Using GUI Objects
and the Visual
Studio IDE

In this chapter you will:

Create a Form in the Visual Studio IDE
Use the Toolbox to add a Button to a Form

©)

Add Labels and TextBoxes to a Form

©)

Name Forms and controls

(©)

Correct errors

(©)

Decide which interface to use

©)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 3 Using GUI Objects and the Visual Studio IDE

You have learned to write simple C# programs that accept input from a user at the console
and produce output at the command line. The environment the user sees is a program’s
interface; unfortunately, the interfaces in the applications you have written so far look
dull. Most modern applications use visually pleasing graphic objects to interact with users.
These graphical user interface (GUI) objects include the labels, buttons, and text boxes
you manipulate or control with a mouse, touch screen, or keyboard when interacting with
Windows-type programs.

102

In Chapter 1, you learned that when you write a console application, you can use a simple text
editor such as Notepad or you can use the Visual Studio integrated development environment
(IDE). Technically, you have the same options when you write a GUI program. However,

so much code is needed to create even the simplest of GUI programs that it is far more
practical to develop the user interface visually in the IDE. This approach allows the IDE to
automatically generate much of the code you need to develop appealing GUI programs that
are easy to use.

about a new environment with each programming language you studied. Now, you can use one IDE to create

ﬂ In Visual Studio versions before .NET, C#, C++, and Visual Basic each had its own IDE, so you had to learn
projects in all the supported languages.

Creating a Form in the IDE

Forms are rectangular GUI objects that provide an interface for collecting, displaying, and
delivering information. Although they are not required, forms almost always include controls,
which are devices such as labels, text boxes, and buttons that users can manipulate to interact
with a program. The C# class that creates a form is Form.

To create a Form visually using the IDE, you start Visual Studio, select New Project, and

then choose Windows Forms Application, as shown in Figure 3-1. By default, Visual Studio
names your first Forms application WindowsFormsApplicationl. You can change the name if
you want, and you can browse to choose a location to save the application. You should almost
always provide a more meaningful name for applications than the default name suggested.
Most of the examples in this chapter retain the default names to minimize the number of
changes required if you want to replicate the steps on your computer.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Creting Form n the 0

} Recent NET Famework 43 - Sotby Default

instailed

R‘j Elank App (Univarsal Appe)

Visual Ch s o Rl S T———
selected o [e Application is
bte? selected
ﬁ Canscle Application Visual Co 1 03
=g Ao Visuai C2
;_j AONET Web Applicaticn Visual C2
;_l_] Shaed Progect Visual C2

b Onlae Daw z@mrrar

Nome: WindowsF] I Default project name I
Lecations CACH Chagtes 21 + [Browe
Sohtions Craste new m.m_l I Location |

Sedicn name WindowsFermaAgplc ation | |y} Creste deectory for solution

#Add to yource control
—— OK button
o]

Figure 3-1 Choosing Windows Forms Application in the New Project window

After you click OK in the New Project window, you see the IDE main window, as shown in
Figure 3-2. The main window contains several smaller windows, each of which can be resized,
relocated, or closed. If a window is not currently visible, you can select it from the View menu
in the menu bar. Some key features in the IDE follow:

o The name of the project shown in three places: on the title bar, and in two locations
in the Solution Explorer. In Figure 3-2, the application has the default name
WindowsFormsApplicationl.

e The menu bar, which lies horizontally across the top of the window and includes a File
menu from which you open, close, and save projects. It also contains submenus for editing,
debugging, and help tasks, among others.

As you work through any project, you should choose Save All frequently. You can select this action from the
File menu or click the Save All button, which has an icon that looks like two overlapping disks.

e The Toolbox tab, which, when opened, provides lists of controls you can drag onto a Form
so that you can develop programs visually, using a mouse.

e The Form Designer, which appears in the center of the screen. This is where you design
applications visually.

e The Solution Explorer, for viewing and managing project files and settings.

o The Properties window, for configuring properties and events on controls in your user
interface. For example, you can use this window to set the Size property of a Button or the
Text property of a Form.

e The Error list, which displays any warnings and errors that occur when you build or execute
a program.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 3 Using GUI Objects and the Visual Studio IDE

If some of these features are not visible after you start a project in the IDE, you can select them
from the View menu.

oJ

iont - ft Visual Studio B | Quick Launch (Crrie P - B8 x
File Edt View] Project Buld Debug Tesm Format Tooks Test Archtecture Anslyze Window Joyce Farell « s Menu bar
Help
. S1° & * & | Debug - AnyCPU BRI
Solution Explorer

104

[} = x - Solution Exploce

(~RC]

