC presents something of a chicken and egg problem: There are three parts
(model, view, and controller) to understand, and really digging into one of those parts without
understanding the others is difficult. To get started, yow'll first learn about controllers at a very high

level, ignoring models and views for a bit.

After learning the basics of how controllers work, you'll be ready to learn about views, models, and
other ASP.NET MVC development topics at a deeper level. You'll then be ready to circle back to
advanced controller topics in Chapter 15.

Controller Basics | 39

A Simple Example: The Home Controller

Before writing any real code, let’s start by looking at what’s included by default in a new project.
Projects created using the MVC template with Individual User Accounts include two controller classes:

» HomeController: Responsible for the “home page” at the root of the website, as well as an
“about page” and a “contact page”
> accountController: Responsible for account-related requests, such as login and account

registration

In the Visual Studio project, expand the /Controllers folder and open HomeController.cs, as
shown in Figure 2-7.

e I I
ARCHITECTURE WEB ESSENTIALS ANALYZE - WINDOW . HELP

b MycMusicStore - Microsoft Visual Studia
ET VIEW

PROVECT " BULD DEBUG TEAM - TOOLS TEST

e
: Ji b ttemetEplorst » 1 €7 Debug < $E L

y MucMusicStore.Controtfers. HameControlier -1® Inded)

FIGURE 2-7

the homepage of the website. Follow these steps to ma
1.
choice—perhaps, “I like cake!:

using System;
using System.Collections .Generic;
using System.Ling;

&
RTINS ety g_
using System.Collections.Generic; *
using System.ling; § g
using System.Web; £ MvcMassicStore g
using System.beb.Mvc; b & Properties S
S b wa Refences L
<namespace MvcMusicStore.Controllers 4% App_ Data 2
p b 5 App.Stert LE
Berimenn ey DR
public class HomeController Controller 4 %&fcmm : §
{ 4 % Controllers =
: St » o AccountControllercs
H public ActionResult Index{) Sy i denelantiollea e
> 8 fonts
return View(); b g Models
» i Seripts
b Views
e o £} faviconico
public ActionRescit About{() b &Y Globalasax
y) packages.confi
ViewBag.Message = “Your application description page."; ‘;-):,::: Rudm‘imml
b Startupcs
return View(); b ¢ Web.config
pav—
public ActionResult Contact{}
; . ViewBag.Message = "Your contact page.”;
i return View();
[
}
m
| Solution Bxplocer | T
Error st Breskpeints | Output - Test Reslts Symiiat Regults . Package

Notice that this is a pretty simple class that inherits from the Controller base class. The Index

method of the HomeController class is responsible for deciding what happens when you browse to
ke a simple edit and run the application:

Replace “Your application description page.” in the About method with the phrase of your

40 | CHAPTER2 CONTROLLERS

using System.Web;
using System.Web.Mvc;

namespace MvcMusicStore.Controllers

public class HomeController : Controller

{

public ActionResult Index ()

{

return View();

}

public ActionResult About ()

{

ViewBag.Message = "I like cakel";
return View();

}

public ActionResult Contact({)

{

ViewBag.Message = "Your contact page.";
return View();

}
}

2. Run the application by pressing the FS5 key (or by using the Debug = Start Debugging menu
item, if you prefer). Visual Studio compiles the application and launches the site running

under IIS Express.

it usmg port 6641 Your port number
3 Chas/Store/Browselnthmtuur .

3. A browser window opens and the home page of the site appears, as shown in Figure 2-8.

Controller Basics | 41

- Home Page - My ASP.NET .., ¥

- ASP.NET =
ASP.NET is a free web framework for building great Web sites and Web applications
using HTML, CSS and JavaScript. ‘

Getting started Get more libraries Web Hosting
ASP.NET MVC gives you a powerful, pattems- NuGet is a free Visual Studio extension that You can easily find a web hosting company that
based way o bulid dynamic websites that makes it easy lo add, remove, and update offers the right mix of features and price for your

enables a clean separalion of concems and librasies and tools in Visual Studio projects. applications.
gives you full control over markup for enjoyable, : e
agile development.

Learn more »

FIGURE 2-8

4. Navigate to the About page by browsing to /Home/About (or by clicking the About link in
the header). Your updated message displays, as shown in Figure 2-9.

 About - My ASP.NET Appli... ¥

About.

| like cake!

