
C H A P T E R 4
Making Decisions

In this chapter you will:

�� Understand logic-planning tools and decision making

�� Learn how to make decisions using if statements

�� Learn how to make decisions using if-else statements

�� Use compound expressions in if statements

�� Make decisions using switch statements

�� Use the conditional operator

�� Use the NOT operator

�� Learn to avoid common errors when making decisions

�� Learn about decision-making issues in GUI programs

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

138

C H A P T E R 4 Making Decisions

Computer programs are powerful because of their ability to make decisions. Programs that
decide which travel route will offer the best weather conditions, which Web site will provide
the closest match to search criteria, or which recommended medical treatment has the highest
probability of success all rely on a program’s decision making. In this chapter you will learn to
make decisions in C# programs.

Understanding Logic-Planning Tools
and Decision Making
When computer programmers write programs, they rarely just sit down at a keyboard and
begin typing. Programmers must plan the complex portions of programs. Programmers
often use pseudocode, a tool that helps them plan a program’s logic by writing plain English
statements. Using pseudocode requires that you write down the logic of a given task in
everyday language and not the syntax used in a programming language. (You learned the
difference between logic and syntax in Chapter 1.) In fact, a task you write in pseudocode
does not have to be computer-related. If you have ever written a list of directions to your
house—for example, (1) go west on Algonquin Road, (2) turn left on Roselle Road, (3) enter
expressway heading east, and so on—you have written pseudocode. A flowchart is similar
to pseudocode, but you write the steps in diagram form, as a series of shapes connected by
arrows or flowlines.
Some programmers use a variety of shapes to represent different tasks in their flowcharts, but
you can draw simple flowcharts that express very complex situations using just rectangles,
diamonds, and connecting flowlines. You can use a rectangle to represent any process or
step and a diamond to represent any decision. For example, Figure 4-1 shows a flowchart and
pseudocode describing driving directions to a friend’s house. Notice how the actions illustrated
in the flowchart and the pseudocode statements correspond. Figure 4-1 illustrates a logical
structure called a sequence structure—one step follows another unconditionally. A sequence
structure might contain any number of steps, but one task follows another with no chance to
branch away or skip a step.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

139

Understanding Logic-Planning Tools and Decision Making

*R�ZHVW�RQ
$OJRQTXLQ�5RDG

7XUQ�OHIW�RQ
5RVHOOH�5RDG

(QWHU�H[SUHVVZD\
KHDGLQJ�HDVW

([LW�VRXWK�DW
$UOLQJWRQ
+HLJKWV�5RDG

3URFHHG�WR����
$UOLQJWRQ
+HLJKWV�5RDG

Go west on Algonquin Road
Turn left on Roselle Road
Enter expressway heading east
Exit south at Arlington Heights Road
Proceed to 688 Arlington Heights Road

Figure 4-1 Flowchart and pseudocode of a sequence structure

Sometimes, logical steps do not follow in an unconditional sequence. Instead, some tasks might
or might not occur based on decisions you make. To represent a decision, flowchart creators
use a diamond shape to hold a question, and they draw paths to alternative courses of action
emerging from the corner of the diamond. Figure 4-2 shows a flowchart describing directions
in which the execution of some steps depends on a decision.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

140

C H A P T E R 4 Making Decisions

*R�ZHVW�RQ
$OJRQTXLQ�5RDG

7XUQ�OHIW�RQ
5RVHOOH�5RDG

(QWHU�H[SUHVVZD\
KHDGLQJ�HDVW�

([LW�VRXWK�DW
$UOLQJWRQ
+HLJKWV�5RDG��

3URFHHG�WR����
$UOLQJWRQ
+HLJKWV�5RDG��

,V�WKH
H[SUHVVZD\
EDFNHG�XS"

IDOVH WUXH

&RQWLQXH�RQ
5RVHOOH�WR�*ROI
5RDG�

7XUQ�OHIW�RQ
*ROI�5RDG

7XUQ�ULJKW�RQ
$UOLQJWRQ
+HLJKWV�5RDG�

Figure 4-2 Flowchart including a decision structure

Figure 4-2 shows a decision structure—one that involves choosing between alternative courses
of action based on a value. When reduced to their most basic form, all computer decisions are
true-or-false decisions. This is because computer circuitry consists of millions of tiny switches
that are either “on” or “off,” and the result of every decision sets one of these switches in
memory. The values true and false are Boolean values; every computer decision results in a

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

141

Making Decisions Using the if Statement

Boolean value. For example, program code that you write never includes a question like
“What number did the user enter?” Instead, the decisions might be: “Did the user enter a 1?”
“If not, did the user enter a 2?” “If not, did the user enter a 3?”

TWO TRUTHS & A LIE

Understanding Logic-Planning Tools and Decision Making
1. A sequence structure has three or more alternative logical paths.

2. A decision structure involves choosing between alternative courses of action based on
some value within a program.

3. When reduced to their most basic form, all computer decisions are yes-or-no
decisions.

The false statement is #1. In a sequence structure, one step follows another
unconditionally.

Making Decisions Using the if Statement
The if and if-else statements are the two most commonly used decision-making statements
in C#. You use an if statement to make a single-alternative decision. In other words, you
use an if statement to determine whether an action will occur. The if statement takes the
following form:

if(testedExpression)
 statement;

In this statement, testedExpression represents any C# expression that can be evaluated as true
or false, and statement represents the action that will take place if the expression evaluates as
true. You must place the if statement’s evaluated expression between parentheses. You can
leave a space between the keyword if and the opening parenthesis if you think that format is
easier to read.
Usable expressions in an if statement include Boolean expressions such as amount > 5 and
month == "May" as well as the value of bool variables such as isValidIDNumber. If the
expression evaluates as true, then the statement executes. Whether the expression evaluates
as true or false, the program continues with the next statement following the complete if
statement.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

142

C H A P T E R 4 Making Decisions

 You learned about Boolean expressions and the bool data type in Chapter 2. Table 2-4 summarizes how
comparison operators are used.

 In the chapter “Introduction to Methods,” you will learn to write methods that return values. A method call
that returns a Boolean value also can be used as the tested expression in an if statement.

 In some programming languages, such as C++, nonzero numbers evaluate as true and 0 evaluates as
false. However, in C#, only Boolean expressions evaluate as true and false.

For example, the code segment written and diagrammed in Figure 4-3 displays A and B when
number holds a value less than 5, but when number is 5 or greater, only B is displayed. When
the tested Boolean expression number < 5 is false, the statement that displays A never
executes.

WUXH
QXPEHU����

ZULWH��$�

ZULWH��%�

IDOVH
LI�QXPEHU�����

:ULWH/LQH��$���
:ULWH/LQH��%���

Figure 4-3 Flowchart and code including a typical if statement followed by a separate statement

 Although you can create a meaningful flowchart using only rectangles, diamonds, and flowlines,
parallelograms have traditionally been used to represent input and output statements, so they are used in
Figure 4-3 and in other figures in this chapter.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

143

Making Decisions Using the if Statement

In the code in Figure 4-3, notice there is no semicolon at the end of the line that contains
if(number < 5). The statement does not end at that point; it ends after WriteLine("A");.
If you incorrectly insert a semicolon at the end of if(number < 5), then the code means,
“If number is less than 5, do nothing; then, no matter what the value of number is, display A.”
Figure 4-4 shows the flowchart logic that matches the code when a semicolon is incorrectly
placed at the end of the if expression.

WUXH
QXPEHU����

ZULWH��$�

ZULWH��%�

IDOVH

LI�QXPEHU������
:ULWH/LQH��$��

:ULWH/LQH��%���

Notice the semicolon here. Even
though the next line is indented,
it is not part of the LI statement.

Figure 4-4 Flowchart and code including an if statement with a semicolon following the if
expression

Although it is customary, and good style, to indent any statement that executes when an if
Boolean expression evaluates as true, the C# compiler does not pay any attention to the
indentation. Each of the following if statements displays A when number is less than 5. The
first shows an if statement written on a single line; the second shows an if statement on two
lines but with no indentation. The third uses conventional indentation. All three examples
execute identically.

if(number < 5) WriteLine("A");
if(number < 5)
WriteLine("A");
if(number < 5)
 WriteLine("A");

Don’t Do It
Although these first two formats work for
if statements, they are not conventional,
and using them makes a program harder
to understand.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

144

C H A P T E R 4 Making Decisions

When you want to execute two or more statements conditionally, you place the statements
within a block. A block is a collection of one or more statements contained within a pair of
curly braces. For example, the code segment written and diagrammed in Figure 4-5 displays
both C and D when number is less than 5, and it displays neither when number is not less
than 5. The if expression that precedes the block is the control statement for the decision
structure.

LI�QXPEHU�����
^

:ULWH/LQH��&���
:ULWH/LQH��'���

`

Notice the curly braces
that create a block.

