
C H A P T E R 5
Looping

In this chapter you will:

�� Learn how to create loops using the while statement

�� Learn how to create loops using the for statement

�� Learn how to create loops using the do statement

�� Use nested loops

�� Accumulate totals

�� Understand how to improve loop performance

�� Learn about looping issues in GUI programs

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

190

C H A P T E R 5 Looping

In the previous chapter, you learned how computers make decisions by evaluating Boolean
expressions. Looping allows a program to repeat tasks based on the value of a Boolean
expression. For example, programs that produce thousands of paychecks or invoices rely on
the ability to loop to repeat instructions. Likewise, programs that repeatedly prompt users
for a valid credit card number or for the correct answer to a tutorial question run more
efficiently with loop structures. In this chapter, you will learn to create loops in C# programs.
Computer programs seem smart due to their ability to make decisions; looping makes
programs seem powerful.

Creating Loops with the while Statement
A loop is a structure that allows repeated execution of a block of statements. Within a looping
structure, a Boolean expression is evaluated. If it is true, a block of statements called the
loop body executes and the Boolean expression is evaluated again. As long as the expression
is true, the statements in the loop body continue to execute and the loop-controlling Boolean
expression continues to be reevaluated. When the Boolean evaluation is false, the loop
ends. Figure 5-1 shows a diagram of the logic of a loop. One execution of any loop is called
an iteration.

%RROHDQ
H[SUHVVLRQ

WUXH

IDOVH

/RRS�ERG\

Figure 5-1 Flowchart of a loop structure

You can use a while loop to execute a body of statements continuously as long as the loop’s
test condition continues to be true. A while loop consists of the following:
 the keyword while
 a Boolean expression within parentheses
 the loop body

The evaluated Boolean expression in a while statement can be either a single Boolean
expression or a compound expression that uses ANDs and ORs. The body can be a single
statement or any number of statements surrounded by curly braces.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

191

Creating Loops with the while Statement

For example, the following code shows an integer declaration followed by a loop that causes the
message Hello to display (theoretically) forever because there is no code to end the loop. A loop
that never ends is called an infinite loop. An infinite loop might not actually execute infinitely.
All programs run with the help of computer memory and hardware, both of which have finite
capacities, so a program with an infinite loop might eventually fail and end. However, any loop
that potentially runs forever is called infinite.
int number = 1;
while(number > 0)
 WriteLine("Hello");

In this loop, the expression number > 0 evaluates as true, and Hello is displayed. The
expression number > 0 evaluates as true again, and Hello is displayed again. Because the value
of number is never altered, the loop runs forever, evaluating the same Boolean expression and
repeatedly displaying Hello as long as computer memory and hardware allow.

 Writing an infinite loop is always a bad idea, although even experienced programmers write them by
accident. If you ever find yourself in the midst of an infinite loop in a console application, you can break out
by holding down the Ctrl key and pressing the C key or the Break (Pause) key. In a GUI program, you can
simply close the Frame that is hosting the application.

To make a while loop end correctly, three separate actions should occur:
 A variable, the loop control variable, is initialized (before entering the loop).
 The loop control variable is tested in the while expression.
 The body of the loop must take some action that alters the value of the loop control variable

(so that the while expression eventually evaluates as false).
For example, Figure 5-2 shows the logic for a loop that displays Hello four times. The variable
number is initialized to 1, and a constant, LIMIT, is initialized to 5. The variable is less than
LIMIT, and so the loop body executes. The loop body shown in Figure 5-2 contains two
statements. The first displays Hello, and the second adds 1 to number. The next time number
is evaluated, its value is 2, which is still less than LIMIT, so the loop body executes again. Hello
displays a third time, and number becomes 4; then Hello displays a fourth time, and number
becomes 5. Now when the expression number < LIMIT is evaluated, it is false, so the loop
ends. If there were any subsequent statements following the while loop’s closing curly brace,
they would execute after the loop was finished.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

192

C H A P T E R 5 Looping

Figure 5-3 shows a C# program that uses the same logic as diagrammed in Figure 5-2. After
the declarations, the shaded while expression compares number to LIMIT. The two statements
that execute each time the Boolean expression is true are blocked using a pair of curly braces.
Figure 5-4 shows the output.

/,0,7� ��

QXPEHU��
/,0,7

IDOVH

WUXH ZULWH
�+HOOR�

QXPEHU�
QXPEHU����

QXPEHU� ��

Figure 5-2 Flowchart for the logic of a while loop whose body executes four times

using static System.Console;
class FourHellos
{
 static void Main()
 {
 int number = 1;
 const int LIMIT = 5;
 while(number < LIMIT)
 {
 WriteLine("Hello");
 number = number + 1;
 }
 }
}

Figure 5-3 A program that contains a while loop whose body executes four times

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

193

Creating Loops with the while Statement

 Recall from Chapter 2 that you also can use a shortcut operator to increase the value of a variable by 1.
Instead of number = number + 1, you could achieve the same final result by writing number++, ++number,
or number += 1. Because counting is such a common feature of loops, you might want to review the
difference between the prefix and postfix increment operators. A video called Using Shortcut Arithmetic
Operators accompanies Chapter 2.

The curly braces surrounding the body of the while loop in Figure 5-3 are important. If they are
omitted, the while loop ends at the end of the statement that displays Hello. Without the braces,
adding 1 to number would no longer be part of the loop body, so an infinite loop would be created.
Even if the statement that increases number was indented under the while statement, it would
not be part of the loop without the surrounding curly braces. Figure 5-5 shows the incorrect logic
that would result from omitting the curly braces. For clarity, many programmers recommend
surrounding a loop body with curly braces even when there is only one statement in the body.

Figure 5-4 Output of the FourHellos program

Don’t Do It
The statement that adds 1 to number is not
part of the loop, so this loop is infinite.

Figure 5-5 Incorrect logic when curly braces are omitted from the loop in the FourHellos program

QXPEHU� ��

/,0,7� ��

QXPEHU��
/,0,7

IDOVH

WUXH ZULWH
�+HOOR�

LQW�QXPEHU� ���
FRQVW�LQW�/,0,7� ���
ZKLOH�QXPEHU���/,0,7�
���:ULWH/LQH��+HOOR���
���QXPEHU� �QXPEHU�����

QXPEHU�
QXPEHU����

Don’t Do It
The statement that adds 1 to number
is not part of the loop, so this loop is
infinite.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

194

C H A P T E R 5 Looping

Because this code contains no curly braces, the while statement ends with the first semicolon,
and an infinite loop is created.
Also, if a semicolon is mistakenly placed at the end of the partial statement, as in Figure 5-6,
then the loop is also infinite. This loop has an empty body, or a body with no statements. In
this case, number is initialized to 1, the Boolean expression number < LIMIT evaluates, and
because it is true, the loop body is entered. Because the loop body is empty, ending at the
semicolon, no action takes place, and the Boolean expression evaluates again. It is still true
(nothing has changed), so the empty body is entered again, and the infinite loop continues.
The program can never progress to either the statement that displays Hello or the statement
that increases the value of number. The fact that these two statements are blocked using curly
braces has no effect because of the incorrectly placed semicolon.

