
C H A P T E R 6
Using Arrays

In this chapter you will:

�� Declare an array and assign values to array elements

�� Access array elements

�� Search an array using a loop

�� Use the BinarySearch(), Sort(), and Reverse()
methods

�� Use multidimensional arrays

�� Learn about array issues in GUI programs

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

228

C H A P T E R 6 Using Arrays

Storing values in variables provides programs with flexibility; a program that uses variables to
replace constants can manipulate different values each time it executes. When you add loops to
your programs, the same variable can hold different values during successive cycles through the
loop within the same program execution. Learning to use the data structure known as an array
offers further flexibility. Arrays allow you to store multiple values in adjacent memory locations
and access them by varying a value that indicates which of the stored values to use. In this
chapter, you will learn to create and manage C# arrays.

Declaring an Array and Assigning Values
to Array Elements
Sometimes, storing just one value in memory at a time isn’t adequate. For example, a sales
manager who supervises 20 employees might want to determine whether each employee has
produced sales above or below the average amount. When you enter the first employee’s sales
value into a program, you can’t determine whether it is above or below average because you
won’t know the average until you have entered all 20 values. You might plan to assign
20 sales values to 20 separate variables, each with a unique name, then sum and average them.
However, that process is awkward and unwieldy: You need 20 prompts, 20 input statements
using 20 separate storage locations (in other words, 20 separate variable names), and
20 addition statements. This method might work for 20 salespeople, but what if you have
30, 40, or 10,000 salespeople?
You could enter data for 20 salespeople using just one variable in 20 successive iterations
through a loop that contains one prompt, one input statement, and one addition statement.
Unfortunately, when you enter the sales value for the second employee, that data item replaces
the value for the first employee, and the first employee’s value is no longer available to compare
to the average of all 20 values. With this approach, when the data-entry loop finishes, the only
sales value left in memory is the last one entered.
The best solution to this problem is to create an array. An array is a list of data items that all
have the same data type and the same name. Each object in an array is an array element. You
can distinguish each element from the others in an array with a subscript. A subscript (also
called an index) is an integer that indicates the position of a particular array element. In C#, a
subscript is written between square brackets that follow an array name.
You declare an array variable with a data type, a pair of square brackets, and an identifier. For
example, to declare an array of double values to hold sales values for salespeople, you write the
following:
double[] sales;

 In some programming languages, such as C++ and Java, you also can declare an array variable by placing
the square brackets after the array name, as in double sales[];. This format is illegal in C#.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

229

Declaring an Array and Assigning Values to Array Elements

You can provide any legal identifier you want for an array, but programmers conventionally
name arrays like they name variables—starting with a lowercase letter and using uppercase
letters to begin subsequent words. Additionally, many programmers observe one of the
following conventions to make it more obvious that the name represents a group of items:
 Arrays are often named using a plural noun such as sales.
 Arrays are often named by adding a final word that implies a group, such as salesList,
salesTable, or salesArray.

After you declare an array variable, you still need to create the actual array because declaring
an array and reserving memory space for it are two distinct processes. You can declare an
array variable and reserve memory locations for 20 sales objects using the following two
statements:
double[] sales;
sales = new double[20];

The keyword new is also known as the new operator; it is used to create objects. In this case, it
creates 20 separate sales elements. You also can declare and create an array in one statement,
such as the following:
double[] sales = new double[20];

 You can change the size of an array associated with an identifier, if necessary. For example, if you declare
int[] array;, you can assign five elements later with array = new int[5];; later in the program, you
might alter the array size to 100 with array = new int[100];. Still later, you could alter it again to be
either larger or smaller. Most other programming languages do not provide this capability. If you resize an
array in C#, the same identifier refers to a new array in memory, and all the values are set to the default
value for the data type.

The statement double[] sales = new double[20]; reserves 20 memory locations. In C#,
an array’s elements are numbered beginning with 0, so if an array has 20 elements, you can use
any subscript from 0 through 19. In other words, the first sales array element is sales[0],
and the last sales element is sales[19]. Figure 6-1 shows how the array of 20 sales values
appears in computer memory. The figure assumes that the array begins at memory address
20000. When you instantiate an array, you cannot choose its location in memory any more
than you can choose the location of any other variable. However, you do know that after the
first array element, the subsequent elements will follow immediately. Because a double takes
eight bytes of storage, each element of a double array is stored in succession at an address that
is eight bytes higher than the previous one.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

230

C H A P T E R 6 Using Arrays

In C#, an array subscript must be an integer. For example,
no array contains an element with a subscript of 1.5.
A subscript can be an integer constant or variable or an
expression that evaluates to an integer. For example, if
x and y are integers, and their sum is at least 0 but less
than the size of an array named array, then it is legal to
refer to the element array[x + y].

 Some other languages, such as COBOL, BASIC, and Visual
Basic, use parentheses rather than square brackets to
refer to individual array elements. By using brackets, the
creators of C# made it easier for you to distinguish arrays
from methods. Like C#, C++ and Java also use brackets
surrounding array subscripts.

A common mistake is to forget that the first element
in an array is element 0 (sometimes called the zeroth
element), especially if you know another programming
language in which the first array element is element 1.
Making this mistake means you will be “off by one” in

your use of any array. If you are “off by one” but still using a valid subscript when accessing
an array element, your program will most likely produce incorrect output. If you are “off by
one” so that your subscript becomes larger than the highest value allowed, you will cause a
program error.
To remember that array elements begin with element 0, it might be helpful to think of the
first array element as being “zero elements away from” the beginning of the array, the second
element as being “one element away from” the beginning of the array, and so on.
When you work with any individual array element, you treat it no differently than you treat a
single variable of the same type. For example, to assign a value to the first element in the sales
array, you use a simple assignment statement, such as the following:
sales[0] = 2100.00;

To output the value of the last sales in a 20-element array, you write:
WriteLine(sales[19]);

sales[0]

sales[1]

sales[2]

20000

20008

20016

M
e
m
o
r
y

a
d
d
r
e
s
s

20024

20136

20144

20152

sales[18]

sales[19]

Figure 6-1 An array of 20 sales
items in memory

 Watch the video Searching an Array.

Initializing an Array
In C#, arrays are objects. When you instantiate an array, you are creating a specific instance of a
class that derives from, or builds upon, the built-in class named System.Array. (In the chapter
“Introduction to Inheritance,” you will learn more about deriving classes.)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

231

Declaring an Array and Assigning Values to Array Elements

When you declare arrays or any other objects, the following default values are assigned to the
elements:
 Numeric fields are set to 0.
 Character fields are set to ‘\u0000’ or null. (You learned about escape sequences that start

with ‘\u’ in Chapter 2.)
 bool fields are set to false.

You can assign nondefault values to array elements at declaration by including a comma-
separated list of values enclosed within curly braces. For example, if you want to create an array
named myScores and store five test scores within the array, you can use any of the following
declarations:
int[] myScores = new int[5] {100, 76, 88, 100, 90};
int[] myScores = new int[] {100, 76, 88, 100, 90};
int[] myScores = {100, 76, 88, 100, 90};

The list of values provided for an array is an initializer list. When you initialize an array by
providing a size and an initializer list, as in the first example, the stated size and number of list
elements must match. However, when you initialize an array with values, you are not required
to give the array a size, as shown in the second example; in that case, the size is assigned
based on the number of values in the initializing list. The third example shows that when
you initialize an array, you do not need to use the keyword new and repeat the type; instead,
memory is assigned based on the stated array type and the length of the list of provided values.
Of these three examples, the first is most explicit, but it requires two changes if the number
of elements is altered. The third example requires the least typing but might not clarify that a
new object is being created. Microsoft’s documentation prefers the third example because it is
most concise, but you should use the form of array initialization that is clearest to you or that is
conventional in your organization.
When you use curly braces at the end of a block of code, you do not follow the closing curly
brace with a semicolon. However, when you use curly braces to enclose a list of array values,
you must complete the statement with a semicolon.