Use this area o provide additionat information

@ 2013 - My ASP.NET Application

FIGURE 2-9

Great—you created a new project and put some words on the screen! Now let’s get to work on
building an actual application by creating a new controller.

42 | CHAPTER2 CONTROLLERS

Writing Your First Controller

In this section, youw'll create a controller to handle URLSs related to browsing through the music
catalog. This controller will support three scenarios:

» The index page lists the music genres that your store carries.
> Clicking a genre leads to a browse page that lists all the music albums in a particular genre.

» Clicking an album leads to a details page that shows information about a specific
music album.

Creating the New Controller

To create the controller, you start by adding a new Storecontroller class. To do so:

1. Right-click the controllers folder within the Solution Explorer and select the
Add = Controller menu item, as shown in Figure 2-10.

co g e-sndn #l=8
.} Search Solution Exp(ore;r'(ﬂrl&;) H-

$a1 Solution 'MveMusicStore' (1 project)
4 T MvcMusiStore
¢ b M Properties

P =W References

Web Essentials
&1 View in Browser (Internet Explorer} Crb+-Shift+ W
Browse With,

€= AccountControllercs
¢r HomeControlier.cs

(' Newltem.. Ciri+Shift+A Scopeto This B frviconi

% Bdsting tem... ShifteAltrf, |50 New Solution Explorer View 5 e

| NewScaffolded ftem... # showonCodeMsp N) packages.config
New Folder Exclude From Project L) Project_Readmehtmi
Add ASP.NET Folder P IY Cwt CtileX € Stattup.cs

i . T 1) Web.config
i Web Form i Copy Cuds €
L% Class.. A1 Paste Ctriedd

Defete Del
3 Rename
Coﬁf!"ath ‘
-] 6peﬁC§mm$nd PAr'oymp& ‘
< Opééx Folder in Fiteapxo}er
: i Pmpertiés ‘ h AmEatér

slution Explorer Team &phw e

FIGURE 210

Controller Basics | 43

2. Select the MVC S Controller - Empty scaffolding template, as shown in Figure 2-11.

ik

b Common ‘MVL 5 Controller -'Empty
by Microsoft
¥3000

MVC 5 Controller with read/wiite actions An Empty MUC contralier, :

MVC 5 Cantroller with views, using Entity Framework d: MveControliesEmptyScaffolder

Weh AP 2 Controfier— Empty

Web API 2 Controller with actions, using Entity Framework

Web API 2 Controller with read/write actions

Web API 2 OData Controller with actions, using Entity Framework

Web APt 2 OData Controlier with read/write actions

‘%
2
4
‘
‘z
‘
‘z

FIGURE 2-11

3. Name the controller StoreController and press the Add button, as shown in Figure 2-12.

Controller name; iController

FIGURE 2-12

Writing Your Action Methods

Your new StoreController already has an Index method. You’ll use this 1ndex method to
implement your listing page that lists all genres in your music store. Youw’ll also add two additional
methods to implement the two other scenarios you want your StoreController to handle: Browse
and Details.

These methods (Index, Browse, and Details) within your controller are called controller actions.
As you've already seen with the HomeController.Index action method, their job is to respond to
URL requests, perform the appropriate actions, and return a response back to the browser or user
that invoked the URL.

44 | CHAPTER2 CONTROLLERS

To get an idea of how a controller action works, follow these steps:

1. Change the signature of the 1ndex method to return a string (rather than an ActionResult)
and change the return value to "Hello from Store.Index ()" as follows:
//

// GET: /Store/
public string Index{)

{
}

2. Add a store.Browse action that returns "Hello from Store.Browse ()" and a Store
Details action that returns "Hello from Store.Details ()", as shown in the complete
code for the storeController that follows:

return "Hello from Store.Index()";

using System;

using System.Collections.Generic;
using System.Ling;

using System.Web;

using System.Web.Mvc;

namespace MvcMusicStore.Controllers

{

public class StoreController : Controller

{
/7
// GET: /Store/
public string Index()

{

-}

/!

// GET: /Store/Browse
public string Browse({)

{

}

//

// GET: /Store/Details
public string Details()

{
}

return "Hello from Store.Index()";

return "Hello from Store.Browse()";

return "Hello from Store.Details({)";

}

3. Run the project again and browse the following URLs:

» /Store
» /Store/Browse
» /Store/Details

Accessing these URLs invokes the action methods within your controller and returns string
responses, as shown in Figure 2-13.