Figure 5-6 Incorrect logic when an unwanted semicolon is mistakenly added to the loop
in the FourHellos program

QXPEHU� ��

/,0,7� ��

QXPEHU��
/,0,7

IDOVH

WUXH

LQW�QXPEHU� ���
FRQVW�LQW�/,0,7� ���
ZKLOH�QXPEHU���/,0,7��
^
���:ULWH/LQH��+HOOR���
���QXPEHU� �QXPEHU�����
`

ZULWH
�+HOOR�

QXPEHU�
QXPEHU����

Because this code contains an unwanted semicolon, the loop has an empty body.
Within a correctly functioning loop’s body, you can change the value of the loop control variable
in a number of ways. Many loop control variable values are altered by incrementing, or adding
to them, as in Figures 5-2 and 5-3. Other loops are controlled by reducing, or decrementing, a
variable and testing whether the value remains greater than some benchmark value.

Don’t Do It
This semicolon causes an infinite loop that
ends here.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

195

Creating Loops with the while Statement

A loop for which the number of iterations is predetermined is called a definite loop or
counted loop. Often, the value of a loop control variable is not altered by arithmetic but
instead is altered by user input. For example, perhaps you want to continue performing some
task while the user indicates a desire to continue. In that case, you do not know when you write
the program whether the loop will be executed two times, 200 times, or not at all. This type of
loop is an indefinite loop.
Consider a program that displays a bank balance and asks if the user wants to see what the
balance will be after one year of interest has accumulated. Each time the user indicates she
wants to continue, an increased balance appears. When the user finally indicates she has had
enough, the program ends. The program appears in Figure 5-7, and a typical execution appears
in Figure 5-8.

Figure 5-7 The LoopingBankBal program

using System;
using static System.Console;
class LoopingBankBal
{
 static void Main()
 {
 double bankBal = 1000;
 const double INT_RATE = 0.04;
 string inputString;
 char response;
 Write("Do you want to see your balance? Y or N...");
 inputString = ReadLine();
 response = Convert.ToChar(inputString);
 while(response == 'Y')
 {
 WriteLine("Bank balance is {0}",
 bankBal.ToString("C"));
 bankBal = bankBal + bankBal * INT_RATE;
 Write("Do you want to see next year's balance? Y or N...");
 inputString = ReadLine();
 response = Convert.ToChar(inputString);
 }
 WriteLine("Have a nice day!");
 }
}

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

196

C H A P T E R 5 Looping

 The program shown in Figure 5-7 continues to display bank balances while the response is Y. It could also
be written to display while the response is not N, as in while(response != 'N')... . A value such as 'Y'
or 'N' that a user must supply to stop a loop is a sentinel value.

In the program shown in Figure 5-7, the loop control variable is response. It is initialized by
the first input and tested with the Boolean expression response == 'Y'. If the user types
any character other than Y, then the loop body never executes; instead, the next statement to
execute displays Have a nice day!. However, if the user enters Y, then all five statements within
the loop body execute. The current balance is displayed, and the program increases the balance
by the interest rate value; this value will not be displayed unless the user requests another
loop repetition. Within the loop, the program prompts the user and reads in a new value for
response. This input statement is the one that potentially alters the loop control variable. The
loop ends with a closing curly brace, and program control returns to the top of the loop, where
the Boolean expression is tested again. If the user typed Y at the last prompt, then the loop
is reentered, and the increased bankBal value that was calculated during the last loop cycle
is displayed.

 In C#, character data is case sensitive. If a program tests response == 'Y', a user response of y will
result in a false evaluation. Beware of the pitfall of writing a loop similar to while(response != 'Y' ||
response != 'y')... to test both for uppercase and lowercase versions of the response. Every character
is either not Y or not y, even Y and y. A correct loop might begin with the following:

while(response != 'Y' && response != 'y')…

 Watch the video Using the while Loop.

Figure 5-8 Typical execution of the LoopingBankBal program

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

197

Creating Loops with the while Statement

Using a while Loop
In the next steps, you write a program that continuously prompts the user for a
valid ID number until the user enters one. For this application, assume that a valid
ID number must be between 1000 and 9999, inclusive.

1. Open a new project named ValidID, and enter the beginning of the program
by declaring variables for an ID number, the user’s input, and constant values
for the highest and lowest acceptable ID numbers.
using System;
using static System.Console;
class ValidID
{
 static void Main()
 {
 int idNum;
 string input;
 const int LOW = 1000;
 const int HIGH = 9999;

You Do It

(continues)

TWO TRUTHS & A LIE

Creating Loops with the while Statement
1. To make a while loop that executes correctly, a loop control variable is initialized

before entering the loop.

2. To make a while loop that executes correctly, the loop control variable is tested in
the while expression.

3. To make a while loop that executes correctly, the body of the while statement
must never alter the value of the loop control variable.

The false statement is #3. To make a while loop that executes correctly, the
body of the while statement must take some action that alters the value of the
loop control variable.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

198

C H A P T E R 5 Looping

2. Add code to prompt the user for an ID number, and to then convert it to an
integer.
Write("Enter an ID number: ");
input = ReadLine();
idNum = Convert.ToInt32(input);

3. Create a loop that continues while the entered ID number is out of range.
While the number is invalid, explain valid ID parameters and reprompt the
user, converting the input to an integer.
while(idNum < LOW || idNum > HIGH)
{
 WriteLine("{0} is an invalid ID number", idNum);
 Write("ID numbers must be ");
 WriteLine("between {0} and {1} inclusive", LOW, HIGH);
 Write("Enter an ID number: ");
 input = ReadLine();
 idNum = Convert.ToInt32(input);
}

4. When the user eventually enters a valid ID number, the loop ends. Display a
message, and add closing curly braces for the Main() method and for the
class.
 WriteLine("ID number {0} is valid", idNum);
 }
}

5. Save the file, compile the program, and execute it. A typical execution during
which the user makes several invalid entries is shown in Figure 5-9.

(continued)

Figure 5-9 Typical execution of the ValidID program

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

199

Creating Loops with the for Statement

Creating Loops with the for Statement
The LoopingBankBal program in Figure 5-7 contains an indefinite loop because the number
of executions is not predetermined; each time the program executes, the user might continue
the loop a different number of times. You can use a while loop for either definite or indefinite
loops. To write either type of while loop, you initialize a loop control variable, and as long as its
test expression is true, you continue to execute the body of the while loop. To avoid an infinite
loop, the body of the while loop must contain a statement that alters the loop control variable.
Because you need definite loops (ones with a predefined number of iterations) so frequently
when you write programs, C# provides a shorthand way to create such loops. With a for loop,
you can indicate the starting value for the loop control variable, the test condition that controls
loop entry, and the expression that alters the loop control variable, all in one convenient place.
You begin a for statement with the keyword for followed by a set of parentheses. Within the
parentheses are three sections separated by exactly two semicolons. The three sections are
usually used for:
 Initializing the loop control variable
 Testing the loop control variable
 Updating the loop control variable

As with an if or a while statement, you can use a single statement as the body of a for loop,
or you can use a block of statements enclosed in curly braces. The while and for statements
shown in Figure 5-10 produce the same output—the integers 1 through 10.