 Programmers who have used other languages such as C++ might expect that when an initialization list is
shorter than the number of declared array elements, the “extra” elements will be set to default values. This
is not the case in C#; if you declare a size, then you must list a value for each element.

 An array of characters can be assigned to a string. For example, you can write the following:

 char[] arrayOfLetters = {'h', 'e', 'l', 'l', 'o'};

 string word = new string(arrayOfLetters);

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

232

C H A P T E R 6 Using Arrays

You also can access a single character in a string using a subscript. For example, if you have
defined string greeting = "Hello";, then greeting[0] is 'H'. However, a string is not
an array of characters, and you cannot assign a character to a portion of a string such as in the
invalid assignment word[0] = 'A';.

TWO TRUTHS & A LIE

Declaring an Array and Assigning Values to Array Elements

1. To reserve memory locations for 10 testScores objects, you can use the following
statement:

 int[] testScores = new int[9];

2. To assign 60 to the last element in a 10-element array named testScores, you can
use the following statement:

 testScores[9] = 60;

3. The following statement creates an array named testScore and stores four values
within the array:

 int[] testScores = new int [] {90, 85, 76, 92};

The false statement is #1. To reserve memory locations for 10 testScores
objects, you must use 10 within the second set of square braces. The 10
elements will use the subscripts 0 through 9.

Accessing Array Elements
When you declare an array of five integers, such as the following, you often want to perform
the same operation on each array element:
int[] myScores = {100, 76, 88, 100, 90};

To increase each array element by 3, for example, you can write the following five statements:
myScores[0] += 3;
myScores[1] += 3;
myScores[2] += 3;
myScores[3] += 3;
myScores[4] += 3;

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

233

Accessing Array Elements

If you treat each array element as an individual entity, declaring an array doesn’t offer much
of an advantage over declaring individual variables. The power of arrays becomes apparent
when you use subscripts that are variables rather than constant values. Then you can use a loop
to perform arithmetic on each element in the array. For example, you can use a while loop,
as follows:
int sub = 0;
while(sub < 5)
{
 myScores[sub] += 3;
 ++sub;
}

You also can use a for loop, as follows:
for(int sub = 0; sub < 5; ++sub)
 myScores[sub] += 3;

In both examples, the variable sub is declared and initialized to 0, then compared to
5. Because it is less than 5, the loop executes, and myScores[0] increases by 3. The
variable sub is incremented and becomes 1, which is still less than 5, so when the loop
executes again, myScores[1] increases by 3, and so on. If the array had 100 elements,
individually increasing the array values by 3 would require 95 additional statements, but
the only change required using either loop would be to change the limiting value for sub
from 5 to 100.
New array users sometimes think there is a permanent connection between a variable used as
a subscript and the array with which it is used, but that is not the case. For example, if you vary
sub from 0 to 10 to fill an array, you do not need to use sub later when displaying the array
elements—either the same variable or a different variable can be used as a subscript elsewhere
in the program.

Using the Length Property
When you work with array elements, you must ensure that the subscript you use remains
in the range of 0 through one less than the array’s length. If you declare an array with five
elements and use a subscript that is negative or more than 4, you will receive the error
message IndexOutOfRangeException when you run the program. (You will learn about the
IndexOutOfRangeException in the chapter “Exception Handling.”) This message means the
index, or subscript, does not hold a value that legally can access an array element. For example,
if you declare an array of five integers, you can display them as follows:
int[] myScores = {100, 75, 88, 100, 90};
for(int sub = 0; sub < 5; ++sub)
 WriteLine("{0} ", myScores[sub]);

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

234

C H A P T E R 6 Using Arrays

If you modify your program to change the size of the array, you must remember to change the
comparison in the for loop as well as every other reference to the array size within the program.
Many text editors have a “find and replace” feature that lets you change (for example) all of the
5s in a file, either simultaneously or one by one. However, you must be careful not to change
5s that have nothing to do with the array; for example, do not change the 5 in the score 75
inadvertently—it is the second listed value in the myScores array and has nothing to do with
the array size.
A better approach is to use a value that is automatically altered when you declare an array.
Because every array automatically derives from the class System.Array, you can use the
fields and methods that are part of the System.Array class with any array you create. In
Chapter 2, you learned that every string has a Length property. Similarly, every array has a
Length property that is a member of the System.Array class and that automatically holds an
array’s length. The Length property is always updated to reflect any changes you make to an
array’s size. The following segment of code displays Array size is 5 and subsequently displays
the array’s contents:
int[] myScores = {100, 76, 88, 100, 90};
WriteLine("Array size is {0}", myScores.Length);

for(int x = 0; x < myScores.Length; ++x)
 WriteLine(myScores[x]);

 An array’s Length is a read-only property—you cannot assign it a new value. It is capitalized, as is the
convention with all C# property identifiers. You will create property identifiers for your own classes in the
chapter “Using Classes and Objects.”

Using foreach
You can easily navigate through arrays using a for or while loop that varies a subscript
from 0 through Array.Length - 1. C# also supports a foreach statement that you can
use to cycle through every array element without using a subscript. With the foreach
statement, you provide a temporary iteration variable that automatically holds each array
value in turn.
For example, the following code displays each element in the payRate array in sequence:
double[] payRate = {6.00, 7.35, 8.12, 12.45, 22.22};
foreach(double money in payRate)
 WriteLine("{0}", money.ToString("C"));

The variable money is declared as a double within the foreach statement. During the
execution of the loop, money holds each payRate value in turn—first, payRate[0], then
payRate[1], and so on. As a simple variable, money does not require a subscript, making it
easier to work with.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

235

Accessing Array Elements

The foreach statement is used only under certain circumstances:
 You typically use foreach only when you want to access every array element. To access only

selected array elements, you must manipulate subscripts using some other technique—for
example, using a for loop or while loop.

 The foreach iteration variable is read-only—that is, you can access it, but you cannot
assign a value to it. If you want to assign a value to array elements, you must use a different
type of loop.

TWO TRUTHS & A LIE

Accessing Array Elements
1. Assume you have declared an array of six doubles named balances. The following

statement displays all the elements:

 for(int index = 0; index < 6; ++index)
 WriteLine(balances[index]);

2. Assume you have declared an array of eight doubles named prices. The following
statement subtracts 2 from each element:

 for(double pr = 0; pr < 8; ++pr)
 prices[pr] -= 2;

3. The following code displays 3:

 int[] array = {1, 2, 3};
 WriteLine(array.Length);

The false statement is #2. You can only use an int as the subscript to an array,
and this example attempts to use a double.

Creating and Using an Array

In the next steps, you create a small array to see how it is used. The array will hold
salaries for four categories of employees.

You Do It

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

236

C H A P T E R 6 Using Arrays

1. Open a new file, and begin a console-based program named ArrayDemo1
that demonstrates array use:
using static System.Console;
class ArrayDemo1
{
 static void Main()
 {

2. Declare and create an array that holds four double values by typing:

double[] payRate = {6.00, 7.35, 8.12, 12.45};

3. To confirm that the four values have been assigned, display them using the
following code:

for(int x = 0; x < payRate.Length; ++x)
 WriteLine("Pay rate {0} is {1}",
 x, payRate[x].ToString("C"));

4. Add the two closing curly braces that end the Main() method and the
ArrayDemo1 class.

5. Save the program, and then compile and run it. The output appears in
Figure 6-2.

(continued)

Figure 6-2 Output of the ArrayDemo1 program

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

237

Searching an Array Using a Loop

Searching an Array Using a Loop
When you want to determine whether a variable holds one of many possible valid values, one
option is to use if statements to compare the variable to valid values. For example, suppose
that a company manufactures 10 items. When a customer places an order for an item, you
need to determine whether the item number is valid. If valid item numbers are sequential, say
101 through 110, then the following simple if statement that uses an AND operator can verify
the order number and set a Boolean field to true:
if(itemOrdered >= 101 && itemOrdered <= 110)
 isValidItem = true;

If the valid item numbers are nonsequential, however—for example, 101, 108, 201, 213, 266,
304, and so on—you must code the following deeply nested if statement or a lengthy OR
comparison to determine the validity of an item number:
if(itemOrdered == 101)
 isValidItem = true;
else if(itemOrdered == 108)
 isValidItem = true;
else if(itemOrdered == 201)
 isValidItem = true;
// and so on

Instead of creating a long series of if statements, a more elegant solution to determining
whether a value is valid is to compare it to a list of values in an array. For example, you can
initialize an array with the valid values by using the following statement:
int[] validValues = {101, 108, 201, 213, 266, 304, 311,
 409, 411, 412};

 You might prefer to declare the validValues array as a constant because, presumably, the valid item
numbers should not change during program execution. In C# you must use the keywords static and
readonly prior to the constant declaration. To keep these examples simple, all arrays in this chapter are
declared as variable arrays.