Controller Basics | 45

Hello from Store.Details()

FIGURE 2413

A Few Quick Observations

Let’s draw some conclusions from this quick experiment:

» Browsing to /Store/Details caused the Details method of the StoreController class to
be executed, without any additional configuration. This is routing in action. We’ll talk a little
more about routing later in this chapter and go into detail in Chapter 9.

*» Though we used Visual Studio tooling to create the controller class, it’s a very simple class.
The only way you would know from looking that it was a controller class was that it inberits
ﬁ0n1System.Web.Mvc.Controller.

> We've put text in a browser with just a controller—we didn’t use a model or a view.
Although models and views are incredibly useful within ASP.NET MVC, controllers are
really at the heart. Every request goes through a controller, whereas some will not need to
make use of models and views.

Parameters in Controller Actions

The previous examples have been of writing out constant strings. The next step is to make them
dynamic actions by reacting to parameters that are passed in via the URL. You can do so by follow-
ing these steps:

1. Change the Browse action method to retrieve a query string value from the URL. You can
do this by adding a “genre” parameter of type string to your action method. When you do
this, ASP.NET MVC automatically passes any query string or form post parameters named
“genre” to your action method when it is invoked.

/7
// GET: /Store/Browse?genre=?Disco
public string Browse (string genre)

{

string message =
HttpUtility.HtmlEncode ("Store.Browse, Genre = " + genre);

return message;

46 | CHAPTER2 CONTROLLERS

 HTML ENCODING USER INPUT_

- We're using the HttpUtility HemlEncode utility method to sanitize the user input.
~ This prevents users from injecting JavaScript code or HTML markup into our view
‘ With a link like / Store/Browse?Genre=<script>window. location='http://

. hé¢kér Sexample.com!</script>.

2. Browse to /Store/Browse?Genre=Disco, as shown in Figure 2-14.

i?% ht:p:!iloca(hosﬂ@(}dl!&cre.fB(che?Gehre:Disco PyoX k%‘} tocathost

Store.Browse, Genre = Disco

L -

FIGURE 2-14

This shows that your controller actions can read a query string value by accepting itasa
parameter on the action method.

3. Change the Details action to read and display an input parameter named ID. Unlike the
P P
previous method, you won’t be embedding the ID value as a query string parameter. Instead
yowll embed it directly within the URL itself. For example: /store/Details/5.

ASP.NET MVC lets you easily do this without having to configure anything extra. ASP.NET
MVC’s default routing convention is to treat the segment of a URL after the action method
name as a parameter named ID. If your action method has a parameter named ID, then

ASP.NET MVC automatically passes the URL segment to you as a parameter.

//
// GET: /Store/Details/5
public string Details(int id)

{

string message = ugtore.Details, ID = " + id;

return message;

}

4. Run the application and browse to /Store/Details/5, as shown in Figure 2-15.

Summary | 47

. it/ locathost 26541 Stare/Details/S . £ = & | 12 locathost

Store.Details, ID=5

FIGURE 2-15

As the preceding examples indicate, you can look at controller actions as if the web browser were
directly calling methods on your controller class. The class, method, and parameters are all speci-
fied as path segments or query strings in the URL, and the result is a string that’s returned to the
browser. That’s a huge oversimplification, ignoring things such as:

» The way routing maps the URL to actions.

> The fact that you’ll almost always use views as templates to generate the strings (usually
HTML) to be returned to the browser.

The fact that actions rarely return raw strings; they usually return the appropriate
ActionResult, which handles things such as HTTP status codes, calling the View templating

system, and so on.

Controllers offer a lot of opportunities for customization and extensibility, but youw’ll probably find
that you rarely—if ever—need to take advantage of that fact. In general use, controllers are called
via a URL, they execute your custom code, and they return a view. With that in mind, we’ll defer
our look at the gory details behind how controllers are defined, invoked, and extended. You can find
those, with other advanced topics, discussed in Chapter 13. You've learned enough about the basics
of how controllers work to throw views into the mix, and we cover those in Chapter 3.

SUMMARY

Controllers are the conductors of an MVC application, tightly orchestrating the interactions of the
user, the model objects, and the views. They are responsible for responding to user input, manipu-
lating the appropriate model objects, and then selecting the appropriate view to display back to the
user in response to the initial input.

In this chapter, you learned the fundamentals of how controllers work in isolation from views and
models. With this basic understanding of how your application can execute code in response to URL
requests, you’re ready to tackle the user interface. We'll look at that next.