// Declare loop control variable and limit
int x;
const int LIMIT = 10;

// Using a while loop to display 1 through 10
x = 1;
while(x <= LIMIT)
{
 WriteLine(x);
 ++x;
}

// Using a for loop to display 1 through 10
for(x = 1; x <= LIMIT; ++x)
 WriteLine(x);

Figure 5-10 Displaying integers 1 through 10 with while and for loops

 The amount by which a loop control variable increases or decreases on each cycle through the loop is
often called the step value. That’s because in the BASIC programming language, and its descendent, the
Visual Basic language, the keyword STEP is actually used in for loops.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

200

C H A P T E R 5 Looping

Within the parentheses of the for statement shown in Figure 5-10, the initialization section
prior to the first semicolon sets a variable named x to 1. The program executes this statement
once, no matter how many times the body of the for loop eventually executes.
After the initialization expression executes, program control passes to the middle section, or
test section, of the for statement. If the Boolean expression found there evaluates to true,
then the body of the for loop is entered. In the program segment shown in Figure 5-10, x is
initialized to 1, so when x <= LIMIT is tested, it evaluates to true, and the loop body outputs
the value of x.
After the loop body executes, the final one-third of the for expression (the update section that
follows the last semicolon) executes, and x increases to 2. Following the third section, program
control returns to the second (test) section, where x is compared to LIMIT a second time.
Because the value of x is 2, it is still less than or equal to LIMIT, so the body of the for loop
executes, and the value of x is displayed. Then the third, altering portion of the for statement
executes again. The variable x increases to 3, and the for loop continues.
Eventually, when x is not less than or equal to LIMIT (after 1 through 10 have been output), the
for loop ends, and the program continues with any statements that follow the for loop.
Although the three sections of the for loop are most commonly used for initializing a variable,
testing it, and incrementing it, you can also perform other tasks:
 You can initialize more than one variable by placing commas between separate initializations

in the first section of the for statement, as in the following:
for(g = 0, h = 1; g < 6; ++g)

 You can declare a new variable within the for statement, as in the following:
for(int k = 0; k < 5; ++k)

In this example, k is declared to be an int and is initialized to 0. This technique is used
frequently when the variable exists for no other purpose than to control the loop. When a
variable is declared inside a loop, as k is in this example, it can be referenced only for the
duration of the loop body; after that, it is out of scope, which means it is not usable because it
has ceased to exist.
 You can perform more than one test in the middle section of the for statement by

evaluating compound conditions, as in the following:
for(g = 0; g < 3 && h > 1; ++g)

 You can perform tasks other than incrementing at the end of the loop’s execution, as in the
following code that decrements a variable:
for(g = 5; g >= 1; --g)

 You can perform multiple tasks at the end of the loop’s execution by separating the actions
with commas, as in the following:
for(g = 0; g < 5; ++g, ++h)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

201

 You can leave one or more portions of the for expression empty, although the two semicolons
are still required as placeholders to separate the three sections. Usually, you want to use all three
sections because the function of the loop is clearer to someone reading your program.

Generally, you should use the for loop in the standard manner, which is a shorthand way of
initializing, testing, and altering a variable that controls a definite loop. You will learn about a
similar loop, the foreach loop, when you study arrays in the next chapter.
Just as with a decision or a while loop, statements in a for loop body can be blocked. For
example, the following loop displays Hello and Goodbye four times each:
const int TIMES = 4;
for(int x = 0; x < TIMES; ++x)
{
 WriteLine("Hello");
 WriteLine("Goodbye");
}

Without the curly braces in this code, the for loop would end after the statement that displays
Hello. In other words, Hello would be displayed four times, but Goodbye would be displayed
only once.

 Watch the video Using the for Loop.

TWO TRUTHS & A LIE

Creating Loops with the for Statement
1. The following statement displays the numbers 3 through 6:

for(int x = 3; x <= 6; ++x)
 WriteLine(x);

2. The following statement displays the numbers 4 through 9:

for(int x = 3; x < 9; ++x)
 WriteLine(x + 1);

3. The following statement displays the numbers 5 through 12:

for(int x = 5; x < 12; ++x)
 WriteLine(x);

The false statement is #3. That loop displays only the numbers 5 through 11,
because when x is 12, the loop body is not entered.

Creating Loops with the for Statement

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

202

C H A P T E R 5 Looping

Creating Loops with the do Statement
With each of the loop statements you have learned about so far, the loop body might execute
many times, but it is also possible that the loop will not execute at all. For example, recall the
bank balance program that displays compound interest, part of which is shown in Figure 5-11.
The loop begins at the shaded line by testing the value of response. If the user has not
entered Y, the loop body never executes. The while loop checks a value at the “top” of the loop.

Write("Do you want to see your balance? Y or N...");
inputString = ReadLine();
response = Convert.ToChar(inputString);
while(response == 'Y')
{
 WriteLine("Bank balance is {0}", bankBal.ToString("C"));
 bankBal = bankBal + bankBal * INT_RATE;
 Write("Do you want to see next year's balance? Y or N...");
 inputString = ReadLine();
 response = Convert.ToChar(inputString);
}

Figure 5-11 Part of the bank balance program using a while loop

Sometimes you might need a loop body always to execute at least one time. If so, you can
write a loop that checks at the “bottom” of the loop after the first iteration. The do loop (also
called a do...while loop) checks the loop-controlling Boolean expression after one iteration.
Figure 5-12 shows a diagram of the structure of a do loop.

Figure 5-12 Flowchart of a do loop

Loop body

Test of loop
control variable

true

false

Figure 5-13 shows the logic and the C# code for a do loop in a bank balance program. The
loop starts with the keyword do. The body of the loop follows and is contained within curly

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

203

Creating Loops with the do Statement

braces. Within the loop, the next balance is calculated, and the user is prompted for a response.
The Boolean expression that controls loop execution is written using a while statement,
placed after the loop body. The bankBal variable is output the first time before the user has
any option of responding. At the end of the loop, the user is prompted, Do you want to see next
year’s balance? Y or N…. Now the user has the option of seeing more balances, but the first
view of the balance was unavoidable.