After the validValues array is declared, you can use either a for loop or a while loop to
search whether the itemOrdered variable value matches any of the array entries.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

238

C H A P T E R 6 Using Arrays

Using a for Loop to Search an Array
One way to determine whether an itemOrdered value equals a value in the validValues array
is to use a for statement to loop through the array and set a Boolean variable to true when a
match is found:
for(int x = 0; x < validValues.Length; ++x)
 if(itemOrdered == validValues[x])
 isValidItem = true;

This type of search is called a sequential search because each array element is examined
in sequence. This simple for loop replaces the long series of if statements. What’s more, if
a company carries 1000 items instead of 10, then the list of valid items in the array must be
altered, but the for statement does not change at all. As an added bonus, if you set up another
array as a parallel array with the same number of elements and corresponding data, you can
use the same subscript to access additional information. For example, if the 10 items your
company carries have 10 different prices, then you can set up an array to hold those prices
as follows:
double[] prices = {0.89, 1.23, 3.50, 0.69...}; // and so on

The prices must appear in the same order as their corresponding item numbers in the
validValues array. Now the same for loop that finds the valid item number also finds the
price, as shown in the program in Figure 6-3. In other words, if the item number is found in the
second position in the validValues array, then you can find the correct price in the second
position in the prices array. In the program in Figure 6-3, the variable used as a subscript,
x, is set to 0 and the Boolean variable isValidItem is false. In the shaded portion of the
figure, while the subscript remains smaller than the length of the array of valid item numbers,
the subscript is continuously increased so that subsequent array values can be tested. When
a match is found between the user’s item and an item in the array, isValidItem is set to
true and the price of the item is stored in itemPrice. Figure 6-4 shows two typical program
executions.

 If you initialize parallel arrays, it is convenient to use spacing (as shown in Figure 6-3) so that the
corresponding values visually align on the screen or printed page.

 Although parallel arrays can be very useful, they also can increase the likelihood of mistakes. Any time you
make a change to one array, you must remember to make the corresponding change in its parallel array. As
you continue to study C#, you will learn superior ways to correlate data items. For example, in the chapter
“Using Classes and Objects,” you will learn that you can encapsulate corresponding data items in objects
and create arrays of objects.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

239

Searching an Array Using a Loop

using System;
using static System.Console;
class FindPriceWithForLoop
{
 static void Main()
 {
 int[] validValues = {101, 108, 201, 213, 266,
 304, 311, 409, 411, 412};
 double[] prices = {0.89, 1.23, 3.50, 0.69, 5.79,
 3.19, 0.99, 0.89, 1.26, 8.00};
 int itemOrdered;
 double itemPrice = 0;
 bool isValidItem = false;
 Write("Please enter an item ");
 itemOrdered = Convert.ToInt32(ReadLine());
 for(int x = 0; x < validValues.Length; ++x)
 {
 if(itemOrdered == validValues[x])
 {
 isValidItem = true;
 itemPrice = prices[x];
 }
 }
 if(isValidItem)
 WriteLine("Price is {0}", itemPrice);
 else
 WriteLine("Sorry - item not found");
 }
}

Figure 6-3 The FindPriceWithForLoop program

Figure 6-4 Two typical executions of the FindPriceWithForLoop program

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

240

C H A P T E R 6 Using Arrays

In the fourth statement of the Main() method in Figure 6-3, itemPrice is set to 0. Setting this
variable is required because its value is later altered only if an item number match is found in
the validValues array. When C# determines that a variable’s value is only set depending on an
if statement, C# will not allow you to display the variable because the compiler assumes that
the if statement’s Boolean expression could have been false and the variable might not have
been set to a valid value.

Improving a Loop’s Efficiency
The code shown in Figure 6-3 can be made more efficient. Currently, the program compares
every itemOrdered with each of the 10 validValues. Even when an itemOrdered is
equivalent to the first value in the validValues array (101), you always make nine additional
cycles through the array comparing all the values. On each of these nine additional iterations,
the comparison between itemOrdered and validValues[x] is always false. As soon as
a match for an itemOrdered is found, the most efficient action is to break out of the for
loop early. An easy way to accomplish this task is to set x to a high value within the block of
statements executed when a match is found. Then, after a match, the for loop will not execute
again because the limiting comparison (x < validValues.Length) will have been surpassed.
Figure 6-5 shows this approach.

for(int x = 0; x < validValues.Length; ++x)
{
 if(itemOrdered == validValues[x])
 {
 isValidItem = true;
 itemPrice = prices[x];
 x = validValues.Length;
 // Change x to force break out of loop
 // when you find a match
 }
}

Figure 6-5 Loop with forced early exit

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

241

Searching an Array Using a Loop

In the code segment in Figure 6-5, instead of the statement that sets x to validValues.Length
when a match is found, you could remove that statement and change the comparison in the
middle section of the for statement to a compound statement, as follows:
for(int x = 0; x < validValues.Length && !isValidItem; ++x)...

As another alternative, you could remove the statement that sets x to validValues.Length
and place a break statement within the loop in its place. A break statement exits the current
code block immediately.
If you decide to leave a loop as soon as a match is found, the most efficient strategy is to place
the most common items first so they are matched sooner. For example, if item 311 is ordered
most often, place 311 first in the validValues array and its price ($0.99) first in the prices
array. However, it might be more convenient for people to view the item numbers in ascending
numerical order. In many business applications, your first consideration is how easily users
can read, understand, and modify your programs. However, in other applications, such as
programming for mobile devices, speed and memory considerations are more important. You
should follow the recommendations of your instructors or supervisors.
Some programmers disapprove of exiting a for loop early, whether by setting a variable’s value
or by using a break statement. They argue that programs are easier to debug and maintain
if each program segment has only one entry and one exit point. If you (or your instructor)
agree with this philosophy, then you can select an approach that uses a while statement, as
described next.