WUXH
QXPEHU����

ZULWH��&�

ZULWH��'�

IDOVH

Figure 4-5 Flowchart and code including a typical if statement containing a block

Indenting alone does not cause multiple statements to depend on the evaluation of a Boolean
expression following an if control statement. For multiple statements to depend on an if,
they must be blocked with braces. For example, Figure 4-6 shows two statements that are
indented below an if expression. When you glance at the code, it might first appear that both
statements depend on the if; however, only the first one does, as shown in the flowchart,
because the statements are not blocked.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

145

Making Decisions Using the if Statement

Notice that without the curly braces,
only the first :ULWH/LQH�� statement is
dependent on the decision. The second
:ULWH/LQH�� statement is a stand-alone
statement that always executes even
though it is indented. It is poor programming
practice to indent a statement below an LI
expression if it does not depend on the LI
expression.

WUXH
QXPEHU����

ZULWH��&�

ZULWH��'�

IDOVH
LI�QXPEHU�����

:ULWH/LQH��&���
:ULWH/LQH��'���

Figure 4-6 Flowchart and code including an if statement that is missing curly braces or that has
inappropriate indenting

When you create a block using curly braces, you do not have to place multiple statements
within it. It is perfectly legal to block a single statement. Blocking a single statement can be a
useful technique to help prevent future errors because when a program later is modified to
include multiple statements that depend on the if, the braces serve as a reminder to use a
block. Creating a block that contains no statements also is legal in C#. You usually do so only
when starting to write a program, as a reminder to yourself to add statements later.

 In C#, it is customary to align a block’s opening and closing braces. Some programmers prefer to place
the opening brace on the same line as the if expression instead of giving the brace its own line. This style
is called the K & R style, named for Brian Kernighan and Dennis Ritchie, who wrote the first book on the
C programming language.

You can place any number of statements within a block, including other if statements. If a
second if statement is the only statement that depends on the first if, then no braces are
required. Figure 4-7 shows the logic for a nested if statement in which one decision structure
is contained within another. With a nested if statement, a second if’s Boolean expression is
tested only when the first if’s Boolean expression evaluates as true.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

146

C H A P T E R 4 Making Decisions

ZULWH�QXPEHU��LV�EHWZHHQ��
/2:���DQG���+,*+

LI�QXPEHU�!�/2:�
LI�QXPEHU���+,*+�

:ULWH/LQH��^�`�LV�EHWZHHQ�^�`�DQG�^�`��
QXPEHU��/2:��+,*+���

WUXH
QXPEHU�!�/2:

IDOVH

WUXH
QXPEHU���+,*+

IDOVH

Figure 4-7 Flowchart and code showing the logic of a nested if

Figure 4-8 shows a program that contains the logic in Figure 4-7. When a user enters a number
greater than 5, the first tested expression is true and the if statement that tests whether
the number is less than 10 executes. When the second tested expression also is true, the
WriteLine() statement executes. If either the first or second tested expression is false, no
output occurs. Figure 4-9 shows the output after the program is executed three times using
three different input values. Notice that when the value input by the user is not between 5 and
10, no output message appears.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

147

Making Decisions Using the if Statement

A Note on Equivalency Comparisons
Often, programmers mistakenly use a single equal sign rather than the double equal sign
when testing for equivalency. For example, the following expression does not compare number
to HIGH:
number = HIGH

Instead, it attempts to assign the value HIGH to the variable number. When an assignment is
used between the parentheses in an if statement, as in if(number = HIGH), the assignment is
illegal, and the program will not compile.

using System;
using static System.Console;
class NestedDecision
{
 static void Main()
 {
 const int HIGH = 10, LOW = 5;
 string numberString;
 int number;
 Write("Enter an integer ");
 numberString = ReadLine();
 number = Convert.ToInt32(numberString);
 if(number > LOW)
 if(number < HIGH)
 WriteLine("{0} is between {1} and {2}",
 number, LOW, HIGH);
 }
}

Figure 4-8 Program using nested if

Figure 4-9 Output of three executions of the NestedDecision program

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

148

C H A P T E R 4 Making Decisions

The only condition under which the assignment operator would work as part of
the tested expression in an if statement is when the assignment is made to a bool
variable. For example, suppose that a payroll program contains a bool variable named
doesEmployeeHaveDependents, and then uses the following statement:
if(doesEmployeeHaveDependents = numDependents > 0)...

In this case, numDependents would be compared to 0, and the result, true or false, would
be assigned to doesEmployeeHaveDependents. Then the decision would be made based
on the assigned value. This is not a recommended way to make a comparison because it
looks confusing. If your intention was to assign a value to doesEmployeeHaveDependents
and to make a decision based on the value, then your intentions would be clearer with the
following code:
doesEmployeeHaveDependents = numDependents > 0;
if(doesEmployeeHaveDependents)...

Notice the difference in the following statement that uses two equal signs within the
parentheses in the if statement:
if(doesEmployeeHaveDependents == numDependents > 0)...

This statement compares doesEmployeeHaveDependents to the result of comparing
numDependents to 0 but does not change the value of doesEmployeeHaveDependents.

 One of the many advantages of using the Visual Studio IDE to write programs is that if you use an
assignment operator in place of an equivalency operator in a Boolean expression, your mistake will be
flagged as an error immediately.

TWO TRUTHS & A LIE

Making Decisions Using the if Statement
1. In C#, you must place an if statement’s evaluated expression between

parentheses.

2. In C#, for multiple statements to depend on an if, they must be indented.

3. In C#, you can place one if statement within a block that depends on another if
statement.

The false statement is #2. Indenting alone does not cause multiple statements
to depend on the evaluation of a Boolean expression in an if. For multiple
statements to depend on an if, they must be blocked with braces.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

149

Making Decisions Using the if-else Statement

Making Decisions Using the if-else Statement
Some decisions are dual-alternative decisions; they have two possible resulting actions. If
you want to perform one action when a Boolean expression evaluates as true and an alternate
action when it evaluates as false, you can use an if-else statement. The if-else statement
takes the following form:
if(expression)
 statement1;
else
 statement2;

You can code an if without an else, but it is illegal to code an else without an if.
Just as you can block several statements so they all execute when an expression within an if
is true, you can block multiple statements after an else so that they will all execute when the
evaluated expression is false. For example, the following code assigns 0 to bonus and also
produces a line of output when the Boolean variable isProjectUnderBudget is false:
if(isProjectUnderBudget)
 bonus = 200;
else
{
 bonus = 0;
 WriteLine("Notify contractor");
}

Figure 4-10 shows the logic for an if-else statement, and Figure 4-11 shows a program
that contains the statement. With every execution of the program, one or the other of the
two WriteLine() statements executes. The indentation shown in the if-else example
in Figure 4-11 is not required, but it is standard. You vertically align the keyword if with
the keyword else, and then indent the action statements that depend on the evaluation.
Figure 4-12 shows two executions of the program.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

150

C H A P T E R 4 Making Decisions

Figure 4-10 Flowchart and code showing the logic of a dual-alternative if-else statement

IDOVH
QXPEHU�!�+,*+

ZULWH�QXPEHU��LV�QRW
JUHDWHU�WKDQ���+,*+

LI�QXPEHU�!�+,*+�
:ULWH/LQH��^�`�LV�JUHDWHU�WKDQ�^�`��

QXPEHU��+,*+��
HOVH

:ULWH/LQH��^�`�LV�QRW�JUHDWHU�WKDQ�^�`��
QXPEHU��+,*+��

ZULWH�QXPEHU��LV�JUHDWHU
WKDQ���+,*+

WUXH

using System;
using static System.Console;
class IfElseDecision
{
 static void Main()
 {
 const int HIGH = 10;
 string numberString;
 int number;
 Write("Enter an integer ");
 numberString = ReadLine();
 number = Convert.ToInt32(numberString);
 if(number > HIGH)
 WriteLine("{0} is greater than {1}",
 number, HIGH);
 else
 WriteLine("{0} is not greater than {1}",
 number, HIGH);
 }
}

Figure 4-11 Program with a dual-alternative if-else statement

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

151

Making Decisions Using the if-else Statement

When if-else statements are nested, each else always is paired with the most recent
unpaired if. For example, in the following code, the else is paired with the second if. Correct
indentation helps to make this clear.
if(saleAmount > 1000)
 if(saleAmount < 2000)
 bonus = 100;
 else
 bonus = 500;

In this example, the following bonuses are assigned:
 If saleAmount is between $1000 and $2000, bonus is $100 because both evaluated

expressions are true.
 If saleAmount is $2000 or more, bonus is $500 because the first evaluated expression is
true and the second one is false.

 If saleAmount is $1000 or less, bonus is unassigned because the first evaluated expression is
false and there is no corresponding else.

Figure 4-12 Output of two executions of the IfElseDecision program

TWO TRUTHS & A LIE

Making Decisions Using the if-else Statement
1. Dual-alternative decisions have two possible outcomes.

2. In an if-else statement, a semicolon might be the last character typed before
the else.

3. When if-else statements are nested, the first if always is paired with the
first else.

The false statement is #3. When if-else statements are nested, each else
always is paired with the most recent unpaired if.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

152

C H A P T E R 4 Making Decisions

Using if-else Statements
In the next steps, you write a program that requires using multiple, nested if-else
statements to accomplish its goal—determining whether any of the three integers
 entered by a user are equal.