Figure 5-13 Part of the bank balance program using a do loop

ZULWH��%DQN�EDODQFH
LV���EDQN%DO

ZULWH��'R�\RX�ZDQW�WR
VHH�QH[W�\HDU
V�EDODQFH"
<�RU�1����

JHW�UHVSRQVH��DQG�FRQYHUW
WR�D�FKDUDFWHU�

UHVSRQVH� �
<
"
WUXH

IDOVH

GR
^
���:ULWH/LQH��%DQN�EDODQFH�LV�^�`���EDQN%DO�7R6WULQJ��&����
���EDQN%DO� �EDQN%DO���EDQN%DO�
�,17B5$7(�
���:ULWH��'R�\RX�ZDQW�WR�VHH�QH[W�\HDU
V�EDODQFH"�<�RU�1�������
���LQSXW6WULQJ� �5HDG/LQH���
���UHVSRQVH� �&RQYHUW�7R&KDU�LQSXW6WULQJ��
`��ZKLOH�UHVSRQVH� �
<
��

With the GR loop, the loop control variable
is tested after the loop body has executed one time.

EDQN%DO� �EDQN%DO��
EDQN%DO�
�,17B5$7(

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

204

C H A P T E R 5 Looping

 In a do loop, as a matter of style, many programmers prefer to align the while expression with the do
keyword that starts the loop. Others feel that placing the while expression on its own line increases the
chances that readers might misinterpret the line as the start of its own while statement instead of marking
the end of a do statement.

You never are required to use a do loop. Within the bank balance example, you could achieve
the same results by unconditionally displaying the bank balance once, prompting the user, and
then starting a while loop that might not be entered. However, when a task must be performed
at least one time, the do loop is convenient.

 The while loop and for loop are pretest loops—ones in which the loop control variable is tested before
the loop body executes. The do loop is a posttest loop—one in which the loop control variable is tested
after the loop body executes.

TWO TRUTHS & A LIE

Creating Loops with the do Statement
1. The do loop checks the bottom of the loop after one iteration has occurred.

2. The Boolean expression that controls do loop execution is written using a do
statement, placed after the loop body.

3. You never are required to use a do loop; you can always substitute one execution of
the body statements followed by a while loop.

The false statement is #2. The Boolean expression that controls do loop execution
is written using a while statement, placed after the loop body.

Using Nested Loops
Like if statements, loop statements also can be nested. You can place a while loop within
a while loop, a for loop within a for loop, a while loop within a for loop, or any other
combination. When loops are nested, each pair contains an inner loop and an outer loop.
The inner loop must be entirely contained within the outer loop; loops can never overlap.
Figure 5-14 shows a diagram in which the shaded loop is nested within another loop; the
shaded area is the inner loop as well as the body of the outer loop.
Suppose you want to display future bank balances for different years at a variety of interest
rates. Figure 5-15 shows an application that contains an outer loop controlled by interest rates
(starting with the first shaded statement in the figure) and an inner loop controlled by years
(starting with the second shaded statement). The application displays annually compounded
interest on $1000 at 4 percent, 6 percent, and 8 percent interest rates for one through five years.
Figure 5-16 shows the output.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

205

Using Nested Loops

Figure 5-15 The LoopingBankBal2 program

using static System.Console;
class LoopingBankBal2
{
 static void Main()
 {
 double bankBal;
 double rate;
 int year;
 const double START_BAL = 1000;
 const double START_INT = 0.04;
 const double INT_INCREASE = 0.02;
 const double LAST_INT = 0.08;
 const int END_YEAR = 5;
 for(rate = START_INT; rate <= LAST_INT; rate += INT_INCREASE)
 {
 bankBal = START_BAL;
 WriteLine("Starting bank balance is {0}",
 bankBal.ToString("C"));
 WriteLine(" Interest Rate: {0}", rate.ToString("P"));
 for(year = 1; year <= END_YEAR; ++year)
 {
 bankBal = bankBal + bankBal * rate;
 WriteLine(" After year {0}, bank balance is {1}",
 year, bankBal.ToString("C"));
 }
 }
 }
}

test of outer
loop control
variable

false

true

test of inner
loop control
variable

false

true body of inner
loop

Figure 5-14 Nested loops

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

206

C H A P T E R 5 Looping

When you use a loop within a loop, you should always think of the outer loop as the all-
encompassing loop. When you describe the task at hand, you often use the word each to refer
to the inner loop. For example, if you wanted to output balances for different interest rates each
year for 10 years, you could appropriately initialize some constants as follows:
const double RATE1 = 0.03;
const double RATE2 = 0.07
const double RATE_INCREASE = 0.01
const int END_YEAR = 10;

Then you could use the following nested for loops:
for(rate = RATE1; rate <= RATE2; rate += RATE_INCREASE)
 for(year = 1; year <= END_YEAR; ++year)
 WriteLine(bankBal + bankBal * rate);

However, if you wanted to display balances for different years for each possible interest rate,
you would use the following:
for(year = 1; year <= END_YEAR; ++year)
 for(rate = RATE1; rate <= RATE2; rate += RATE_INCREASE)
 WriteLine(bankBal + bankBal * rate);

In both of these examples, the same 50 values would be displayed—five different interest rates
(from 0.03 through 0.07) for 10 years (1 through 10). However, in the first example, balances
for years 1 through 10 would be displayed within each interest rate category, and in the second
example, each balance for each interest rate would be displayed within each year category. In
other words, in the first example, the first 10 amounts displayed would all use the first rate of
0.03 for 10 different years, and in the second example, the first five amounts displayed would
use different interest values all in the first year.

Figure 5-16 Output of the LoopingBankBal2 program

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

207

Using Nested Loops

 Watch the video Using Nested Loops.

TWO TRUTHS & A LIE

Using Nested Loops
1. The body of the following loop executes six times:

 for(a = 1; a < 4; ++a)
 for(b = 2; b < 3; ++b)

2. The body of the following loop executes four times:
 for(c = 1; c < 3; ++c)
 for(d = 1; d < 3; ++d)

3. The body of the following loop executes 15 times:
 for(e = 1; e <= 5; ++e)
 for(f = 2; f <= 4; ++f)

The false statement is #1. That loop executes only three times. The outer loop
executes when a is 1, 2, and 3. The inner loop executes just once for each of
those iterations.

Using a Nested Loop
In the next steps, you write a program that creates a tipping table that restaurant
patrons can use to approximate the correct tip for meals. Prices range from $10
to $100, and tipping percentage rates range from 10 percent to 25 percent. The
program uses several loops.