Using a while Loop to Search an Array
As an alternative to using a for loop to search an array, you can use a while loop to search
for a match. Using this approach, you set a subscript to 0 and, while the itemOrdered is not
equal to a value in the array, increase the subscript and keep looking. You search only while the
subscript remains lower than the number of elements in the array. If the subscript increases
until it matches validValues.Length, then you never found a match in the array. If the loop
ends before the subscript reaches validValues.Length, then you found a match, and the
correct price can be assigned to the itemPrice variable. Figure 6-6 shows a program that uses
this approach.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

242

C H A P T E R 6 Using Arrays

using System;
using static System.Console;
class FindPriceWithWhileLoop
{
 static void Main()
 {
 int x;
 string inputString;
 int itemOrdered;
 double itemPrice = 0;
 bool isValidItem = false;
 int[] validValues = {101, 108, 201, 213, 266,
 304, 311, 409, 411, 412};
 double[] prices = {0.89, 1.23, 3.50, 0.69, 5.79,
 3.19, 0.99, 0.89, 1.26, 8.00};
 Write("Enter item number ");
 inputString = ReadLine();
 itemOrdered = Convert.ToInt32(inputString);
 x = 0;
 while(x < validValues.Length && itemOrdered != validValues[x])
 ++x;
 if(x != validValues.Length)
 {
 isValidItem = true;
 itemPrice = prices[x];
 }
 if(isValidItem)
 WriteLine("Item {0} sells for {1}",
 itemOrdered, itemPrice.ToString("C"));
 else
 WriteLine("No such item as {0}", itemOrdered);
 }
}

Figure 6-6 The FindPriceWithWhileLoop program that searches with a while loop

In the application in Figure 6-6, the variable used as a subscript, x, is set to 0 and the Boolean
variable isValidItem is false. In the shaded portion of the figure, while the subscript
remains smaller than the length of the array of valid item numbers, and while the user’s
requested item does not match a valid item, the subscript is increased so that subsequent
array values can be tested. The while loop ends when a match is found or the array tests have
been exhausted, whichever comes first. When the loop ends, if x is not equal to the size of the
array, then a valid item has been found, and its price can be retrieved from the prices array.
Figure 6-7 shows two executions of the program. In the first execution, a match is found; in the
second, an invalid item number is entered, so no match is found.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

243

Searching an Array Using a Loop

Watch the video Searching an Array.

Searching an Array for a Range Match
Searching an array for an exact match is not always practical. For example, suppose your
mail-order company gives customer discounts based on the quantity of items ordered. Perhaps
no discount is given for any order of up to a dozen items, but increasing discounts are available
for orders of increasing quantities, as shown in Figure 6-8.

Figure 6-7 Two executions of the FindPriceWithWhileLoop application

One awkward, impractical option is to create a single array to store the discount rates. You
could use a variable named numOfItems as a subscript to the array, but the array would need
hundreds of entries, such as the following:
double[] discounts = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0.10, 0.10, 0.10 ...}; // and so on

When numOfItems is 3, for example, then discounts[numOfItems] or discounts[3] is 0.
When numOfItems is 14, then discounts[numOfItems] or discounts[14] is 0.10. Because a
customer might order thousands of items, the array would need to be ridiculously large.
A better option is to create parallel arrays. One array will hold the five discount rates, and
the other array will hold five discount range limits. Then you can perform a range match

Total Quantity Ordered Discount (%)

1 to 12 None

13 to 49 10

50 to 99 14

100 to 199 18

200 or more 20

Figure 6-8 Discount table for a mail-order company

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

244

C H A P T E R 6 Using Arrays

Figure 6-9 Searching an array of range limits

// Assume numOfItems is a declared integer for which a user
// has input a value
int[] discountRangeLowLimits = {1, 13, 50, 100, 200};
double[] discounts = {0, 0.10, 0.14, 0.18, 0.20};
double customerDiscount;
int sub = discountRangeLowLimits.Length - 1;
while(sub >= 0 && numOfItems < discountRangeLowLimits[sub])
 --sub;
customerDiscount = discounts[sub];

by determining the pair of limiting values between which a customer’s order falls. The Total
Quantity Ordered column in Figure 6-8 shows five ranges. If you use only the first value in each
range, then you can create an array that holds five low limits:
int[] discountRangeLowLimits = {1, 13, 50, 100, 200};

A parallel array will hold the five discount rates:
double[] discounts = {0, 0.10, 0.14, 0.18, 0.20};

Then, starting at the last discountRangeLowLimits array element, for any numOfItems
greater than or equal to discountRangeLowLimits[4], the appropriate discount is
discounts[4]. In other words, for any numOfItems less than discountRangeLowLimits[4],
you should decrement the subscript and look in a lower range. Figure 6-9 shows the code.

As an alternate approach to the range-checking logic in Figure 6-9, you can choose to create an
array that contains the upper limit of each range, such as the following:
int[] discountRangeUpperLimits = {12, 49, 99, 199, 9999999};

Then the logic can be written to compare numOfItems to each range limit until the correct
range is located, as follows:
int sub = 0;
while(sub < discountRangeUpperLimits.Length &&
 numOfItems > discountRangeUpperLimits[sub])
 ++sub;
customerDiscount = discounts[sub];

In this example, sub is initialized to 0. While it remains within array bounds, and while
numOfItems is more than each upper-range limit, sub is increased. In other words, if
numOfItems is 3, the while expression is false on the first loop iteration, the loop ends, sub
remains 0, and the customer discount is the first discount. However, if numOfItems is 30, then
the while expression is true on the first loop iteration, sub becomes 1, the while expression

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

245

Using the BinarySearch(), Sort(), and Reverse() Methods

is false on the second iteration, and the second discount is used. In this example, the last
discountRangeUpperLimits array value is 9999999. This very high value was used with the
assumption that no numOfItems would ever exceed it, but, because this assumption could
possibly be wrong, many programmers prefer to use a range-checking method that uses lower
range limits. As with many issues in programming, multiple correct approaches frequently
exist for the same problem.

TWO TRUTHS & A LIE

Searching an Array Using a Loop

1. A parallel array has the same number of elements as another array and
corresponding data.

2. When you search an array for an exact match in a parallel array, you must perform a
loop as many times as there are elements in the arrays.

3. One practical solution to creating an array with which to perform a range check is to
design the array to hold the lowest value in each range.

The false statement is #2. When you search an array for an exact match in a
parallel array, you can perform a loop as many times as there are elements in the
arrays, but once a match is found, the additional loop iterations are unnecessary.
Terminating the loop cycles as soon as a match is found is the most efficient
approach.

Using the BinarySearch(), Sort(),
and Reverse() Methods
You have already learned that every array in C# can use the Length property it gets from the
System.Array class. Additionally, the System.Array class contains a variety of useful, built-in
methods that can search, sort, and manipulate array elements. (You already have used many
built-in C# methods such as WriteLine() and ReadLine(). You will learn to write your own
methods in the next chapter.)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

246

C H A P T E R 6 Using Arrays

Figure 6-10 The BinarySearchDemo program

using System;
using static System.Console;
class BinarySearchDemo
{
 static void Main()
 {
 int[] idNumbers = {122, 167, 204, 219, 345};
 int x;
 string entryString;
 int entryId;
 Write("Enter an Employee ID ");
 entryString = ReadLine();
 entryId = Convert.ToInt32(entryString);
 x = Array.BinarySearch(idNumbers, entryId);
 if(x < 0)
 WriteLine("ID {0} not found", entryId);
 else
 WriteLine("ID {0} found at position {1} ",
 entryId, x);
 }
}

Using the BinarySearch() Method
A binary search is one in which a sorted list of objects is split in half repeatedly as the search
gets closer and closer to a match. Perhaps you have played a guessing game, trying to guess a
number from 1 to 100. If you asked, “Is it less than 50?” and continued to narrow your guesses
upon hearing each subsequent answer, then you have performed a binary search. In C#, the
BinarySearch() method finds a requested value in a sorted array.
Figure 6-10 shows a program that declares an array of integer idNumbers arranged in ascending
order. The program prompts a user for a value, converts it to an integer, and passes the array
and the entered value to the BinarySearch() method in the shaded statement. The method
returns –1 if the value is not found in the array; otherwise, it returns the array position of the
sought value. Figure 6-11 shows two executions of this program.

 The BinarySearch() method takes two arguments—the array name and the value for which to search. In
Chapter 1 you learned that arguments represent information that a method needs to perform its task. When
methods require multiple arguments, they are separated by commas. For example, when you have used
the WriteLine() method, you have passed a format string and values to be displayed, all separated by
commas.