1. Open a new file or project named CompareThreeNumbers, and write the
first lines necessary for the class:

using System;
using static System.Console;
class CompareThreeNumbers
{

2. Begin a Main() method by declaring a string for input and three integers
that will hold the input values.

static void Main()
{
 string numberString;
 int num1, num2, num3;

3. Add the statements that retrieve the three integers from the user and assign
them to the appropriate variables.

Write("Enter an integer ");
numberString = ReadLine();
num1 = Convert.ToInt32(numberString);
Write("Enter an integer ");
numberString = ReadLine();
num2 = Convert.ToInt32(numberString);
Write("Enter an integer ");
numberString = ReadLine();
num3 = Convert.ToInt32(numberString);

 In the chapter “Introduction to Methods,” you will learn to write methods, which will allow you to
avoid repetitive code like that shown here.

You Do It

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

153

Making Decisions Using the if-else Statement

(continued)

4. If the first number and the second number are equal, there are two
possibilities: either the first is also equal to the third, in which case all three
numbers are equal, or the first is not equal to the third, in which case only
the first two numbers are equal. Insert the following code:

if(num1 == num2)
 if(num1 == num3)
 WriteLine(“All three numbers are equal”);
 else
 WriteLine(“First two are equal”);

5. If the first two numbers are not equal, but the first and third are equal,
display an appropriate message. For clarity, the else should vertically align
under the first if statement that compares num1 and num2.

else
 if(num1 == num3)
 WriteLine(“First and last are equal”);

6. When num1 and num2 are not equal, and num1 and num3 are not equal, but
num2 and num3 are equal, display an appropriate message. For clarity,
the else should vertically align under the statement that compares num1
and num3.

else
 if(num2 == num3)
 WriteLine(“Last two are equal”);

7. Finally, if none of the pairs (num1 and num2, num1 and num3, or num2 and
num3) is equal, display an appropriate message. For clarity, the else should
vertically align under the statement that compares num2 and num3.

else
 WriteLine(“No two numbers are equal”);

8. Add a closing curly brace for the Main() method and a closing curly brace
for the class.

9. Save and compile the program, and then execute it several times,
providing different combinations of equal and nonequal integers when
prompted. Figure 4-13 shows several executions of the program.

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

154

C H A P T E R 4 Making Decisions

Figure 4-13 Several executions of the CompareThreeNumbers program

(continued)

Using Compound Expressions in if Statements
In many programming situations, you need to make multiple decisions before taking action. No
matter how many decisions must be made, you can produce the correct results by using a series
of if statements. For convenience and clarity, however, you can combine multiple decisions
into a single, compound Boolean expression using a combination of conditional AND and OR
operators.

Using the Conditional AND Operator
As an alternative to nested if statements, you can use the conditional AND operator
(or simply the AND operator) to create a compound Boolean expression. The conditional
AND operator is written as two ampersands (&&).
A tool that can help you understand the && operator is a truth table. Truth tables are diagrams
used in mathematics and logic to help describe the truth of an entire expression based on the
truth of its parts. Table 4-1 shows a truth table that lists all the possibilities with compound
expressions that use && and two operands. For any two expressions x and y, the expression
x && y is true only if both x and y are individually true. If either x or y alone is false, or if both
are false, then the expression x && y is false.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

155

Using Compound Expressions in if Statements

x y x && y
True True True

True False False

False True False

False False False

 Table 4-1 Truth table for the conditional && operator

For example, the two code samples shown in Figure 4-14 work exactly the same way. The age
variable is tested, and if it is greater than or equal to 0 and less than 120, a message is displayed
to explain that the value is valid.

Don’t Do It
< 5000 is not a Boolean expression
because the < operator requires two
operands, so this statement is invalid.

// using the && operator
if(age >= 0 && age < 120)
 WriteLine("Age is valid");

// using nested ifs
if(age >= 0)
 if(age < 120)
 WriteLine("Age is valid");

Figure 4-14 Comparison of the && operator and nested if statements

Using the && operator is never required, because nested if statements achieve the same result,
but using the && operator often makes your code more concise, less error-prone, and easier to
understand.
It is important to note that when you use the && operator, you must include a complete Boolean
expression on each side of the operator. If you want to set a bonus to $400 when saleAmount is
both over $1000 and under $5000, the correct statement is as follows:
if(saleAmount > 1000 && saleAmount < 5000)
 bonus = 400;

The following statement is incorrect and will not compile:
if(saleAmount > 1000 && < 5000)
 bonus = 400;

For clarity, many programmers prefer to surround each Boolean expression that is part of a
compound Boolean expression with its own set of parentheses. For example:
if((saleAmount > 1000) && (saleAmount < 5000))
 bonus = 400;

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

156

C H A P T E R 4 Making Decisions

In this example, the if clause has a set of parentheses (the first opening parenthesis and the last
closing parenthesis), and each Boolean expression that is part of the compound condition has
its own set of parentheses. Use this format if it is clearer to you.
The expressions in each part of a compound, conditional Boolean expression are evaluated
only as much as necessary to determine whether the entire expression is true or false. This
feature is called short-circuit evaluation. With the && operator, both Boolean expressions
must be true before the action in the statement can occur. If the first expression is false, the
second expression is never evaluated, because its value does not matter. For example, if a is
not greater than LIMIT in the following if statement, then the evaluation is complete because
there is no need to evaluate whether b is greater than LIMIT.
if(a > LIMIT && b > LIMIT)
 WriteLine("Both are greater than the limit.");

Using the Conditional OR Operator
You can use the conditional OR operator (or simply the OR operator) when you want some
action to occur even if only one of two conditions is true. The OR operator is written as ||.
When you use the || operator, only one of the listed conditions must be met for the resulting
action to take place. Table 4-2 shows the truth table for the || operator. As you can see, the
entire expression x||y is false only when x and y each are false individually.

x y x||y
True True True

True False True

False True True

False False False

 Table 4-2 Truth table for the || operator

For example, if you want to display a message indicating an invalid age when the value of an
age variable is less than 0 or more than 120, you can use either code sample in Figure 4-15.

 You create the conditional OR operator by using two vertical pipes. On most keyboards, the pipe is found
above the backslash key; typing it requires that you also hold down the Shift key.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

157

Using Compound Expressions in if Statements

When the || operator is used in an if statement, only one of the two Boolean expressions
in the tested expression needs to be true for the resulting action to occur. When the first
Boolean expression is true, the second expression is never evaluated because it doesn’t matter
whether the second expression is true or false. As with the && operator, this feature is called
short-circuit evaluation.

 Watch the video Using the AND and OR Operators.

Using the Logical AND and OR Operators
C# provides two logical operators that you generally do not want to use when making
comparisons. However, you should learn about them because they might be used in programs
written by others, and because you might use one by mistake when you intend to use a
conditional operator.
The Boolean logical AND operator (&) and Boolean logical inclusive OR operator (|)
work just like their && and || (conditional AND and OR) counterparts, except they do not
support short-circuit evaluation. That is, they always evaluate both sides of the expression, no
matter what the first evaluation is. This can lead to a side effect, or unintended consequence.
For example, in the following statement that uses &&, if salesAmountForYear is not at least
10,000, the first half of the expression is false, so the second half of the Boolean expression is
never evaluated and yearsOfService is not increased.
if(salesAmountForYear >= 10000 && ++yearsOfService > 10)
 bonus = 200;

On the other hand, when a single & is used and salesAmountForYear is not at least 10,000,
then even though the first half of the expression is false, and bonus is not set to 200, the
second half of the expression is still evaluated, and yearsOfService is always increased
whether it is more than 10 or not:
if(salesAmountForYear >= 10000 & ++yearsOfService > 10)
 bonus = 200;

// using the || operator
if(age < 0 || age > 120)
 WriteLine("Age is not valid");

// using nested ifs
if(age < 0)
 WriteLine("Age is not valid");
else
 if(age > 120)
 WriteLine("Age is not valid");

Figure 4-15 Comparison of the || operator and nested if statements

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

158

C H A P T E R 4 Making Decisions

In general, you should avoid writing expressions that contain side effects. If you want
yearsOfService to increase no matter what the value of salesAmountForYear is, then
you should increase it in a stand-alone statement. If you want it increased only when the
sales amount exceeds 10,000, then you should increase it in a statement that depends on that
decision.

 The & and | operators are Boolean logical operators when they are placed between Boolean expressions.
When the same operators are used between integer expressions, they are bitwise operators that are used
to manipulate the individual bits of values.