1. Open a new file to start a program named TippingTable. It begins by
declaring variables to use for the price of a dinner, a tip percentage rate, and
the amount of the tip.
using static System.Console;
class TippingTable
{
 static void Main()
 {
 double dinnerPrice = 10.00;
 double tipRate;
 double tip;

You Do It

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

208

C H A P T E R 5 Looping

2. Next, create some constants. Every tip from 10 percent through 25 percent
will be computed in 5 percent intervals, so declare those values as LOWRATE,
MAXRATE, and TIPSTEP. Tips will be calculated on dinner prices up to
$100.00 in $10.00 intervals, so declare those constants, too.
const double LOWRATE = 0.10;
const double MAXRATE = 0.25;
const double TIPSTEP = 0.05;
const double MAXDINNER = 100.00;
const double DINNERSTEP = 10.00;

3. To create a heading for the table, display Price. (For alignment, insert
three spaces after the quotes and before the P in Price.) On the same line,
use a loop that displays every tip rate from LOWRATE through MAXRATE
in increments of TIPSTEP. In other words, the tip rates are 0.10, 0.15,
0.20, and 0.25. Complete the heading for the table using a WriteLine()
statement that advances the cursor to the next line of output and a
WriteLine() statement that displays a dashed line.
Write("Price");
for(tipRate = LOWRATE; tipRate <= MAXRATE; tipRate += TIPSTEP)
 Write("{0, 8}", tipRate.ToString("F"));
WriteLine();
WriteLine("--------------------------------------");

 Recall that within a for loop, the expression before the first semicolon executes once, the middle
expression is tested, the loop body executes, and then the expression to the right of the second
semicolon executes. In other words, TIPSTEP is not added to tipRate until after tipRate is
displayed on each cycle through the loop.

 As an alternative to typing 40 dashes in the WriteLine() statement, you could use the following
loop to display a single dash 40 times. When the 40 dashes were completed, you could use
WriteLine() to advance the cursor to a new line.
const int NUM_DASHES = 40;
for(int x = 0; x < NUM_DASHES; ++x)
 Write("-");
WriteLine();

4. Reset tipRate to 0.10. You must reset the rate because after the last loop,
the rate will have been increased to greater than 0.25.
tipRate = LOWRATE;

5. Create a nested loop that continues while the dinnerPrice remains 100.00
(MAXDINNER) or less. Each iteration of this loop displays one row of the tip
table. Within this loop, display the dinnerPrice, then loop to display four
tips while the tipRate varies from 0.10 through 0.25. At the end of the

(continued)

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

209

Using Nested Loops

loop, increase the dinnerPrice by 10.00, reset the tipRate to 0.10 so it is
ready for the next row, and write a new line to advance the cursor.
while(dinnerPrice <= MAXDINNER)
{
 Write("{0, 8}", dinnerPrice.ToString("C"));
 while(tipRate <= MAXRATE)
 {
 tip = dinnerPrice * tipRate;
 Write("{0, 8}", tip.ToString("F"));
 tipRate += TIPSTEP;
 }
 dinnerPrice += DINNERSTEP;
 tipRate = LOWRATE;
 WriteLine();
}

 Recall that the {0, 8} format string in the Write() statements displays the first argument in fields
that are eight characters wide. You learned about format strings in Chapter 2.

6. Add two closing curly braces—one for the Main() method and one for
the class.

7. Save the file, compile it, and execute the program. The output looks like
Figure 5-17.

Figure 5-17 Output of the TippingTable program

(continued)

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

210

C H A P T E R 5 Looping

Using a do Loop
In the next steps, you revise the TippingTable program to use a do loop in place of
the while loop.

1. Open the TippingTable program, change the class name to TippingTable2,
and save the file as TippingTable2.

2. Cut the while loop clause (while(dinnerPrice <= MAXDINNER)), and
replace it with do.

3. Paste the while loop clause just after the closing curly brace for the
loop and before the final two curly braces in the program, and then add a
semicolon.

4. Save, compile, and execute the program. The output is identical to the output
in Figure 5-17.

You Do It

Accumulating Totals
Many computer programs display totals. When you receive a credit card or telephone service
bill, you are usually provided with individual transaction details, but you are most interested
in the total bill. Similarly, some programs total the number of credit hours generated by
college students, the gross payroll for all employees of a company, or the total accounts
receivable value for an organization. These totals are accumulated—that is, they are summed
one at a time in a loop.
Figure 5-18 shows an example of an interactive program that accumulates the user’s total
purchases. The program prompts the user to enter a purchase price or 0 to quit. While the user
continues to enter nonzero values, the amounts are added to a total. With each pass through
the loop, the total is recalculated to include the new purchase amount. After the user enters
the loop-terminating 0, the accumulated total can be displayed. Figure 5-19 shows a typical
program execution.

 In the exercises at the end of this chapter, you will be instructed to make an interactive version of
the TippingTable program in which many of the values are input by the user instead of being coded
into the program as unnamed constants.

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

211

Using Nested Loops

using System;
using static System.Console;
class TotalPurchase
{
 static void Main()
 {
 double purchase;
 double total = 0;
 string inputString;
 const double QUIT = 0;
 Write("Enter purchase amount >> ");
 inputString = ReadLine();
 purchase = Convert.ToDouble(inputString);
 while(purchase != QUIT)
 {
 total += purchase;
 Write("Enter next purchase amount, or " +
 QUIT + " to quit >> ");
 inputString = ReadLine();
 purchase = Convert.ToDouble(inputString);
 }
 WriteLine("Your total is {0}", total.ToString("C"));
 }
}

Figure 5-18 An application that accumulates total purchases entered by the user

Figure 5-19 Typical execution of the TotalPurchase program

Recall from Chapter 2 that the expression total += purchase uses the shortcut add and
assign operator, and that it is equivalent to total = total + purchase. The add and assign
operator is frequently used when a running total is kept.
In the application in Figure 5-18, it is very important that the total variable used for
accumulation is set to 0 before the loop begins. When it is not, the program will not compile.
An unknown, unassigned value is known as garbage. The C# compiler prevents you from
seeing an incorrect total by requiring you to provide a starting value; C# will not use the
garbage value that happens to be stored at an uninitialized memory location.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

212

C H A P T E R 5 Looping

 In the application in Figure 5-18, the total variable must be initialized to 0, but the purchase variable is
uninitialized. Many programmers would say it makes no sense to initialize this variable because no matter
what starting value you provide, the value can be changed by the first input statement before the variable
is ever used. As a matter of style, this book generally does not initialize variables if the initialization value is
never used; doing so might mislead you into thinking the starting value had some purpose.

TWO TRUTHS & A LIE

Accumulating Totals
1. When totals are accumulated, 1 is added to a variable that represents the total.

2. A variable used to hold a total must be set to 0 before it is used to accumulate
a total.

3. The C# compiler will not allow you to accumulate totals in an uninitialized variable.

The false statement is #1. When totals are accumulated, any value might be added
to a variable that represents the total. For example, if you total 10 test scores, then
each score is added. If you add only 1 to a total variable on each cycle through a
loop, then you are counting rather than accumulating a total.

Improving Loop Performance
Whether you decide to use a while, for, or do loop in an application, you can improve loop
performance by doing the following:
 Make sure the loop avoids unnecessary operations.
 Consider the order of evaluation for short-circuit operators.
 Employ loop fusion.
 Use prefix incrementing rather than postfix incrementing.