 If you add the statement using static System.Array; at the top of a program, then you can use the
method name BinarySearch() without its class name.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

247

You have sent arguments to methods, as in the following statement:
Write("Enter an Employee ID ");

You also have accepted methods’ returned values, as in the following statement:
entryString = ReadLine();

When you use the BinarySearch() method, you both send arguments and receive returned
values:
x = Array.BinarySearch(idNumbers, entryId);

The statement calls the method that performs the search, returning –1 or the position where
entryId was found; that value is then stored in x. This single line of code is easier to write, less
prone to error, and easier to understand than writing a loop to cycle through the idNumbers
array looking for a match. Still, it is worthwhile to understand how to perform the search
without the BinarySearch() method, as you learned while studying parallel arrays earlier
in this chapter. You will need to use that technique under the following conditions, when the
BinarySearch()method proves inadequate:
 If your array items are not arranged in ascending order, the BinarySearch() method does

not work correctly.
 If your array holds duplicate values and you want to find all of them, the BinarySearch()

method doesn’t work—it can return only one value, so it returns the position of the first
matching value it finds (which is not necessarily the first instance of the value in the array).

 If you want to find a range match rather than an exact match, the BinarySearch() method
does not work.

Figure 6-11 Two executions of the BinarySearchDemo program

Using the BinarySearch(), Sort(), and Reverse() Methods

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

248

C H A P T E R 6 Using Arrays

Figure 6-12 The SortArray program

Figure 6-13 Execution of the SortArray program

using System;
using static System.Console;
class SortArray
{
 static void Main()
 {
 string[] names = {"Olive", "Patty", "Richard", "Ned", "Mindy"};
 int x;
 Array.Sort(names);
 for(x = 0; x < names.Length; ++x)
 WriteLine(names[x]);
 }
}

Because the BinarySearch() method requires that array elements be sorted in order, the
Sort() method is often used in conjunction with it.

 The Array.Sort() method provides a good example of encapsulation—you can use the method without
understanding how it works internally. The method actually uses an algorithm named Quicksort. You will learn
how to implement this algorithm yourself as you continue to study programming.

 If you add the statement using static System.Array; at the top of a program, then you can use the
method name Sort() without its class name.

Using the Sort() Method
The Sort() method arranges array items in ascending order. The method works numerically for
number types and alphabetically for characters and strings. To use the method, you pass the array
name to Array.Sort(), and the element positions within the array are rearranged appropriately.
Figure 6-12 shows a program that sorts an array of strings; Figure 6-13 shows its execution.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

249

Using the Reverse() Method
The Reverse() method reverses the order of items in an array. In other words, for any array,
the element that starts in position 0 is relocated to position Length – 1, the element that
starts in position 1 is relocated to position Length – 2, and so on until the element that
starts in position Length – 1 is relocated to position 0. When you Reverse() an array that
contains an odd number of elements, the middle element will remain in its original location.
The Reverse() method does not sort array elements; it only rearranges their values to the
opposite order.
You call the Reverse() method the same way you call the Sort() method—you simply pass
the array name to the method. Figure 6-14 shows a program that uses Reverse() with an array
of strings, and Figure 6-15 shows its execution.

Figure 6-14 The ReverseArray program

using System;
using static System.Console;
class ReverseArray
{
 static void Main()
 {
 string[] names = {"Zach", "Rose", "Wendy", "Marcia"};
 int x;
 Array.Reverse(names);
 for(x = 0; x < names.Length; ++x)
 WriteLine(names[x]);
 }
}

Figure 6-15 Execution of the ReverseArray program

Using the BinarySearch(), Sort(), and Reverse() Methods

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

250

C H A P T E R 6 Using Arrays

Using the Sort() and Reverse() Methods
In the next steps, you create an array of integers and use the Sort() and
Reverse() methods to manipulate it.

1. Open a new file and type the beginning of a program named ArrayDemo2
that includes an array of eight integer test scores, an integer you will use as
a subscript, and a string that will hold user-entered data.
using System;
using static System.Console;
class ArrayDemo2
{
 static void Main()
 {
 int[] scores = new int[8];
 int x;
 string inputString;

You Do It

TWO TRUTHS & A LIE

Using the BinarySearch(), Sort(), and Reverse() Methods
1. When you use the BinarySearch() method, the searched array items must first

be organized in ascending order.

2. The Array.Sort() and Array.Reverse() methods are similar in that both
require a single argument.

3. The Array.Sort() and Array.Reverse() methods are different in that one
places items in ascending order and the other places them in descending order.

The false statement is #3. The Array.Sort() method places items in ascending
order, but the Array.Reverse() method simply reverses the existing order of
any array whether it was presorted or not.

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

251

2. Add a loop that prompts the user, accepts a test score, converts the score
to an integer, and stores it as the appropriate element of the scores array.
for(x = 0; x < scores.Length; ++x)
{
 Write("Enter your score on test {0} ", x + 1);
 inputString = ReadLine();
 scores[x] = Convert.ToInt32(inputString);
}

 The program displays x + 1 with each score[x] because, although array elements are numbered
starting with 0, people usually count items starting with 1.

3. Add a statement that creates a dashed line to visually separate the input from
the output. Display “Scores in original order:”, then use a loop to display each
score in a field that is six characters wide.
WriteLine("\n---------------------------");
WriteLine("Scores in original order:");
for(x = 0; x < scores.Length; ++x)
 Write("{0, 6}", scores[x]);

 You learned to set display field sizes when you learned about format strings in Chapter 2.

4. Add another dashed line for visual separation, then pass the scores array to
the Array.Sort() method. Display Scores in sorted order:, then use a loop
to display each of the newly sorted scores.
WriteLine("\n---------------------------");
Array.Sort(scores);
WriteLine("Scores in sorted order:");
for(x = 0; x < scores.Length; ++x)
 Write("{0, 6}", scores[x]);

5. Add one more dashed line, reverse the array elements by passing scores to
the Array.Reverse() method, display Scores in reverse order:, and show
the rearranged scores.

WriteLine("\n---------------------------");
Array.Reverse(scores);
WriteLine("Scores in reverse order:");
for(x = 0; x < scores.Length; ++x)
 Write("{0, 6}", scores[x]);

(continued)

(continues)

Using the BinarySearch(), Sort(), and Reverse() Methods

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

252

C H A P T E R 6 Using Arrays

Using Multidimensional Arrays
When you declare an array such as double[] sales = new double[20];, you can envision
the declared integers as a column of numbers in memory, as shown at the beginning of this
chapter in Figure 6-1. In other words, you can picture the 20 declared numbers stacked one on
top of the next. An array that you can picture as a column of values, and whose elements you
can access using a single subscript, is a one-dimensional or single-dimensional array. You can
think of the single dimension of a single-dimensional array as the height of the array.
C# also supports multidimensional arrays—those that require multiple subscripts to access
the array elements. The most commonly used multidimensional arrays are two-dimensional
arrays that are rectangular. Two-dimensional arrays have two or more columns of values for
each row, as shown in Figure 6-17. You can think of the two dimensions of a two-dimensional
array as height and width.

6. Add two closing curly braces—one for the Main() method and one for
the class.

7. Save the file, and then compile and execute the program. Figure 6-16 shows
a typical execution of the program. The user-entered scores are not in order,
but after the call to the Sort() method, they appear in ascending order.
After the call to the Reverse() method, they appear in descending order.