Combining AND and OR Operators
You can combine as many AND and OR operators in an expression as you need. For example,
when three conditions must be true before performing an action, you can use multiple AND
or OR operators in the same expression. For example, in the following statement, all three
Boolean variables must be true to produce the output:
if(isWeekendDay && isOver80Degrees && isSunny)
 WriteLine("Good day for the beach");

In the following statement, only one of the three Boolean variables needs to be true to produce
the output:
if(isWeekendDay || isHoliday || amSick)
 WriteLine("No work today");

When you use a series of only && or only || operators in an expression, they are evaluated
from left to right as far as is necessary to determine the value of the entire expression.
However, when you combine && and ||operators within the same Boolean expression, they
are not necessarily evaluated from left to right. Instead, the && operators take precedence,
meaning they are evaluated first. For example, consider a program that determines whether a
movie theater patron can purchase a discounted ticket. Assume that discounts are allowed for
children (age 12 and younger) and for senior citizens (age 65 and older) who attend G-rated
movies. (To keep the comparisons simple, this example assumes that movie ratings are always
a single character.) The following code looks reasonable, but it produces incorrect results
because the && evaluates before the ||.
if(age <= 12 || age >= 65 && rating == 'G')
 WriteLine("Discount applies");

For example, suppose that a movie patron is 10 years old and the movie rating is R. The
patron should not receive a discount (or be allowed to see the movie!). However, within the if
statement above, the compound expression age >= 65 && rating == 'G' evaluates first. It
is false, so the if becomes the equivalent of if(age <= 12 || false). Because age <= 12
is true, the if becomes the equivalent of if(true || false), which evaluates as true, and
the statement Discount applies is displayed, which is not the intention for a 10-year-old seeing
an R-rated movie.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

159

Using Compound Expressions in if Statements

You can use parentheses to correct the logic and force the expression age <= 12 || age >=
65 to evaluate first, as shown in the following code:
if((age <= 12 || age >= 65) && rating == 'G')
 WriteLine("Discount applies");

With the added parentheses, both age comparisons are made first. If the age value qualifies
a patron for a discount, the expression is evaluated as if(true && rating == 'G'). Then
the rating value must also be acceptable for the message to be displayed. Figure 4-16 shows
the if statement within a complete program; note that the discount age limits are represented
as named constants in the complete program. Figure 4-17 shows the execution before the
parentheses were added to the if statement, and Figure 4-18 shows the output after the
inclusion of the parentheses.

using static System.Console;
class MovieDiscount
{
 static void Main()
 {
 int age = 10;
 char rating = 'R';
 const int CHILD_AGE = 12;
 const int SENIOR_AGE = 65;
 WriteLine("When age is {0} and rating is {1}",
 age, rating);
 if((age <= CHILD_AGE || age >= SENIOR_AGE) && rating == 'G')
 WriteLine("Discount applies");
 else
 WriteLine("Full price");
 }
}

Figure 4-16 Movie ticket discount program using parentheses to alter precedence of
Boolean evaluations

Figure 4-17 Incorrect results when MovieDiscount program is executed without
added parentheses

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

160

C H A P T E R 4 Making Decisions

You can use parentheses for clarity in a Boolean expression, even when they are not required.
For example, the following expressions both evaluate a && b first:
a && b || c
(a && b) || c

If the version with parentheses makes your intentions clearer, you should use it.
In Chapter 2, you learned that parentheses also control arithmetic operator precedence.
Appendix A describes the precedence of every C# operator, which is important to understand
in complicated expressions. For example, in Appendix A you can see that the arithmetic and
relational operators have higher precedence than && and ||.

Watch the video Combining AND and OR Operations.

Figure 4-18 Correct results when parentheses are added to MovieDiscount program as shown
in Figure 4-16

TWO TRUTHS & A LIE

Using Compound Expressions in if Statements
1. If a is true and b and c are false, then the value of b && c || a is true.

2. If d is true and e and f are false, then the value of e || d && f is true.

3. If g is true and h and i are false, then the value of g || h && i is true.

The false statement is #2. If d is true and e and f are false, then the value of
e || d && f is false. Because you evaluate && before ||, first d && f is evaluated
and found to be false, then e || false is evaluated and found to be false.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

161

Using Compound Expressions in if Statements

Using AND and OR Logic
In the next steps, you create an interactive program that allows you to test AND and
OR logic for yourself. The program decides whether a delivery charge applies to a
shipment. If the customer lives in Zone 1 or Zone 2, then shipping is free, as long as
the order contains fewer than 10 boxes. If the customer lives in another zone or if
the order is too large, then a delivery charge applies.

1. Open a new file named DemoORAndAND, and then enter the first
few lines of the program. Define constants for ZONE1, ZONE2, and the
LOW_QUANTITY limit as well as variables to hold the customer’s input string,
which will be converted to the zone and number of boxes in the shipment.

using System;
using static System.Console;
class DemoORAndAND
{
 static void Main()
 {
 const int ZONE1 = 1, ZONE2 = 2;
 const int LOW_QUANTITY = 10;
 string inputString;
 int quantity;
 int deliveryZone;

2. Enter statements that describe the delivery charge criteria to the user and
accept keyboard values for the customer’s delivery zone and shipment size.

WriteLine("Delivery is free for zone {0} or {1}",
 ZONE1, ZONE2);
WriteLine("when the number of boxes is less than {0}",
 LOW_QUANTITY);
WriteLine("Enter delivery zone ");
inputString = ReadLine();
deliveryZone = Convert.ToInt32(inputString);
WriteLine("Enter the number of boxes in the shipment");
inputString = ReadLine();
quantity = Convert.ToInt32(inputString);

You Do It

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

162

C H A P T E R 4 Making Decisions

3. Write a compound if statement that tests whether the customer lives in
Zone 1 or 2 and has a shipment consisting of fewer than 10 boxes. Notice
that the first two comparisons joined with the || operator are contained in
their own set of nested parentheses.

if((deliveryZone == ZONE1 || deliveryZone == ZONE2) &&
 quantity < LOW_QUANTITY)
 WriteLine("Delivery is free");
else
 WriteLine("A delivery charge applies");

4. Add closing curly braces for the Main() method and for the class, and save
the program. Compile and execute the program. Enter values for the zone
and shipment size. Figure 4-19 shows the output.

(continued)

Figure 4-19 Sample execution of DemoORAndAND program

5. To demonstrate the importance of the nested parentheses in the if
 statement, remove the inner set of parentheses that surround the expression
deliveryZone == ZONE1 || deliveryZone == ZONE2 in the Main()
method. Save the new version of the program, and compile it. When you
execute this version of the program, the output indicates that any delivery
to ZONE1 is free, but it should not be. The way the if statement is currently
constructed, as soon as deliveryZone == zone1 is true, the rest of the
Boolean expression is not even evaluated. Reinstate the parentheses, and
then save and compile the program. Execute it, and confirm that the output
is again correct.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

163

Making Decisions Using the switch Statement

Making Decisions Using the switch Statement
By nesting a series of if and else statements, you can choose from any number of
alternatives. For example, suppose that you want to display different strings based on a
student’s class year. Figure 4-20 shows the logic using nested if statements. The program
segment tests the year variable four times and executes one of four statements, or displays
an error message.

if(year == 1)
 WriteLine("Freshman");
else
 if(year == 2)
 WriteLine("Sophomore");
 else
 if(year == 3)
 WriteLine("Junior");
 else
 if(year == 4)
 WriteLine("Senior");
 else
 WriteLine("Invalid year");

Figure 4-20 Executing multiple alternatives using a series of if statements

An alternative to the series of nested if statements in Figure 4-20 is to use the switch
structure (see Figure 4-21). The switch structure tests a single variable against a series of
exact matches. The switch structure is sometimes called the case structure or the
switch-case structure. The switch structure in Figure 4-21 is easier to read and interpret
than the series of nested if statements in Figure 4-20. The if statements would become
harder to read if additional choices were required and if multiple statements had to execute
in each case. These additional choices and statements might also increase the potential to
make mistakes.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

164

C H A P T E R 4 Making Decisions

The switch structure uses four new keywords:
 The keyword switch starts the structure and is followed immediately by a test expression

(called the switch expression) enclosed in parentheses.
 The keyword case is followed by one of the possible values that might equal the switch

expression. A colon follows the value. The entire expression—for example, case 1:—is a
case label. A case label identifies a course of action in a switch structure. Most switch
structures contain several case labels. The value that follows case is the governing type
of the switch statement; this value can be sbyte, byte, short, ushort, int, uint, long,
ulong, char, string, or an enum type. You learned about enum types in Chapter 2.

 The keyword break usually terminates a switch structure at the end of each case.
Although other statements can end a case, break is the most commonly used.

 The keyword default optionally is used prior to any action that should occur if the test
expression does not match any case.

 Instead of break, you can use a return statement or a throw statement to end a case. You learn about
return statements in the chapter “Introduction to Methods” and throw statements in the chapter “Exception
Handling.”

switch(year)
{
 case 1:
 WriteLine("Freshman");
 break;
 case 2:
 WriteLine("Sophomore");
 break;
 case 3:
 WriteLine("Junior");
 break;
 case 4:
 WriteLine("Senior");
 break;
 default:
 WriteLine("Invalid year");
 break;
}

Figure 4-21 Executing multiple alternatives using a switch statement

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

165

Making Decisions Using the switch Statement

The switch structure shown in Figure 4-21 begins by evaluating the year variable. If year
is equal to any case label value, then the output statement for that case executes. The break
statements that follow each output statement cause a bypass of other cases. If year does not
contain the same value as any of the case label expressions, then the default statement or
statements execute.
You are not required to list the case label values in ascending order, as shown in Figure 4-21,
but doing so can make the statement easier for a reader to follow. You can even list the
default case first, although usually it is listed last. You receive a compiler error if two or more
case label values are the same in a switch statement.
In C#, an error occurs if you reach the end point of the statement list of a case section. For
example, the following code is not allowed because when the year value is 1, Freshman is
displayed, and the code reaches the end of the case. The problem could be fixed by inserting a
break statement before case 2.
switch(year)
{
 case 1:
 WriteLine("Freshman");
 case 2:
 WriteLine("Sophomore");
 break;
}

Not allowing code to reach the end of a case is known as the “no fall-through rule.” In several
other programming languages, such as Java and C++, if you write a case without a break
statement, the subsequent cases execute until a break is encountered. For example, in the
code above, both Freshman and Sophomore would be displayed when year is 1. However,
falling through to the next case is not allowed in C#.
A switch structure does not need to contain a default case. If the test expression in a switch
does not match any of the case label values, and there is no default value, then the program
simply continues with the next executable statement. However, it is good programming
practice to include a default label in a switch structure; that way, you provide for actions
when your data does not match any case.
In C#, it is legal for a case to contain no list of statements. This feature allows you to use
multiple labels to govern a list of actions. For example, in the code in Figure 4-22, Upperclass is
displayed whether the year value is 3 or 4.