Avoiding Unnecessary Operations
You can improve loop performance by making sure the loop does not include unnecessary
operations or statements. For example, suppose that a loop should execute while x is less than
the sum of two integers a and b, and that neither a nor b is altered in the loop body. The loop
could be written as:
while(x < a + b)
 // loop body

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

213

Improving Loop Performance

If this loop executes 1,000 times, then the expression a + b is calculated 1,000 times. Instead, if
you use the following code, the results are the same, but the arithmetic is performed only once:
int sum = a + b;
while(x < sum)
 // loop body

Of course, if a or b is altered in the loop body, then a new sum must be calculated with every
loop iteration. However, if the sum of a and b is fixed prior to the start of the loop, then writing
the code the second way is far more efficient.
As another example, suppose you need a temporary variable within a loop to use for some
calculation. The loop could be written as follows:
while(x < LIMIT)
{
 int tempTotal = a + b;
 // more statements here
}

When you declare a variable like tempTotal within a loop, it exists only for the duration of
the loop; that is, it exists only until the loop’s closing brace. Each time the loop executes, the
variable is re-created. A more efficient solution is to declare the variable outside of the loop, as
follows:
int tempTotal;
while(x < LIMIT)
{
 tempTotal = a + b;
 // more statements here
}

It is more efficient to declare this variable outside the loop than to redeclare it on every loop
iteration.

Considering the Order of Evaluation of Short-Circuit Operators
In Chapter 4, you learned that the expressions in each part of an AND or OR expression use
short-circuit evaluation; that is, they are evaluated only as much as necessary to determine
whether the entire expression is true or false. When a loop might execute many times, it
becomes increasingly important to consider the number of evaluations that take place.
For example, suppose that a user can request any number of printed copies of a report from 1
to 15, and you want to validate the user’s input before proceeding. If you believe that users are
far more likely to enter a value that is too high than to enter a negative value, then you want to
start a loop that reprompts the user with the following expression:
while(requestedNum > 15 || requestedNum < 1)...

Because you believe that the first Boolean expression is more likely to be true than the second
one, you can eliminate testing the second one on more occasions. The order of the expressions
is not very important in a single loop, but if this loop is nested within other loops, then the

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

214

C H A P T E R 5 Looping

difference in the number of required tests increases. Similarly, the order of the evaluations in if
statements is more important when the if statements are nested within a loop.

Employing Loop Fusion
Loop fusion is the technique of combining two loops into one. For example, suppose that you
want to call two methods 100 times each. You can set a constant named TIMES to 100 and use
the following code:
for(int x = 0; x < TIMES; ++x)
 method1();
for(int x = 0; x < TIMES; ++x)
 method2();

However, you can also use the following code:
for(int x = 0; x < TIMES; ++x)
{
 method1();
 method2();
}

Fusing loops will not work in every situation; sometimes all the activities for method1() must
be finished before those in method2() can begin. However, if the two methods do not depend
on each other, fusing the loops can improve performance. Performance issues can be crucial
when you write programs for small mobile devices such as phones. On the other hand, if saving
a few milliseconds ends up making your code harder to understand, you almost always should
err in favor of slower but more readable programs.

Using Prefix Incrementing Rather Than Postfix Incrementing
Probably the most common action after the second semicolon in a for statement is to
increment the loop control variable. In most textbooks and in many professional programs, the
postfix increment operator is used for this purpose, as in the following:
for(int x = 0; x < LIMIT; x++)

Because incrementing x is a stand-alone statement in the for loop, the result is identical
whether you use x++ or ++x. However, using the prefix increment operator produces a faster
loop. Consider the test program in Figure 5-20. It uses C#’s Stopwatch class. The statement
using System.Diagnostics; is needed for the Stopwatch class. You will better understand
how this class works after you read Chapter 9, “Using Classes and Objects,” but you can use the
class now by making statements similar to the following:
Stopwatch sw = Stopwatch.StartNew();
 // Place statements to be timed here
sw.Stop();

The first statement creates and starts a Stopwatch object for timing events. The object’s name
is sw—you can use any legal C# identifier. The last statement stops the Stopwatch.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

215

Improving Loop Performance

Subsequently, you can use a statement similar to the following to output the object’s elapsed
time in milliseconds:
WriteLine("Time used: {0} ms", sw.Elapsed.TotalMilliseconds);

Figure 5-20 contains a program that uses the Stopwatch class to compare loops that use prefix
and postfix incrementing. Figure 5-21 shows the output of the program.

using System;
using static System.Console;
using System.Diagnostics;
class PrefixPostfixComparison
{
 static void Main()
 {
 int LOOPS = 10000000;
 Stopwatch sw = Stopwatch.StartNew();
 for(int x = 0; x < LOOPS; ++x);
 sw.Stop();
 Stopwatch sw2 = Stopwatch.StartNew();
 for(int x = 0; x < LOOPS; x++);
 sw2.Stop();
 WriteLine("Time with prefix increment: {0} ms",
 sw.Elapsed.TotalMilliseconds);
 WriteLine("Time with postfix increment: {0} ms",
 sw2.Elapsed.TotalMilliseconds);
 }
}

Figure 5-20 The PrefixPostfixComparison program

Figure 5-21 Typical execution of the PrefixPostfixComparison program

The program that uses prefix incrementing runs slightly faster than the one that uses postfix
incrementing. The difference in duration for the loops is very small, but it would increase if
tasks were added to the loop bodies. If you run the PrefixPostfixComparison program multiple
times, you will get different results, and occasionally the prefix operator loop might take longer
than the postfix loop because other programs are running concurrently on your computer.
However, using the prefix operator typically saves a small amount of time. As a professional,

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

216

C H A P T E R 5 Looping

you will encounter programmers who insist on using either postfix or prefix increments in their
loops. You should follow the conventions established by your organization, but now you have
the tools to prove that prefix incrementing is faster.
As you continue to study programming, you will discover many situations in which you can
make your programs more efficient. You should always be on the lookout for ways to improve
program performance without sacrificing readability.

TWO TRUTHS & A LIE

Improving Loop Performance
1. You can improve loop performance by making sure the loop does not include

unnecessary operations or statements.

2. You can improve loop performance by declaring temporary variables outside of a
loop instead of continuously redeclaring them.

3. You can improve loop performance by omitting the initialization of the loop control
variable.

The false statement is #3. A loop control variable must be initialized for every loop.

Looping Issues in GUI Programs
Using a loop within a method in a GUI application is no different from using one in a
console application; you can use while, for, and do statements in the same ways in both
types of programs. For example, Figure 5-22 shows a GUI Form that prompts a user to
enter a number and then displays Hello the corresponding number of times. The image
on the left shows the Form when the program starts, and the image on the right shows the
output after the user enters a value and clicks the button. Figure 5-23 shows the code in the
greetingsButton_Click() method. When a user clicks the greetingsButton, an integer
is extracted from the TextBox on the Form. Then a for loop appends Hello and a newline
character to the Text property of the outputLabel the correct number of times.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

217

Looping Issues in GUI Programs

Figure 5-22 The Greetings Form when it starts and after the user enters a number and clicks the button

Figure 5-23 The greetingsButton_Click() method in the ManyHellosGUI application

 If the user clicked the button in the ManyHellosGUI program again, new instances of Hello would be added to
the already-displayed ones. If your intention was to only show new Hellos then you could add the statement
outputLabel.Text = ""; to the greetingsButtonClick() method before the start of the loop.