-s¢d
plorer (Ctte; P =

Form1 = ol =~ |

@] Solution *
Toolbox P
b J Properties A
tab b em References Project name
¥ App.config
b [X Formlcs

— I Form Designer I
Properties window

Form1 System Windows FormsFc =
2UNF | F

StartPosition WindowsDefaut +
Show cutput from: . o o
Tes Form1
TopMost Fakse
Text
The teet associated with the control,

Figure 3-2 The IDE main window

The Solution Explorer file list shows the files that are part of the current project:
e The Program.cs file contains the automatically generated Main () method of the application.

e The Forml.cs file contains other automatically generated code and is where you write code
describing the tasks you will assign to controls in your application.

e To the left of the Form1.cs file, you see a small triangle node. A node is an icon that can be
used to expand or condense a list or a section of code. In Visual Studio, some nodes appear
as triangles, and others appear as small plus or minus signs. When a triangle-shaped node
points straight to the right, you see a condensed view. Clicking the triangle reveals hidden
items or code—the triangle will point diagonally down and to the right, and you see all the
items in the list (or all the hidden code). Clicking the triangle again collapses the list so you
can work with a condensed view.

If you expand the Form1.cs node by clicking it, you see the following:

¢ A file named FormI.Designer.cs. The Windows Form Designer automatically writes code in
the Designer.cs file; the code created there implements all the actions that are performed
when you drag and drop controls from the Toolbox. You should avoid making manual
changes to this file because you could easily corrupt a program.

o A file named FormI that can hold resources such as images and audio clips; you will add
such resources to your programs as you learn more about C#.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Creting a Form n tre 0

When you create a Windows Forms project, Visual C# adds a form to the project and calls it
Forml. After you click the Form in the Form Designer area, you can see the name of the form
in the following locations as shown in Figure 3-3:

e On the folder tab at the top of the Form Designer area (followed by /Design])
105

In the title bar of the form in the Form Designer area

In the Solution Explorer file list (with a .cs extension)

At the top of the Properties window indicating that the properties listed are for Form1

As the contents of the Text property listed within the Properties window

b WindowsFormsApplication] - Microsoft Visual Studio Y2 & ks ke £ - B x
File Ede View Project Buld Debug Tesm Formst Tooks Test Acchtecture LosdTest Analae sonin B
Vindow Help

o - 30 |

BlFoom1.cs (Design] =

= | |Debug -||anyCPU Sl b Stte| g =

Forml.cs
[Design] tab

- R b-sCcFB|Op

* 1 = -l . p-
37 Solution ‘WindowsFormsApgication]’ (1 project

Forml text on
title bar of Form

Forml.cs file that
contains Form code

Schution Explarer

These buttons
let you organize
properties by

This Properties
window is for Form1

Sorm1 System WindowsForms.Foem
v T
ESCVAL

Category. or RightToleft No - The text that
alphabetically PV . A ightTolenisyour Fakee € text that appears
Tea Form on Forml's title bar
Yot is Forml
The text associsted with the control.

Figure 3-3 Displaying the properties of Forml

You can scroll through a list of properties in the Properties window. For example, Size, Text,
and Font are listed. If you click a property, a brief description of it appears at the bottom of
the Properties window. For example, Figure 3-3 displays a description of the Text property
of Forml.

You can change the appearance, size, color, and window-management features of a Form by
setting its properties. The Form class contains approximately 100 properties; Table 3-1 lists
a few of the Form features you can change. For example, setting the Text property allows
you to specify the caption of the Form in the title bar, and setting the Size, BackColor, and
ForeColor allows you to further customize the Form. The two left buttons at the top of the
Properties list allow you to organize properties by category or alphabetically. Not every
property that can be used with a Form appears in the Properties window in the Visual Studio
IDE—only the most frequently used properties are listed.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 3 Using GUI Objects and the Visual Studio IDE

Property Name Description

AcceptButton Gets or sets the button on the form that is clicked when the user
presses the Enter key

106 BackColor Gets or sets the background color of the Form

CancelButton Gets or sets the button control that is clicked when the user
presses the Esc key

ForeColor Gets or sets the foreground color of the Form

Name Gets or sets the name of the Form

Size Gets or sets the size of the Form

Text Gets or sets the text associated with the control

Visible Gets or sets a value indicating whether the control is visible

IEL BN Selected properties of Forms

Some of the properties listed in the Properties window have a small plus sign that appears

to the left of the property name. This is a node that you can click to expand or condense a
property. For example, if you click the Size node, you will see an expanded list that displays
the two parts of Size (Width and Height) separately. The node changes to a minus sign, which
you can then click to condense the expanded list.