Don’t Do It
This code is invalid because the end of
the case is reached after Freshman is
displayed.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

166

C H A P T E R 4 Making Decisions

Using a switch structure is never required; you can always achieve the same results with
if statements. The switch statement is not as flexible as the if statement because you can
test only one variable, and it must be tested for equality. The switch structure is simply a
convenience you can use when there are several alternative courses of action depending on
a match with a variable. Additionally, it makes sense to use a switch only when there are a
reasonable number of specific matching values to be tested. For example, if every sale amount
from $1 to $500 requires a 5 percent commission, it is not reasonable to test every possible
dollar amount using the following code:
switch(saleAmount)
{
 case 1:
 case 2:
 case 3:
 // ...and so on for several hundred more cases
 commRate = .05;
 break;

With 500 different dollar values resulting in the same commission, one test—
if(saleAmount <= 500)—is far more reasonable than listing 500 separate cases.

Using an Enumeration with a switch Statement
Using an enumeration with a switch structure can often be convenient. Recall from Chapter 2
that an enumeration allows you to apply values to a list of constants. For example, Figure 4-23
shows a program that uses an enumeration to represent major courses of study at a college.
In the enumeration list in Figure 4-23, ACCOUNTING is assigned 1, so the other values in the list are
2, 3, 4, and 5 in order. Suppose that students who are accounting, CIS, or marketing majors are in

VZLWFK�\HDU�
^

FDVH���
���:ULWH/LQH��)UHVKPDQ���
���EUHDN�
FDVH���
���:ULWH/LQH��6RSKRPRUH���
���EUHDN�
FDVH���
FDVH���
���:ULWH/LQH��8SSHUFODVV���
���EUHDN�
GHIDXOW�
���:ULWH/LQH��,QYDOLG\HDU���
���EUHDN�

^

Cases 3 and 4 are
both “Upperclass”.

Figure 4-22 Example switch structure using multiple labels to execute a single statement block

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

167

Making Decisions Using the switch Statement

the business division of the college, and English or math majors are in the humanities division. The
program shows how the enumeration values can be used in a switch structure. In the program,
the user enters an integer. Next, in the shaded switch control statement, the input integer is cast
to an enumeration value. Then, enumeration values become the governing types for each case. For
someone reading the code, the purposes of enum values such as ACCOUNTING and CIS are clearer
than their integer equivalents would be. Figure 4-24 shows a typical execution of the program.

using System;
using static System.Console;
class DivisionBasedOnMajor
{
 enum Major
 {
 ACCOUNTING = 1, CIS, ENGLISH, MATH, MARKETING
 }
 static void Main()
 {
 int major;
 string message;
 Write("Enter major code >> ");
 major = Convert.ToInt32(ReadLine());
 switch((Major)major)
 {
 case Major.ACCOUNTING:
 case Major.CIS:
 case Major.MARKETING:
 message = "Major is in the business division";
 break;
 case Major.ENGLISH:
 case Major.MATH:
 message = "Major is in the humanities division";
 break;
 default:
 message = "Department number is invalid";
 break;
 }
 WriteLine(message);
 }
}

Figure 4-23 The DivisionBasedOnMajor class

Figure 4-24 Typical execution of the DivisionBasedOnMajor program

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

168

C H A P T E R 4 Making Decisions

Using the Conditional Operator
The conditional operator is used as an abbreviated version of the if-else statement; it
requires three expressions separated with a question mark and a colon. Like the switch
structure, using the conditional operator is never required. Rather, it is simply a convenient
shortcut, especially when you want to use the result immediately as an expression. The syntax
of the conditional operator is:
testExpression ? trueResult : falseResult;

 Unary operators use one operand; binary operators use two. The conditional operator ?: is ternary
because it requires three arguments: a test expression and true and false result expressions. The
conditional operator is the only ternary operator in C#.

The first expression, testExpression, is evaluated as true or false. If it is true, then
the entire conditional expression takes on the value of the expression before the colon
(trueResult). If the value of the testExpression is false, then the entire expression takes
on the value of the expression following the colon (falseResult). For example, consider the
following statement:
biggerNum = (a > b) ? a : b;

This statement evaluates a > b. If a is greater than b, then the entire conditional expression
takes the value of a, which then is assigned to biggerNum. If a is not greater than b, then the
expression assumes the value of b, and b is assigned to biggerNum.
The conditional operator is most often applied when you want to use the result as an
expression without creating an intermediate variable. For example, a conditional operator can
be used directly in an output statement using either of the following formats:
WriteLine((testScore >= 60) ? "Pass" : "Fail");
WriteLine("\{testScore >= 60 ? "Pass" : "Fail"}");

TWO TRUTHS & A LIE

Making Decisions Using the switch Statement
1. In a switch statement, the keyword case is followed by one of the possible values

that might equal the switch expression, and a colon follows the value.

2. The keyword break always terminates a switch structure at the end of each case.

3. A switch statement does not need to contain a default case.

The false statement is #2. The keyword break typically is used to terminate a
switch structure at the end of each case, but other statements can end a case.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

169

Using the NOT Operator

In these examples, no variable was created to hold Pass or Fail. Instead one of the strings was
output directly based on the testScore comparison. The advantage to the second format (which
is new in C# 6.0) is that other variables can easily be included in the same string. For example:
WriteLine("\{name}'s status is \{testScore >= 60 ? "Pass" : "Fail"}");

If name is Sally and testScore is 62, the output would be Sally’s status is Pass.
Conditional expressions can be more difficult to read than if-else statements, but they can
be used in places where if-else statements cannot, such as in method calls.

Using the NOT Operator
You use the NOT operator, which is written as an exclamation point (!), to negate the result of
any Boolean expression. Any expression that evaluates as true becomes false when preceded
by the ! operator, and any false expression preceded by the ! operator becomes true.

 In Chapter 2 you learned that an exclamation point and equal sign together form the “not equal to” operator.
The != operator is a binary operator; it compares two operands. The ! operator is a unary operator; it
reverses the meaning of a single Boolean expression.

For example, suppose that a monthly car insurance premium is $200 if the driver is younger
than age 26 and $125 if the driver is age 26 or older. Each of the following if statements (which
have been placed on single lines for convenience) correctly assigns the premium values:
if(age < 26) premium = 200; else premium = 125;
if(!(age < 26)) premium = 125; else premium = 200;
if(age >= 26) premium = 125; else premium = 200;
if(!(age>= 26)) premium = 200; else premium = 125;

TWO TRUTHS & A LIE

Using the Conditional Operator
1. If j = 2 and k = 3, then the value of the following expression is 2:

 int m = j < k ? j : k;

2. If j = 2 and k = 3, then the value of the following expression is 4:

 int n = j < k ? j + j : k + k;

3. If j = 2 and k = 3, then the value of the following expression is 5:

 int p = j > k ? j + k : j * k;

The false statement is #3. If j = 2 and k = 3, then the value of the expression
j > k is false. Therefore 6 (j * k) is assigned to p.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

170

C H A P T E R 4 Making Decisions

The statements with the ! operator are somewhat more difficult to read, particularly because
they require the double set of parentheses, but the result is the same in each case. Using the
! operator is clearer when the value of a Boolean variable is tested. For example, a variable
initialized as bool oldEnough = (age >= 25); can become part of the relatively easy-to-read
expression if(!oldEnough)... .
The ! operator has higher precedence than the && and || operators. For example,
suppose that you have declared two Boolean variables named ageOverMinimum and
ticketsUnderMinimum. The following expressions are evaluated in the same way:
ageOverMinimum && !ticketsUnderMinimum
ageOverMinimum && (!ticketsUnderMinimum)

 Augustus de Morgan was a 19th-century mathematician who originally observed the following:

 !(a && b) is equivalent to !a || !b

 !(a || b) is equivalent to !(a && b)

TWO TRUTHS & A LIE

Using the NOT Operator
1. Assume that p, q, and r are all Boolean variables that have been assigned the value

true. After the following statement executes, the value of p is still true.

 p = !q || r;

2. Assume that p, q, and r are all Boolean variables that have been assigned the value
true. After the following statement executes, the value of p is still true.

 p = !(!q && !r);

3. Assume that p, q and r are all Boolean variables that have been assigned the value
true. After the following statement executes, the value of p is still true.