(continued)

Figure 6-16 Typical execution of the ArrayDemo2 program

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

253

Using Multidimensional Arrays

The array in Figure 6-17 is a rectangular array. In a rectangular array, each row has the
same number of columns. You must use two subscripts when you access an element in a
two-dimensional array. When mathematicians use a two-dimensional array, they often call
it a matrix or a table; you might have used a two-dimensional array called a spreadsheet.
You might want to create a sales array with two dimensions, as shown in Figure 6-17, if,
for example, each row represented a category of items sold, and each column represented a
salesperson who sold them.
When you declare a one-dimensional array, you type a single, empty set of square brackets
after the array type, and you use a single subscript in a set of square brackets when reserving
memory. To declare a two-dimensional array, you type a comma in the square brackets after
the array type, and you use two subscripts, separated by a comma in brackets, when reserving
memory. For example, the array in Figure 6-17 can be declared as the following, creating an
array named sales that holds three rows and four columns:
double[,] sales = new double[3, 4];

When you declare a two-dimensional array, spaces surrounding the comma within the square
brackets are optional.
Just as with a one-dimensional array, every element in a two-dimensional array is the same data
type. Also, just as with a one-dimensional array if you do not provide values for the elements in
a two-dimensional array, the values are set to the default value for the data type (for example,
0 for numeric data). You can assign other values to the array elements later. For example, the
following statement assigns the value 14.00 to the element of the sales array that is in the first
column of the first row:
sales[0, 0] = 14.00;

Alternatively, you can initialize a two-dimensional array by assigning values when it is created.
For example, the following code assigns values to sales upon declaration:
double[,] sales = {{14.00, 15.00, 16.00, 17.00},
 {21.99, 34.55, 67.88, 31.99},
 {12.03, 55.55, 32.89, 1.17}};

The sales array contains three rows and four columns. You contain the entire set of values
within a pair of curly braces. The first row of the array holds the four doubles 14.00, 15.00,
16.00 and 17.00. Notice that these four values are placed within their own inner set of curly
braces to indicate that they constitute one row, or the first row, which is row 0. The row and its
curly braces are separated from the next row with a comma. The next four values in their own

sales[0, 0]
sales[1, 0] sales[1, 1]

sales[0, 1]

sales[2, 1]
sales[1, 2]
sales[0, 2]

sales[2, 2]
sales[1, 3]
sales[0, 3]

sales[2, 3]sales[2, 0]

Figure 6-17 View of a rectangular, two-dimensional array in memory

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

254

C H A P T E R 6 Using Arrays

set of braces make up the second row (row 1), which you reference with the subscript 1, and
the last four values constitute the third row (row 2).
When you refer to an element in a two-dimensional array, the first value within the brackets
following the array name always refers to the row; the second value, after the comma, refers
to the column. As examples, the value of sales[0, 0] is 14.00, the value of sales[0, 1]
is 15.00, the value of sales[1, 0] is 21.99, and the value of sales[2, 3] is 1.17. You do
not need to place each row of values that initializes a two-dimensional array on its own line.
However, doing so makes the positions of values easier to understand.
As an example of how useful two-dimensional arrays can be, assume that you own an
apartment building with four floors—a basement, which you refer to as floor zero, and three
other floors numbered one, two, and three. In addition, each of the floors has studio (with no
bedroom), one-, and two-bedroom apartments. The monthly rent for each type of apartment
is different, and the rent is higher for apartments with more bedrooms. Figure 6-18 shows the
rental amounts.

Floor Zero Bedrooms One Bedroom Two Bedrooms

0 400 450 510

1 500 560 630

2 625 676 740

3 1000 1250 1600

Figure 6-18 Rents charged (in dollars)

To determine a tenant’s rent, you need to know two pieces of information about the apartment:
the floor and the number of bedrooms. Within a C# program, you can declare an array of rents
using the following code:
int[,] rents = { {400, 450, 510},
 {500, 560, 630},
 {625, 676, 740},
 {1000, 1250, 1600} };

If floor and bedrooms are integers with in-range values, then any tenant’s rent can be referred
to as rents[floor, bedrooms].
Figure 6-19 shows a complete program that uses a rectangular, two-dimensional array to hold
rent values. Figure 6-20 shows a typical execution.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

255

Using Multidimensional Arrays

Figure 6-20 Typical execution of the RentFinder program

Figure 6-19 The RentFinder program

using System;
using static System.Console;
class RentFinder
{
 static void Main()
 {
 int[,] rents = { {400, 450, 510},
 {500, 560, 630},
 {625, 676, 740},
 {1000, 1250, 1600} };
 int floor;
 int bedrooms;
 string inputString;
 Write("Enter the floor on which you want to live ");
 inputString = ReadLine();
 floor = Convert.ToInt32(inputString);
 Write("Enter the number of bedrooms you need ");
 inputString = ReadLine();
 bedrooms = Convert.ToInt32(inputString);
 WriteLine("The rent is {0}", rents[floor, bedrooms]);
 }
}

Watch the video Using a Two-Dimensional Array.

C# supports arrays with more than two dimensions. For example, as in the program in
Figure 6-19, if you own a multistory apartment building with different numbers of bedrooms
available in apartments on each floor, you can use a two-dimensional array to store the rental
fees. However, if you own several apartment buildings, you might want to employ a third
dimension to store the building number. Suppose you want to store rents for four buildings
that have three floors each and that each hold two types of apartments. Figure 6-21 shows
how you might define such an array.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

256

C H A P T E R 6 Using Arrays

Figure 6-21 A three-dimensional array definition

int[, ,] rents = { { {400, 500}, {450, 550}, {500, 550}},
 { {510, 610}, {710, 810}, {910, 1010}},
 { {525, 625}, {725, 825}, {925, 1025}},
 { {850, 950}, {1050, 1150}, {1250, 1350}}};

The empty brackets that follow the data type contain two commas, showing that the array
supports three dimensions. A set of curly braces surrounds all the data; the inner curly braces
represent the following:
 Four inner sets of braces surround the data for each building—each row of values represents

a building (0 through 3).
 Within each row, the three sets of inner braces represent each floor—first a basement, then

floor one, and floor two. For example, in building 0, {400, 500} are rents for floor 0, and
{450, 550} are rents for floor 1.

 Within each floor, the two braced values represent the bedrooms—first a zero-bedroom
apartment and then a one-bedroom apartment. For example, in building 0, floor 0,
400 is the rent for a zero-bedroom apartment, and 500 is the rent for a one-bedroom
apartment.

Using the three-dimensional array in Figure 6-21, an expression such as rents[building,
floor, bedrooms] refers to a specific rent value for a building whose number is stored in
the building variable and whose floor and bedroom numbers are stored in the floor and
bedrooms variables. Specifically, rents[3, 1, 0] refers to a studio (zero-bedroom) apartment
on the first floor of building 3 (which is the fourth building). The value of rents[3, 1, 0]
is $1050 in Figure 6-21. When you are programming in C#, you can use four, five, or more
dimensions in an array. As long as you can keep track of the order of the variables needed as
subscripts, and as long as you don’t exhaust your computer’s memory, C# lets you create arrays
of any size.

Using Jagged Arrays
C# also supports jagged arrays. A jagged array is a one-dimensional array in which each
element is another array. The major difference between jagged and rectangular arrays is that in
jagged arrays, each row can be a different length.
For example, consider an application in which you want to store train ticket prices for each stop
along five different routes. Suppose some of the routes have as many as 10 stops and others
have as few as two. Each of the five routes could be represented by a row in a multidimensional
array. Then you would have two logical choices for the columns:

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

257

Using Multidimensional Arrays

 You could create a rectangular, two-dimensional array, allowing 10 columns for each row.
In some of the rows, as many as eight of the columns would be empty, because some routes
have only two stops.

 You could create a jagged array, allowing a different number of elements for each row.
Figure 6-22 shows how you could implement this option.

Figure 6-22 A jagged array

double [][] tickets = {
 new double[] {5.50, 6.75, 7.95, 9.00, 12.00,
 13.00, 14.50, 17.00, 19.00, 20.25},
 new double[] {5.00, 6.00},
 new double[] {7.50, 9.00, 9.95, 12.00, 13.00, 14.00},
 new double[] {3.50, 6.45, 9.95, 10.00, 12.75},
 new double[] {15.00, 16.00} };

Two square brackets are used following the data type of the array in Figure 6-22. This notation
declares a jagged array that is composed of five separate one-dimensional arrays. Within the
jagged array, each row needs its own new operator and data type. To refer to a jagged array
element, you use two sets of brackets after the array name—for example, tickets[route]
[stop]. In Figure 6-22, the value of tickets[0][0] is 5.50, the value of tickets[0][1] is 6.75,
and the value of tickets[0][2] is 7.95. The value of tickets[1][0] is 5.00, and the value of
tickets[1][1] is 6.00. Referring to tickets[1][2] is invalid because there is no column 2 in
the second row (that is, there are only two stops, not three, on the second train route).