Event-driven programs sometimes require fewer coded loops than their counterpart console
applications, because in these programs some events are determined by the user’s actions when
the program is running, rather than by the programmer’s coding beforehand. You can write
an event-driven program so that an action continues as long as the user continues to make an
appropriate selection. Depending on the application, the sentinel value for this sort of implicit
loop might occur when the user either clicks a button that indicates quit or clicks the close
button on the Form that hosts the application.

private void greetingsButton_Click(object sender, EventArgs e)
{
 int numGreetings = Convert.ToInt32(greetingsTextBox.Text);
 int count;
 for (count = 0; count < numGreetings; ++count)
 outputLabel.Text += "Hello\n";
}

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

218

C H A P T E R 5 Looping

Figure 5-24 The BankBalance Form when it starts and after the user has clicked Yes three times

namespace LoopingBankBalGUI
{
 partial class Form1 : Form
 {
 double bankBal = 1000;
 const double INT_RATE = 0.04;
 private void yesButton_Click(object sender, EventArgs e)
 {
 outputLabel.Text += String.Format("Bank balance is {0}\n",
 bankBal.ToString ("C"));
 bankBal = bankBal + bankBal * INT_RATE;
 }
 private void noButton_Click(object sender, EventArgs e)
 {
 outputLabel.Text = "Have a nice day!";
 }
 }
}

Figure 5-25 Code for the LoopingBankBalGUI program

For example, Figure 5-24 shows a Form that controls a bank balance application similar to
the one shown earlier in this chapter in Figure 5-7. The left side of the figure shows the Form
when the application starts, and the right side shows the Form after the user has clicked the Yes
button three times. Figure 5-25 shows the significant Form class code.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

219

Chapter Summary

 In the LoopingBankBalGUI program, you might also choose to disable the Yes button or make it invisible so
that the user cannot select it again after clicking No.

No loop is written in the code in Figure 5-25 because a loop body execution is
caused automatically each time a user clicks the Yes button on the Form. Whenever
yesButton_Click() executes, the Text of the outputLabel is appended to include a new
line that displays the bank balance, and then the bank balance is increased by the interest
rate. It is important that the bankBal variable is initialized outside the yesButton_Click()
method; if it was initialized within the method, the balance would be reset to the original
value of $1000 with each new button click. In the application in Figure 5-27, the balances
in the outputLabel are replaced with Have a nice day! when the user indicates no more
balances are needed.

Chapter Summary
 You can use a while loop to execute a body of statements continuously while a condition

continues to be true. A while loop consists of the keyword while, a Boolean expression
within parentheses, and the body of the loop, which can be a single statement or a block of
statements surrounded by curly braces.

 A for statement includes loop control variable initialization, the test condition that
controls loop entry, and the expression that alters the loop control variable. You begin a for
statement with the keyword for, followed by a set of parentheses. Within the parentheses,
the initialization, test, and update sections are separated by semicolons.

 The do loop checks the loop-controlling Boolean expression at the bottom of the loop after
one repetition has occurred.

 You can nest any combination of loops.
 In computer programs, totals frequently are accumulated—that is, summed one at a time in

a loop.
 You can improve loop performance by making sure the loop does not include unnecessary

operations or statements, considering the order of evaluation for short-circuit operators,
using comparisons to zero, employing loop fusion, and using prefix incrementing.

 You can use while, for, and do statements in the same ways in console and GUI
programs. However, event-driven programs sometimes require fewer coded loops than
console applications because some events are determined by the user’s actions when the
program is running, rather than by the programmer’s coding beforehand.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 5 Looping

220

Key Terms
A loop is a structure that allows repeated execution of a block of statements.
A loop body is the block of statements executed in a loop.
An iteration is one execution of any loop.
A while loop executes a body of statements continuously while a test condition continues to
be true; it uses the keyword while.
An infinite loop is one that (theoretically) never ends.
A loop control variable determines whether loop execution will continue.
An empty body has no statements in it.
Incrementing a variable means adding a value to it. (Specifically, the term often means to add 1
to a variable.)
Decrementing a variable means subtracting a value from it. (Specifically, the term often means
to subtract 1 from a variable.)
In a definite loop, the number of iterations is predetermined.
A counted loop is a definite loop.
An indefinite loop is one in which the number of iterations is not predetermined.
A sentinel value is one that a user must supply to stop a loop.
A for loop contains the starting value for the loop control variable, the test condition
that controls loop entry, and the expression that alters the loop control variable, all in one
statement.
A step value is the amount by which a loop control variable is altered, especially in a for loop.
Out of scope describes a program component that is not usable because it has ceased to exist.
The do loop (also called a do...while loop) checks the loop-controlling Boolean expression at
the bottom of the loop after one repetition has occurred.
A pretest loop is a loop in which the loop control variable is tested before the loop body
executes.
A posttest loop is one in which the loop control variable is tested after the loop body executes.
An inner loop is the loop in a pair of nested loops that is entirely contained within another
loop.
An outer loop is the loop in a pair of nested loops that contains another loop.
Accumulated totals are computed by adding values one at a time in a loop.
Garbage is a term used to describe an unknown memory value.
Loop fusion is the technique of combining two loops into one.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Review Questions

221

Review Questions
1. A structure that allows repeated execution of a block of statements is a(n)

_____________________ .
a. sequence
b. selection

c. loop
d. array

2. The body of a while loop can consist of _____________________ .
a. a single statement
b. a block of statements within curly

braces

c. either a or b
d. neither a nor b

3. A loop that never ends is called a(n) _____________________ loop.
a. while

b. for

c. counted
d. infinite

4. Which of the following is not required of a loop control variable in a correctly
working loop?
a. It is reset to its initial value before the loop ends.
b. It is initialized before the loop starts.
c. It is tested.
d. It is altered in the loop body.

5. A while loop with an empty body contains no _____________________ .
a. loop control variable
b. statements
c. curly braces
d. test within the parentheses of the while statement

6. A loop for which you do not know the number of iterations when you write it is a(n)
_____________________ .
a. definite loop
b. indefinite loop

c. counted loop
d. for loop

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 5 Looping

222

7. What is the major advantage of using a for loop instead of a while loop?
a. With a for loop, it is impossible to create an infinite loop.
b. It is the only way to achieve an indefinite loop.
c. Unlike with a while loop, the execution of multiple statements can depend on the

test condition.
d. The loop control variable is initialized, tested, and altered all in one place.