 p = !(q || !r);

The false statement is #3. If p, q, and r are all Boolean variables that have been
assigned the value true, then after p = !(q || !r); executes, the value of p is
false. First q is evaluated as true, so the entire expression within the parentheses
is true. The leading NOT operator reverses that result to false and assigns it to p.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

171

Avoiding Common Errors When Making Decisions

Avoiding Common Errors When Making Decisions
New programmers frequently make errors when they first learn to make decisions. As you have
seen, the most frequent errors include the following:
 Using the assignment operator (=) instead of the comparison operator (==) when testing

for equality
 Inserting a semicolon after the Boolean expression in an if statement instead of using it

after the entire statement is completed
 Failing to block a set of statements with curly braces when several statements depend on the
if or the else statement

 Failing to include a complete Boolean expression on each side of an && or || operator in an
if statement

In this section, you will learn to avoid other types of errors with if statements. Programmers
often make errors at the following times:
 When performing a range check incorrectly or inefficiently
 When using the wrong operator
 When using ! incorrectly

Performing Accurate and Efficient Range Checks
When new programmers must make a range check, they often introduce incorrect or
inefficient code into their programs. A range check is a series of if statements that
determine whether a value falls within a specified range. Consider a situation in which
salespeople can receive one of three possible commission rates based on an integer named
saleAmount. For example, a sale totaling $1000 or more earns the salesperson an 8 percent
commission, a sale totaling $500 through $999 earns 6 percent of the sale amount, and any sale
totaling $499 or less earns 5 percent. Using three separate if statements to test single Boolean
expressions might result in some incorrect commission assignments. For example, examine the
following code:
if(saleAmount >= 1000)
 commissionRate = 0.08;
if(saleAmount >= 500)
 commissionRate = 0.06;
if(saleAmount <= 499)
 commissionRate = 0.05;

Using this code, if saleAmount is $5000, the first if statement executes. The Boolean
expression (saleAmount >= 1000) evaluates as true, and 0.08 is correctly assigned to
commissionRate. However, the next if expression, (saleAmount >= 500), also evaluates as
true, so the commissionRate, which was 0.08, is incorrectly reset to 0.06.

Don’t Do It
Although it was not the programmer’s
intention, both of the first two if
statements are true for any saleAmount
greater than or equal to 1000.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

172

C H A P T E R 4 Making Decisions

A partial solution to this problem is to add an else clause to the statement:
if(saleAmount >= 1000)
 commissionRate = 0.08;
else if(saleAmount >= 500)
 commissionRate = 0.06;
else if(saleAmount <= 499)
 commissionRate = 0.05;

 The last two logical tests in this code are sometimes called else-if statements because each else
and its subsequent if are placed on the same line. When the else-if format is used to test multiple
cases, programmers frequently forego the traditional indentation and align each else-if with the
others.

With this code, when saleAmount is $5000, the expression (saleAmount >= 1000) is true
and commissionRate becomes 0.08; then the entire if structure ends. When saleAmount is
not greater than or equal to $1000 (for example, $800), the first if expression is false and the
else statement executes and correctly sets commissionRate to 0.06.
This version of the code works, but it is somewhat inefficient because it executes as follows:
 When saleAmount is at least $1000, the first Boolean test is true, so commissionRate is

assigned .08 and the if structure ends.
 When saleAmount is under $1000 but at least $500, the first Boolean test is false, but the

second one is true, so commissionRate is assigned .06 and the if structure ends.
 The only saleAmount values that reach the third Boolean test are under $500, so the next

Boolean test, if(saleAmount <= 499), is always true. When an expression is always true,
there is no need to evaluate it. In other words, if saleAmount is not at least $1000 and is also
not at least $500, it must by default be less than or equal to $499.

The improved code is as follows:
if(saleAmount >= 1000)
 commissionRate = 0.08;
else if(saleAmount >= 500)
 commissionRate = 0.06;
else
 commissionRate = 0.05;

In other words, because this example uses three commission rates, two boundaries should be
checked. If there were four rates, there would be three boundaries to check, and so on.
Within a nested if-else, processing is most efficient when the first question asked
is the one that is most likely to be true. In other words, if you know that a large
number of saleAmount values are over $1000, compare saleAmount to that value
first. That way, the logic bypasses the rest of the decisions. If, however, you know that
most saleAmounts are small, processing is most efficient when the first decision is
if(saleAmount < 500).

Don’t Do It
If the logic reaches this point, the
expression must be true, so it is a
waste of time to test this condition.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

173

Avoiding Common Errors When Making Decisions

Using && and || Appropriately
Beginning programmers often use the && operator when they mean to use ||, and often use
|| when they should use &&. Part of the problem lies in the way we use the English language.
For example, your boss might request, “Display an error message when an employee’s hourly
pay rate is under $5.65 and when an employee’s hourly pay rate is over $60.” Because your boss
used the word and in the request, you might be tempted to write a program statement like the
following:
if(payRate < 5.65 && payRate > 60)
 WriteLine("Error in pay rate");

However, as a single variable, no payRate value can ever be both below 5.65 and over 60 at the
same time, so the output statement can never execute, no matter what value payRate has. In
this case, you must write the following statement to display the error message under the correct
circumstances:
if(payRate < 5.65 || payRate > 60)
 WriteLine("Error in pay rate");

Similarly, your boss might request, “Output the names of those employees in departments
1 and 2.” Because the boss used the word and in the request, you might be tempted to write the
following:
if(department == 1 && department == 2)
 WriteLine("Name is: {0}", name);

However, the variable department can never contain both a 1 and a 2 at the same time, so no
employee name will ever be output, no matter what department the employee is in.
The correct statement is:
if(department == 1 || department == 2)
 WriteLine("Name is: {0}", name);

Using the ! Operator Correctly
Whenever you use negatives, it is easy to make logical mistakes. For example, suppose that
your boss says, “Make sure if the sales code is not A or B, the customer gets a 10 percent
discount.” You might be tempted to code the following:
if(salesCode != 'A' || salesCode != 'B')
 discount = 0.10;

However, this logic will result in every customer receiving the 10 percent discount because
every salesCode is either not A or not B. For example, if salesCode is A, then it is not B. The
expression salesCode != 'A' || salesCode != 'B' is always true. The correct statement
is either one of the following:
if(salesCode != 'A' && salesCode != 'B')
 discount = 0.10;

Don’t Do It
This expression can never be true.

Don’t Do It
This expression can never be true.

Don’t Do It
This expression can never be true.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

174

C H A P T E R 4 Making Decisions

if(!(salesCode == 'A' || salesCode == 'B'))
 discount = 0.10;

In the first example, if salesCode is not 'A' and it also is not 'B', then the discount is applied
correctly. In the second example, if salesCode is 'A' or 'B', the inner Boolean expression is
true, and the NOT operator (!) changes the evaluation to false, not applying the discount
for A or B sales. You also could avoid the confusing negative situation by asking questions in a
positive way, as in the following:
if(salesCode == 'A' || salesCode == 'B')
 discount = 0;
else
 discount = 0.10;

Watch the video Avoiding Common Decision Errors.

TWO TRUTHS & A LIE

Avoiding Common Errors When Making Decisions
1. If you want to display OK when userEntry is 12 and when it is 13, then the following

is a usable C# statement:

if(userEntry == 12 && userEntry == 13)
 WriteLine("OK");

2. If you want to display OK when userEntry is 20 or when highestScore is at
least 70, then the following is a usable C# statement:

if(userEntry ==20 || highestScore >= 70)
 WriteLine("OK");

3. If you want to display OK when userEntry is anything other than 99 or 100, then
the following is a usable C# statement:

if(userEntry != 99 && userEntry != 100)
 WriteLine("OK");

The false statement is #1. If you want to display OK when userEntry is
12 and when it is 13, then you want to display it when it is either 12 or 13
because it cannot be both simultaneously. The expression userEntry == 12
&& userEntry == 13 can never be true. The correct Boolean expression is
userEntry == 12 || userEntry == 13.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

175

Decision-Making Issues in GUI Programs

Decision-Making Issues in GUI Programs
Making a decision within a method in a GUI application is no different from making one in a
console application; you can use if, if...else, and switch statements in the same ways. For
example, Figure 4-25 shows a GUI Form that determines a movie patron discount as described
in a program earlier in this chapter. Patrons who are under 12 or over 65 and are seeing a
G-rated movie receive a discount, and any other combination pays full price. Figure 4-26
contains the Click() method that makes the discount determination based on age and rating
after a user clicks the Discount? button. The Boolean expression tested in the if statement in
this method is identical to the one in the console version of the program in Figure 4-16.