TWO TRUTHS & A LIE

Using Multidimensional Arrays
1. A rectangular array has the same number of columns as rows.

2. The following array contains two rows and three columns:

int[,] departments = {{12, 54, 16},
 {22, 44, 47}};

3. A jagged array is a one-dimensional array in which each element is another array.

The false statement is #1. In a rectangular array, each row has the same number
of columns, but the numbers of rows and columns are not required to be the same.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

258

C H A P T E R 6 Using Arrays

Array Issues in GUI Programs
The major unusual consideration when using an array in a GUI program is that if the array
values change based on user input, the array must be stored outside any method that reacts
to the user’s event. For example, consider an application that accumulates contribution totals
for a fund-raising drive competition between four departments in a company. The left side of
Figure 6-23 shows a Form into which a user types a department number and a contribution
amount. For example, in the figure, the user is adding a $25 contribution for Department 2.
The user clicks OK, then enters the next contribution amount. When the user clicks the Done
button, a summary of contributions appears, as shown in the right half of Figure 6-23. For
example, during program execution, in all $195 in contributions were added for Department 2.

Figure 6-24 shows the code needed to implement the application. An array named total is
declared outside of any methods. (See shading.) The okButton_Click() method accepts a
department number and contribution amount from the user. It then adds the contribution
into the array element that corresponds to the department and clears the text boxes so
they are empty prior to the next entry. The total array must be declared outside of the
okButton_Click() method; if it was inside the method, it would be redeclared, and all its
elements would be reset to 0 with each button click. The doneButton_Click() method
displays the array’s contents.

Figure 6-23 The Form for the CountContributions program as the user enters a value and
after the user clicks Done

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

259

Array Issues in GUI Programs

double[] total = { 0, 0, 0, 0 };
private void okButton_Click(object sender, EventArgs e)
{
 int dept;
 double contribution;
 dept = Convert.ToInt32(deptTextbox.Text);
 contribution = Convert.ToDouble(contributionTextbox.Text);
 --dept;
 total[dept] += contribution;
 deptTextbox.Text = "";
 contributionTextbox.Text = "";
}
private void doneButton_Click(object sender, EventArgs e)
{
 outputLabel.Text = "Dept Total";
 for (int x = 0; x < total.Length; ++x)
 outputLabel.Text +=
 String.Format("\n {0}{1, 10}", x + 1, total[x]. ToString("C"));
}

Figure 6-24 Code that declares array and two methods needed for the
CountContributions application

TWO TRUTHS & A LIE

Array Issues in GUI Programs
1. A GUI program can contain declarations for any number of arrays of any data type.

2. If a method reacts to a user-initiated event, it cannot contain an array declaration.

3. If a method reacts to a user-initiated event and the method contains an array
declaration, the array will be redeclared with each event occurrence.

The false statement is #2. If a method reacts to a user-initiated event, it can
contain an array. The only problem is that the array will be redeclared with each
new event, so it cannot store data that must persist over a number of events.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

260

C H A P T E R 6 Using Arrays

Chapter Summary
 An array is a list of data items, all of which have the same type and the same name but are

distinguished from each other using a subscript or index. You declare an array variable by
inserting a pair of square brackets after the type and reserve memory for an array by using
the keyword new. Any array’s elements are numbered 0 through one less than the array’s
length. In C#, arrays are objects that derive from a class named System.Array. An array’s
elements are initialized to default values. To initialize an array to nondefault values, you use
a list of values that are separated by commas and enclosed within curly braces.

 Arrays are most powerful when variable subscripts are used to process array elements. Any
array subscript must remain in the range of 0 through Length - 1. The Length property
automatically holds an array’s length. You can use the foreach statement to cycle through
every array element without using subscripts.

 When you want to determine whether a variable holds one of many possible valid values,
you can compare the variable to a list of values in an array. You can set up a parallel array to
access additional information.

 The BinarySearch() method finds a requested value in a sorted array. The method
returns –1 if the value is not found in the array; otherwise, it returns the array position of
the sought value. You cannot use the BinarySearch() method if your array items are not
arranged in ascending order, if the array holds duplicate values and you want to find all of
them, or if you want to find a range match rather than an exact match. The Sort() method
arranges array items in ascending order. The Reverse() method reverses the order of
items in an array.

 C# supports multidimensional arrays that require multiple subscripts to access the array
elements. The most commonly used multidimensional arrays are two-dimensional arrays
that are rectangular. Two-dimensional arrays have two or more columns of values for each
row. In a rectangular array, each row has the same number of columns. C# also supports
jagged arrays, which are arrays of arrays.

 The major unusual consideration when using an array in a GUI program is that if the array
values change based on user input, the array must be stored outside any method that reacts
to the user’s event.

Key Terms
An array is a list of data items that all have the same data type and the same name but are
distinguished from each other by a subscript or index.
An array element is an individual object within an array.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Review Questions

261

A subscript (also called an index) is an integer contained within square brackets that indicates
the position of one of an array’s elements.
An initializer list is the list of values provided for an array.
An iteration variable is a temporary location that holds each array value in turn in a foreach
statement.
Read-only describes a value that can be accessed but not altered.
A sequential search is conducted by examining a list in sequence.
A parallel array has the same number of elements as another array and corresponding data.
A range match determines the pair of limiting values between which a value falls.
A binary search is an algorithm that attempts to find an item in a list by splitting the sorted list
of objects in half repeatedly as the search gets closer to a match.
A one-dimensional or single-dimensional array is an array whose elements you can access
using a single subscript.
Multidimensional arrays require multiple subscripts to access the array elements.
Two-dimensional arrays have two or more columns of values for each row.
A rectangular array is an array in which each row has the same number of columns.
A jagged array is a one-dimensional array in which each element is another array.

Review Questions
1. In an array, every element has the same _____________________ .

a. subscript
b. data type

c. memory location
d. all of the above

2. The operator used to create objects is _____________________ .
a. =
b. +=

c. new
d. create

3. Which of the following correctly declares an array of six integers?
a. int array[6];
b. int[] array = 6;

c. int[6] array;
d. int[] array = new int[6];

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

262

C H A P T E R 6 Using Arrays

4. The value placed within square brackets after an array name is
____________________ .
a. a subscript
b. an index

c. always an integer
d. all of these

5. If you define an array to contain 10 elements, then the highest array subscript you can
use is _____________________ .
a. 11
b. 10

c. 9
d. 8

6. Initializing an array is _____________________ in C#.
a. required
b. optional

c. difficult
d. prohibited

7. When you declare an array of six double elements but provide no initialization values,
the value of the first element is _____________________ .
a. 0.0
b. 1.0

c. 5.0
d. unknown

8. Which of the following correctly declares an array of four integers?
a. int[] ages = new int[4] {20, 30, 40, 50};
b. int[] ages = new int[] {20, 30, 40, 50};
c. int[] ages = {20, 30, 40, 50};
d. all of these

9. When an ages array is correctly initialized using the values {20, 30, 40, 50}, as
in Question 8, then the value of ages[1] is _____________________ .
a. 0
b. 20

c. 30
d. undefined

10. When an ages array is correctly initialized using the values {20, 30, 40, 50}, as
in Question 8, then the value of ages[4] is _____________________ .
a. 0
b. 4

c. 50
d. undefined

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Review Questions

263

11. When you declare an array as int[] temperature = {0, 32, 50, 90, 212,
451};, the value of temperature.Length is _____________________ .
a. 5
b. 6

c. 7
d. unknown

12. Which of the following doubles every value in a 10-element integer array named
amount?
a. for(int x = 9; x >= 0; --x) amount[x] *= 2;
b. foreach(int number in amount) number *= 2;
c. both of these
d. neither of these