8. A for loop statement must contain _____________________ .
a. two semicolons
b. three commas

c. four dots
d. five pipes

9. In a for statement, the section before the first semicolon executes
_____________________ .
a. once
b. once prior to each loop iteration
c. once after each loop iteration
d. one less time than the initial loop control variable value

10. The three sections of the for loop are most commonly used for
_____________________ the loop control variable.
a. testing, outputting, and incrementing
b. initializing, testing, and incrementing
c. incrementing, selecting, and testing
d. initializing, converting, and outputting

11. Which loop is most convenient to use if the loop body must always execute at
least once?
a. a do loop
b. a while loop

c. a for loop
d. an if loop

12. The loop control variable is checked at the bottom of which kind of loop?
a. a while loop
b. a do loop

c. a for loop
d. all of the above

13. A for loop is an example of a(n) _____________________ loop.
a. untested
b. pretest

c. posttest
d. infinite

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Review Questions

223

14. A while loop is an example of a(n) _____________________ loop.
a. untested
b. pretest

c. posttest
d. infinite

15. When a loop is placed within another loop, the loops are said to be
_____________________ .
a. infinite
b. bubbled

c. nested
d. overlapping

16. What does the following code segment display?
a = 1;
while (a < 5);
{
 Write("{0} ", a);
 ++a;
}

a. 1 2 3 4
b. 1

c. 4
d. nothing

17. What is the output of the following code segment?
s=1;
while(s < 4)
 ++s;
 Write("{0} ", s);

a. 1
b. 4

c. 1 2 3 4
d. 2 3 4

18. What is the output of the following code segment?
j = 5;
while(j > 0)
{
 Write("{0} ", j);
 j--;
}

a. 0
b. 5

c. 5 4 3 2 1
d. 5 4 3 2 1 0

19. What does the following code segment display?
for(f = 0; f < 3; ++f);
 Write("{0} ", f);

a. 0
b. 0 1 2

c. 3
d. nothing

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 5 Looping

224

20. What does the following code segment display?
for(t = 0; t < 3; ++t)
 Write("{0} ", t);

a. 0
b. 0 1

c. 0 1 2
d. 0 1 2 3

Exercises

Programming Exercises

1. Write an application named SumFourInts that allows the user to enter four integers
and displays their sum.

2. Write an application named SumInts that allows the user to enter any number of
integers continuously until the user enters 999. Display the sum of the values entered,
not including 999.

3. Write an application named EnterLowercaseLetters that asks the user to type a
lowercase letter from the keyboard. If the character entered is a lowercase letter,
display OK; if it is not a lowercase letter, display an error message. The program
continues until the user types an exclamation point.

4. Write an application named TestScores that continuously prompts a user for test
scores until the user enters a sentinel value. A valid score ranges from 0 through 100.
When the user enters a valid score, add it to a total; when the user enters an invalid
score, display an error message. Before the program ends, display the number of scores
entered and their average.

5. Danielle, Edward, and Francis are three salespeople at Holiday Homes. Write an
 application named HomeSales that prompts the user for a salesperson initial (D, E,
or F). Either uppercase or lowercase initials are valid. While the user does not type Z,
continue by prompting for the amount of a sale. Issue an error message for any invalid
initials entered. Keep a running total of the amounts sold by each salesperson. After
the user types Z or z for an initial, display each salesperson’s total, a grand total for all
sales, and the name of the salesperson with the highest total.

6. Write an application named DisplayMultiplicationTable that displays a table of the
products of every combination of two integers from 1 through 10.

7. Write an application named OddNums that displays all the odd numbers from 1
through 99.

8. Write an application named MultiplicationTable that prompts the user for an
integer value, for example 7. Then display the product of every integer from 1 through
10 when multiplied by the entered value. For example, the first three lines of the table
might read 1 X 7 = 7, 2 X 7 = 14, and 3 X 7 = 21.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exercises

225

9. Write an application named Sum500 that sums the integers from 1 through 500.
10. Write an application named Perfect that displays every perfect number from 1

through 1000. A number is perfect if it equals the sum of all the smaller positive
integers that divide evenly into it. For example, 6 is perfect because 1, 2, and 3 divide
evenly into it and their sum is 6.

11. In a “You Do It” section of this chapter, you created a tipping table for patrons to
use when analyzing their restaurant bills. Now, create a modified program named
 TippingTable3 in which each of the following values is obtained from user input:
 The lowest tipping percentage
 The highest tipping percentage
 The lowest possible restaurant bill
 The highest restaurant bill

12. Write a program named WebAddress that asks a user for a business name. Suggest a
good Web address by adding www. to the front of the name, removing all spaces from
the name, and adding .com to the end of the name. For example, a good Web address
for Acme Plumbing and Supply is www.AcmePlumbingandSupply.com.

13. Write a program named CountVowels that accepts a phrase from the user and counts
the number of vowels in the phrase. For this exercise, count both uppercase and
lowercase vowels, but do not consider y to be a vowel.

14. In Chapter 4, you created a program that generates a random number, allows a user to
guess it, and displays a message indicating whether the guess is too low, too high, or
correct. Now, create a modified program called GuessingGame2 in which the user
can continue to enter values until the correct guess is made. After the user guesses
correctly, display the number of guesses made.

 Recall that you can generate a random number whose value is at least min and less than max using the
following statements:

Random ranNumber = new Random();
int randomNumber;
randomNumber = ranNumber.Next(min, max);

15. Modify the GuessingGame2 program to create a program called GuessingGame3
in which the player is criticized for making a “dumb” guess. For example, if the player
guesses that the random number is 4 and is told that the guess is too low, and then the
player subsequently makes a guess lower than 4, display a message that the user should
have known not to make such a low guess.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 5 Looping

226

Debugging Exercises
1. Each of the following files in the Chapter.05 folder of your downloadable student files

has syntax and/or logical errors. In each case, determine the problem, and fix the pro-
gram. After you correct the errors, save each file using the same filename preceded
with Fixed. For example, save DebugFive1.cs as FixedDebugFive1.cs.
a. DebugFive1.cs
b. DebugFive2.cs

c. DebugFive3.cs
d. DebugFive4.cs

Case Problems

1. In Chapter 4, you created an interactive application named GreenvilleRevenue that
prompts a user for the number of contestants entered in this year’s and last year’s
Greenville Idol competition and displays the revenue expected for this year’s com-
petition if each contestant pays a $25 entrance fee. The program also displays one of
three appropriate statements specified in the case problem in Chapter 4, based on a
comparison between the number of contestants this year and last year. Now, modify
the program so that the user must enter a number between 0 and 30, inclusive, for the
number of contestants each year. If the user enters an incorrect number, the program
prompts for a valid value.

2. In Chapter 4, you created an interactive application named MarshallsRevenue that
prompts a user for the number of interior and exterior murals scheduled to be painted
during a month and computes the expected revenue for each type of mural. The
 program also prompts the user for the month number and modifies the pricing based
on requirements listed in Chapter 4. Now, modify the program so that the user must
enter a month value from 1 through 12. If the user enters an incorrect number, the
program prompts for a valid value. Also, the user must enter a number between 0 and
30 inclusive for the number of murals of each type; otherwise, the program prompts
the user again.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