Figure 4-25 The Movie Discount Form

Figure 4-26 The discountButton_Click() method for the Form in Figure 4-25

private void discountButton_Click(object sender,
 EventArgs e)
{
 int age;
 char rating;
 const int CHILD_AGE = 12;
 const int SENIOR_AGE = 65;
 age = Convert.ToInt32(textBox1.Text);
 rating = Convert.ToChar(textBox2.Text);
 outputLabel.Text = String.Format
 ("When age is {0} and rating is {1}", age, rating);
 if ((age <= CHILD_AGE || age >= SENIOR_AGE) && rating == 'G')
 outputLabel.Text += "\nDiscount applies";
 else
 outputLabel.Text += "\nFull price";
}

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

176

C H A P T E R 4 Making Decisions

Event-driven programs often require fewer coded decisions than console applications. That’s
because in event-driven programs, some events are determined by the user’s actions when
the program is running (also called at runtime), rather than by the programmer’s coding
beforehand. You might say that in many situations, a console-based application must act, but
an event-driven application has to react.
Suppose that you want to write a program in which the user must select whether to receive
instructions in English or Spanish. In a console application, you would issue a prompt such as
the following:
Which language do you prefer? Enter 1 for English or 2 for Spanish >>
The program would accept the user’s entry, make a decision about it, and take appropriate
action. However, in a GUI application, you are more likely to place controls on a Form to get
a user’s response. For example, you might use two Buttons—one for English and one for
Spanish. The user clicks a Button, and an appropriate method executes. No decision is written
in the program because a different event is fired from each Button, causing execution of a
different Click() method. The interactive environment decides which method is called, so
the programmer does not have to code a decision. (Of course, you might alternately place a
TextBox on a Form and ask a user to enter a 1 or a 2. In that case, the decision-making process
would be identical to that in the console-based program.)
An additional benefit to having the user click a button to select an option is that the user
cannot enter an invalid value. For example, if the user enters a letter in response to a prompt
for an integer, the program will fail unless you write additional code to handle the mistake.
However, if the user has a limited selection of buttons to click, no invalid entry can be made.

TWO TRUTHS & A LIE

Decision-Making Issues in GUI Programs
1. Event-driven programs can contain if, if...else, and switch statements.

2. Event-driven programs often require fewer coded decisions than console
applications.

3. Event-driven programs usually contain more coded decisions than corresponding
console-based applications.

The false statement is #3. Event-driven programs often require fewer coded
decisions because user actions, such as clicking a button, are often used to
trigger different methods.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

177

Decision-Making Issues in GUI Programs

Creating a GUI Application That Uses an Enumeration and a switch Structure

In these steps, you create a GUI application for the Chatterbox Diner that allows a
user to enter a day and see the special meal offered that day. Creating the program
provides experience using an enumeration in a switch structure.

1. Open a new project in Visual Studio, and name it DailySpecial.

2. Design a Form like the one in Figure 4-27 that prompts the user for a day
number and allows the user to enter it in a TextBox. Name the TextBox
dayBox and the Button specialButton.

You Do It

(continues)

Figure 4-27 The Daily Special form

3. Below the Button, add a Label named outputLabel and delete its text.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

178

C H A P T E R 4 Making Decisions

4. Double-click specialButton to create a specialButton_Click() method
shell. Above the method, add an enumeration for the days of the week as
follows:
enum Day
{
 SUNDAY = 1, MONDAY, TUESDAY, WEDNESDAY,
 THURSDAY, FRIDAY, SATURDAY
}

5. Within the method, declare an integer and accept a value from the TextBox,
and then declare a string to hold the daily special.
int day = Convert.ToInt32(dayBox.Text);
string special;

6. Add a switch structure that lists the daily specials as follows:
switch ((Day)day)
{
 case Day.SUNDAY:
 special = "fried chicken";
 break;
 case Day.MONDAY:
 special = "Sorry - closed";
 break;
 case Day.TUESDAY:
 case Day.WEDNESDAY:
 case Day.THURSDAY:
 special = "meat loaf";
 break;
 case Day.FRIDAY:
 special = "fish fry";
 break;
 case Day.SATURDAY:
 special = "liver and onions";
 break;
 default:
 special = "Invalid day";
 break;
}

7. Following the completed case structure, assign the result to the Text
 property of outputLabel:
outputLabel.Text = "Today's special is " + special;

8. Save, compile, and execute the application. The appropriate special is
 displayed for each day of the week.

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Key Terms

179

Chapter Summary
 A flowchart is a pictorial tool that helps you understand a program’s logic. A decision

structure is one that involves choosing between alternative courses of action based on some
value within a program.

 The if statement makes a single-alternative decision using the keyword if, followed by
parentheses that contain a Boolean expression. When the expression is true, the statement
body executes. The body can be a single statement or a block of statements.

 When you make a dual-alternative decision, you can use an if-else statement. You can
block multiple statements after an else so they all execute when the evaluated expression
is false.

 The conditional AND operator (&&) takes action when two operand Boolean expressions
are both true. The conditional OR operator (||) takes action when at least one of two
operand Boolean expressions is true. When && and || operators are combined within the
same Boolean expression without parentheses, the && operators take precedence, meaning
their Boolean values are evaluated first.

 The switch statement tests a single variable against a series of exact matches.
 The conditional operator is used as an abbreviated version of the if-else statement. It

requires three expressions separated with a question mark and a colon.
 The NOT operator, which is written as an exclamation point (!), negates the result of any

Boolean expression.
 Common errors when making decisions include using the assignment operator instead

of the comparison operator, inserting a semicolon after the Boolean expression in an if
statement, failing to block a set of statements when they should be blocked, and performing
a range check incorrectly or inefficiently.

 Making a decision within a method in a GUI application is no different from making one
in a console application; you can use if, if...else, and switch statements in the same
ways. However, event-driven programs often require fewer coded decisions than console
applications because some events are determined by the user’s actions when the program is
running, rather than by the programmer’s coding beforehand.

Key Terms
Pseudocode is a tool that helps programmers plan a program’s logic by writing plain English
statements.
A flowchart is a tool that helps programmers plan a program’s logic by writing program steps
in diagram form, as a series of shapes connected by arrows.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

180

C H A P T E R 4 Making Decisions

A sequence structure is a unit of program logic in which one step follows another
unconditionally.
A decision structure is a unit of program logic that involves choosing between alternative
courses of action based on some value.
An if statement is used to make a single-alternative decision.
A block is a collection of one or more statements contained within a pair of curly braces.
A control statement is the part of a structure that determines whether the subsequent block of
statements executes.
A nested if statement is one in which one decision structure is contained within another.
Dual-alternative decisions have two possible outcomes.
An if-else statement performs a dual-alternative decision.
The conditional AND operator (or simply the AND operator) determines whether two
expressions are both true; it is written using two ampersands (&&).
Truth tables are diagrams used in mathematics and logic to help describe the truth of an entire
expression based on the truth of its parts.
Short-circuit evaluation is the C# feature in which parts of an AND or OR expression are
evaluated only as far as necessary to determine whether the entire expression is true or false.
The conditional OR operator (or simply the OR operator) determines whether at least one of
two conditions is true; it is written using two pipes (||).
The Boolean logical AND operator determines whether two expressions are both true; it is
written using a single ampersand (&). Unlike the conditional AND operator, it does not use
short-circuit evaluation.
The Boolean logical inclusive OR operator determines whether at least one of two conditions
is true; it is written using a single pipe (|). Unlike the conditional OR operator, it does not
use short-circuit evaluation.
A side effect is an unintended consequence.
Bitwise operators are used to manipulate the individual bits of values.
The switch structure tests a single variable against a series of exact matches.
A case label identifies a course of action in a switch structure.
The governing type of a switch statement is established by the switch expression and can
be sbyte, byte, short, ushort, int, uint, long, ulong, char, string, or enum.
The conditional operator is used as an abbreviated version of the if-else statement; it
requires three expressions separated by a question mark and a colon.
A ternary operator requires three arguments.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Review Questions

181

The NOT operator (!) negates the result of any Boolean expression.
A range check is a series of if statements that determine whether a value falls within a
specified range.
At runtime is a phrase that means during the time a program is running.

Review Questions
1. What is the output of the following code segment?

int a = 3, b = 4;
if(a == b)
 Write("Black");
 WriteLine("White");

a. Black
b. White

c. BlackWhite
d. nothing

2. What is the output of the following code segment?
int a = 3, b = 4;
if(a < b)
{
 Write("Black");
 WriteLine("White");
}

a. Black
b. White

c. BlackWhite
d. nothing

3. What is the output of the following code segment?
int a = 3, b = 4;
if(a > b)
 Write("Black");
else
 WriteLine("White");

a. Black
b. White

c. BlackWhite
d. nothing

4. If the following code segment compiles correctly, what do you know about the variable x?
if(x) WriteLine("OK");

a. x is an integer variable.
b. x is a Boolean variable.