13. Which of the following adds 10 to every value in a 16-element integer array named
points?
a. for(int sub = 0; sub > 16; ++sub) points[sub] += 10;
b. foreach(int sub in points) points += 10;
c. both of these
d. neither of these

14. Two arrays that store related information in corresponding element positions are
_____________________ .
a. jagged arrays
b. rectangular arrays

c. relative arrays
d. parallel arrays

15. Assume an array is defined as int[] nums = {2, 3, 4, 5};. Which of the
following would display the values in the array in reverse?
a. for(int x = 4; x > 0; --x)
 Write(nums[x]);

b. for(int x = 3; x >= 0; --x)
 Write(nums[x]);

c. for(int x = 3; x > 0; --x)
 Write(nums[x]);

d. for(int x = 4; x >= 0; --x)
 Write(nums[x]);

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

264

C H A P T E R 6 Using Arrays

16. Assume an array is defined as int[] nums = {7, 15, 23, 5};. Which of the
following would place the values in the array in descending numeric order?
a. Array.Sort(nums);
b. Array.Reverse(nums);
c. Array.Sort(nums); Array.Reverse(nums);
d. Array.Reverse(nums); Array.Sort(nums);

17. Which of the following traits do the BinarySearch() and Sort() methods have in
common?
a. Both methods take a single argument that must be an array.
b. Both methods belong to the System.Array class.
c. The array that each method uses must be in ascending order.
d. They both operate only arrays made up of numeric data.

18. If you use the BinarySearch() method, and the object you seek is not found in the
array, _____________________ .
a. an error message is displayed
b. a zero is returned

c. the value false is returned
d. a negative value is returned

19. The BinarySearch() method is inadequate when _____________________ .
a. array items are in ascending order
b. the array holds duplicate values and you want to find them all
c. you want to find an exact match for a value
d. array items are not numeric

20. Which of the following declares an integer array that contains eight rows and five
columns?
a. int[8, 5] num = new int[,];
b. int [8][5] num = new int[];
c. int [,] num = new int[5, 8];
d. int [,] num = new int[8, 5];

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exercises

265

Exercises

Programming Exercises

For each of the following exercises, you may choose to write a console-based or GUI
application, or both.

1. Write a program named ArrayDemo that stores an array of eight integers. Until the
user enters a sentinel value, allow the user three options: (1) to view the list in order
from the first to last position, (2) to view the list in order from the last to first position,
or (3) to choose a specific position to view.

2. Write a program named TemperatureList that accepts seven int values representing
high temperatures for seven consecutive days. Display each of the values along with a
message that indicates how far it is from the average.

3. Write a program named ScoresComparison that allows a user to input four integer
quiz scores ranging from 0 through 100. If no score is lower than any previous score,
display a message that congratulates the user on making improvement, and then
display the scores in the order they were entered. If every score is lower than the
previous one, display the scores in the order they were entered, display an appropriate
message about the scores’ descent, and then display the scores in the more desirable
reverse order. If the scores neither increase nor decrease consistently, display an
appropriate message along with the scores.

4. Write a program named CheckZips that is used by a package delivery service to check
delivery areas. The program contains an array that holds the 10 zip codes of areas to
which the company makes deliveries. Prompt a user to enter a zip code, and display a
message indicating whether the zip code is in the company’s delivery area.

5. Write a program called DeliveryCharges for the package delivery service in Exercise 4.
The program should again use an array that holds the 10 zip codes of areas to which
the company makes deliveries. Create a parallel array containing 10 delivery charges
that differ for each zip code. Prompt a user to enter a zip code, and then display either
a message indicating the price of delivery to that zip code or a message indicating that
the company does not deliver to the requested zip code.

6. The Chat-A-While phone company provides service to six area codes and charges
the per-minute rates for phone calls shown in Figure 6-25. Write a program named
ChatAWhile that stores the area codes and rates in parallel arrays and allows a user
to enter an area code and the length of time for a call in minutes, and then display the
total cost of the call.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

266

C H A P T E R 6 Using Arrays

7. The Whippet Bus Company charges prices for tickets based on distance traveled, as
shown in Figure 6-26. Write a program named WhippetBus that allows a user to
enter a trip distance. The output is the ticket price.

8. Write a program for The Carefree Resort named ResortPrices that prompts the user
to enter the number of days for a resort stay. Then display the price per night and the
total price. Nightly rates are $200 for one or two nights; $180 for three or four nights;
$160 for five, six, or seven nights; and $145 for eight nights or more.

9. In Chapter 5, you wrote a HomeSales application for three salespeople: Danielle,
Edward, and Francis. Now, modify the program to use arrays to store the salesperson
names, allowed initials, and accumulated sales values.

10. Create a game similar to Hangman named GuessAWord in which a player guesses letters
to try to replicate a hidden word. Store at least eight words in an array, and randomly
select one to be the hidden word. (The statements needed to generate a random number
are shown in the Exercises in the “Decision Making” and “Looping” chapters.) Initially,
display the hidden word using asterisks to represent each letter. Allow the user to guess
letters to replace the asterisks in the hidden word until the user completes the entire
word. If the user guesses a letter that is not in the hidden word, display an appropriate
message. If the user guesses a letter that appears multiple times in the hidden word, make
sure that each correct letter is placed. Figure 6-27 shows typical games in progress in
a console-based application and in a GUI application. In the GUI application, the user

Area Code Per-Minute Rate ($)

262 0.07

414 0.10

608 0.05

715 0.16

815 0.24

920 0.14

Figure 6-25 Per-minute phone call rates

Distance (miles) Ticket Price ($)

0 – 99 25.00

100 – 299 40.00

300 – 499 55.00

500 and farther 70.00

Figure 6-26 Bus ticket prices

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exercises

267

Figure 6-27 Typical executions of console-based and GUI GuessAWord programs

has successfully guessed e, and is about to guess r. Hint: If you create the GUI version of
the game, you might want to include a Start button that selects the random word and
performs other startup tasks before you reveal the game interface. After the startup tasks
are complete, you can remove the Start button from the form.

Debugging Exercises
1. Each of the following files in the Chapter.06 folder of your downloadable student files

has syntax and/or logical errors. In each case, determine the problem, and fix the
program. After you correct the errors, save each file using the same filename preceded
with Fixed. For example, DebugSix01.cs will become FixedDebugSix01.cs.
a. DebugSix01.cs
b. DebugSix02.cs

c. DebugSix03.cs
d. DebugSix04.cs

Case Problems

1. In previous chapters, you created applications for the Greenville Idol competition.
Now, modify the version of the GreenvilleRevenue program created in Chapter 5
so that after the user enters the number of contestants in this year’s competition, the
user is prompted for the appropriate number of contestant names and a code for each
contestant that indicates the type of talent: S for singing, D for dancing, M for playing
a musical instrument, or O for other. Make sure that all entered codes are valid, and if
not, reprompt the user to enter a correct code. After contestant data entry is complete,
display a count of each type of talent. Then, continuously prompt the user for a
talent code until the user enters a sentinel value. With each code entry, display a list

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

268

C H A P T E R 6 Using Arrays

of the contestants with that code, or display a message that the code is not valid and
reprompt the user.

2. In previous chapters, you created applications for Marshall’s Murals. Now, modify the
version of the MarshallsRevenue program created in Chapter 5 so that after mural
data entry is complete, the user is prompted for the appropriate number of customer
names for both the interior and exterior murals and a code for each that indicates the
mural style: L for landscape, S for seascape, A for abstract, C for children’s, or O for
other. When a code is invalid, reprompt the user for a valid code continuously. After
data entry is complete, display a count of each type of mural. Then, continuously
prompt the user for a mural style code until the user enters a sentinel value. With each
code entry, display a list of all the customers with that code and whether their mural is
interior or exterior. If the requested code is invalid, display an appropriate message and
reprompt the user.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