c. x is greater than 0.
d. none of these

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

182

C H A P T E R 4 Making Decisions

5. What is the output of the following code segment?
int c = 6, d = 12;
if(c > d);
 Write("Green");
 WriteLine("Yellow");

a. Green
b. Yellow

c. GreenYellow
d. nothing

6. What is the output of the following code segment?
int c = 6, d = 12;
if(c < d)
 if(c > 8)
 Write("Green");
 else
 Write("Yellow");
else
 Write("Blue");

a. Green
b. Yellow

c. Blue
d. nothing

7. What is the output of the following code segment?
int e = 5, f = 10;
if(e < f && f < 0)
 Write("Red");
else
 Write("Orange");

a. Red
b. Orange

c. RedOrange
d. nothing

8. What is the output of the following code segment?
int e = 5, f = 10;
if(e < f || f < 0)
 Write("Red");
else
 Write("Orange");

a. Red
b. Orange

c. RedOrange
d. nothing

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Review Questions

183

9. Which of the following expressions is equivalent to the following code segment?
if(g > h)
 if(g < k)
 Write("Brown");

a. if(g > h && g < k) Write("Brown");

b. if(g > h && < k) Write("Brown");

c. if(g > h || g < k) Write("Brown");

d. two of these

10. Which of the following expressions assigns true to a Boolean variable named
isIDValid when idNumber is both greater than 1000 and less than or equal to
9999, or else is equal to 123456?
a. isIDValid = (idNumber > 1000 && idNumber <= 9999 &&

 idNumber == 123456)

b. isIDValid = (idNumber > 1000 && idNumber <= 9999 ||
 idNumber == 123456)

c. isIDValid = ((idNumber > 1000 && idNumber <= 9999) ||
 idNumber == 123456)

d. two of these

11. Which of the following expressions is equivalent to a || b && c || d?
a. a && b || c && d

b. (a || b) && (c || d)

c. a || (b && c) || d

d. two of these

12. How many case labels would a switch statement require to be equivalent to the
following if statement?
if(v == 1)
 WriteLine("one");
else
 WriteLine("two");

a. zero
b. one

c. two
d. impossible to tell

13. Falling through a switch case is most often prevented by using the
____________________ statement.
a. break

b. default

c. case

d. end

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

184

C H A P T E R 4 Making Decisions

14. If the test expression in a switch does not match any of the case values, and there is
no default value, then ____________________.
a. a compiler error occurs
b. a runtime error occurs
c. the program continues with the next executable statement
d. the expression is incremented and the case values are tested again

15. Which of the following is equivalent to the following statement:
 if(m == 0)
 d = 0;
 else
 d = 1;

a. d = (m == 0) : d = 0, d = 1;

b. m ? (d = 0); (d = 1);

c. m == 0; d = 0; d = 1?

d. d = (m == 0) ? 0 : 1;

16. Which of the following C# expressions is equivalent to a < b && b < c?
a. c > b > a

b. a < b && c >= b

c. !(b <= a) && b < c

d. two of these

17. Which of the following C# expressions means, “If itemNumber is not 8 or 9, add
TAX to price”?
a. if(itemNumber != 8 || itemNumber != 9)
 price = price + TAX;

b. if(itemNumber != 8 && itemNumber != 9)
 price = price + TAX;

c. if(itemNumber != 8 && != 9)

 price = price + TAX;

d. two of these

18. Which of the following C# expressions means, “If itemNumber is 1 or 2 and
quantity is 12 or more, add TAX to price”?
a. if(itemNumber = 1 || itemNumber = 2 && quantity >=12)
 price = price + TAX;

b. if(itemNumber == 1 || itemNumber == 2 || quantity >=12)
 price = price + TAX;

c. if(itemNumber == 1 && itemNumber == 2 && quantity >=12)
 price = price + TAX;

d. none of these

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exercises

185

19. Which of the following C# expressions means, “If itemNumber is 5 and zone is 1 or
3, add TAX to price”?
a. if(itemNumber == 5 && zone == 1 || zone == 3)
 price = price + TAX;

b. if(itemNumber == 5 && (zone == 1 || zone == 3))
 price = price + TAX;
c. if(itemNumber == 5 && (zone ==1 || 3))
 price = price + TAX;

d. two of these

20. Which of the following C# expressions results in TAX being added to price if the
integer itemNumber is not 100?
a. if(itemNumber != 100)
 price = price + TAX;

b. if(!(itemNumber == 100))
 price = price + TAX;
c. if(itemNumber <100 || itemNumber > 100)
 price = price + TAX;

d. all of these

Exercises

Programming Exercises

1. Write a program named CheckCredit that prompts users to enter a purchase price
for an item. If the value entered is greater than a credit limit of $5,000, display an error
message; otherwise, display Approved.

2. Write a program named Twitter that accepts a user’s message and determines
whether it is short enough for a social networking service that does not accept
 messages of more than 140 characters.

3. Write a program named Admission for a college’s admissions office. The user enters
a numeric high school grade point average (for example, 3.2) and an admission
test score. Display the message Accept if the student meets either of the following
requirements:
 A grade point average of 3.0 or higher, and an admission test score of at least 60
 A grade point average of less than 3.0, and an admission test score of at least 80
 If the student does not meet either of the qualification criteria, display Reject.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

186

C H A P T E R 4 Making Decisions

4. The Saffir-Simpson Hurricane Scale classifies hurricanes into five categories num-
bered 1 through 5. Write an application named Hurricane that outputs a hurricane’s
category based on the user’s input of the wind speed. Category 5 hurricanes have sus-
tained winds of at least 157 miles per hour. The minimum sustained wind speeds for
categories 4 through 1 are 130, 111, 96, and 74 miles per hour, respectively. Any storm
with winds of less than 74 miles per hour is not a hurricane.

5. Write a program named CheckMonth that prompts a user to enter a birth month. If
the value entered is greater than 12 or less than 1, display an error message; otherwise,
display the valid month with a message such as 3 is a valid month.

6. Write a program named CheckMonth2 that prompts a user to enter a birth month
and day. Display an error message if the month is invalid (not 1 through 12) or the day
is invalid for the month (for example, not between 1 and 31 for January or between
1 and 29 for February). If the month and day are valid, display them with a message.

7. You can create a random number that is at least min but less than max using the
 following statements:

 Random ranNumberGenerator = new Random();
 int randomNumber;
 randomNumber = ranNumberGenerator.Next(min, max);

 Write a program named GuessingGame that generates a random number between
1 and 10. (In other words, min is 1 and max is 11.) Ask a user to guess the random
number, then display the random number and a message indicating whether the user’s
guess was too high, too low, or correct.

8. In the game Rock Paper Scissors, two players simultaneously choose one of three
options: rock, paper, or scissors. If both players choose the same option, then the
result is a tie. However, if they choose differently, the winner is determined as follows:
 Rock beats scissors, because a rock can break a pair of scissors.
 Scissors beats paper, because scissors can cut paper.
 Paper beats rock, because a piece of paper can cover a rock.

 Create a game in which the computer randomly chooses rock, paper, or scissors. Let
the user enter a character, r, p, or s, each representing one of the three choices. Then,
determine the winner. Save the application as RockPaperScissors.cs.

9. Create a lottery game application named Lottery. Generate three random numbers,
each between 1 and 4. Allow the user to guess three numbers. Compare each of the
user’s guesses to the three random numbers, and display a message that includes the

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exercises

187

user’s guess, the randomly determined three-digit number, and the amount of money
the user has won as follows:

Matching Numbers Award ($)

Any one matching 10

Two matching 100

Three matching, not in
order

1000

Three matching in exact
order

10,000

No matches 0

 Make certain that your application accommodates repeating digits. For example, if a
user guesses 1, 2, and 3, and the randomly generated digits are 1, 1, and 1, do not give
the user credit for three correct guesses—just one.

Debugging Exercises

1. Each of the following files in the Chapter.04 folder of your downloadable
student files has syntax and/or logical errors. In each case, determine the
problem, and fix the program. After you correct the errors, save each file
using the same filename preceded with Fixed. For example, save DebugFour1.cs
as FixedDebugFour1.cs.
a. DebugFour1.cs
b. DebugFour2.cs

c. DebugFour3.cs
d. DebugFour4.cs

Case Problems

1. In Chapter 2, you created an interactive application named GreenvilleRevenue,
and in Chapter 3 you created a GUI version of the application named
 GreenvilleRevenueGUI. The programs prompt a user for the number of
contestants entered in this year’s and last year’s Greenville Idol competition, and
then they display the revenue expected for this year’s competition if each

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

188

C H A P T E R 4 Making Decisions

contestant pays a $25 entrance fee. The programs also display a statement that
compares the number of contestants each year. Now, replace that statement with
one of the following messages:
 If the competition has more than twice as many contestants as last year, display

The competition is more than twice as big this year!
 If the competition is bigger than last year’s but not more than twice as big, display

The competition is bigger than ever!
 If the competition is smaller than last year’s, display, A tighter race this year! Come

out and cast your vote!
2. In Chapter 2, you created an interactive application named MarshallsRevenue,

and in Chapter 3 you created a GUI version of the application named
 MarshallsRevenueGUI. The programs prompt a user for the number of interior and
exterior murals scheduled to be painted during the next month by Marshall’s Murals.
Next, the programs compute the expected revenue for each type of mural when
 interior murals cost $500 each and exterior murals cost $750 each. The applications
also display the total expected revenue and a statement that indicates whether more
interior murals are scheduled than exterior ones. Now, modify one or both of the
applications to accept a numeric value for the month being scheduled and to modify
the pricing as follows:
 Because of uncertain weather conditions, exterior murals cannot be painted in

December through February, so change the number of exterior murals to 0 for
those months.

 Marshall prefers to paint exterior murals in April, May, September, and October.
To encourage business, he charges only $699 for an exterior mural during those
months. Murals in other months continue to cost $750.

 Marshall prefers to paint interior murals in July and August, so he charges only
$450 for an interior mural during those months. Murals in other months continue
to cost $500.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