When you sort Properties in alphabetical order in the Properties window, the Name entry is
not in alphabetical order—it appears near the top of the list. Name appears in parentheses
because the opening parenthesis has a lower value than an A, so when the Properties list is
sorted in alphabetical order, Name is near the top and easy to find. (An opening parenthesis
has a lower Unicode value than any alphabetic letter; Appendix B contains information on
Unicode.) For most professional applications, you will want to provide a Form with a reason-
able identifier that is more descriptive than Form1.

Do not confuse a Form’s Name with its Text property. If you change a Form’s Name, you don't
notice any difference in the visual design, but all references to the form are changed in the
code. Therefore, a Form’s Name property is an identifier, and it must follow the rules for variable
names. This means, for example, that a Form’s Name cannot contain spaces and cannot start
with a digit. However, a Form’s Text is what appears in its title bar, and it can be any string. For
example, in an accounting application, you might name a form BudgetForm but assign 2016
Budget Calculator as its Text.

In Chapter 2, you learned to enclose a string’s contents in quotation marks. Although a Form’s
Text is a string, you do not type containing quotes when you enter a value for the Text
property in the Properties list. However, when you view C# code, you will see quotation marks
around the Text value.

(])
¥ Watch the video The Visual Studio IDE.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using the Toolbox to Add a Button to a Form_

TWO TRUTHS ALIE

Creating a Form in the IDE

1. The Visual Studio IDE allows you to use a visual environment for designing Forms. 107

2. Some key features in Visual C# include the Toolbox, Form Designer, and Solution
Explorer.

3. When you create a first Windows Forms project in any folder, Visual C# names the
project MyFirstForm by default.

"}nejap Aq Tuonedlddysw.io{SMopUIp 108(0ad By} Saweu #9) [ensiA ‘4ap|o}
Aue ur 303(04d SWI04 SMOPUIAN 1S41) B 912340 NOA USUM "E# SI JusWSle)S aS[e) ay |

Using the Toolbox to Add a Button to a Form

When you open the IDE, the left border displays a Toolbox tab. (If you don't see the tab, you
can select View and then Toolbox from the IDE’s menu bar.) When you open the Toolbox,
a list of tool groups is displayed. The list automatically closes when you move your mouse
off the list and click elsewhere, or you can pin the Toolbox to the screen to keep it open by
clicking the pushpin icon at the top of the list. When you pin the Toolbox, the Form moves
to the right to remain as visible as possible, depending on how you have sized the windows
in the IDE. Selecting All Windows Forms at the top of the Toolbox displays a complete list
of available tools; selecting Common Controls displays a smaller list that is a subset of the
original one. As shown in Figure 3-4, the Common Controls list contains many controls: the
GUI objects a user can click or manipulate. The list includes controls you probably have seen
when using Windows applications—for example, Button and CheckBox. You can drag these
controls onto the Form. This chapter features only three controls from the Toolbox—LabeT,
Button, and TextBox. You will learn about many of the other controls in the chapter called
“Using Controls.

locations. To change the behavior of a window, click the down arrow or pushpin icon on the title bar, and
select from the available options. You can customize many aspects of the IDE by clicking the Tools menu,
then clicking Options. To reset the windows to their original states, click Window on the main Visual Studio
menu bar, and then click Reset Window Layout.

ﬂ All windows in Visual C# can be made dockable or floating, hidden or visible, or can be moved to new

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 3 Using GUI Objects and the Visual Studio IDE

.(] -
I Pushpin |
L
T

Common
Controls list \ " el This chapter
108 SR — N P T uses Labe1,
AS Button, and

5 Textbox. In this
Figure Textbox
e | RSl T e Cotfen is hidden until
Jes you scroll down.

Figure 3-4 The open Toolbox in the IDE

You can drag controls onto a Form where you think they will be most useful or contribute to

a pleasing design. After a control is on a Form, you can relocate it by dragging it, or delete the
control by selecting it and pressing the Del key on your keyboard. You also can delete a control
by right-clicking it and selecting the Delete option from the menu that appears.

In Figure 3-5, the programmer has dragged a button onto the Form. By default, its Name

is buttonl. (You might guess that if you drag a second Button onto a Form, its Name
automatically becomes button2.) In a professional application, you would probably want to
change the Name property of the Button to a unique and memorable identifier.

o WindowsFormsApplication? - Microsoft Visual Studia X2 & Guck Launch o Plie BIX
file [de View Project Ould Debug Team Took Tet Awhitecture LlosdTes Anafyse Window senn B
Help
0-0| - - Debog | [any CPU L hsmel =
v z - @ o-sCcEW os
Bl ¢ A1 Winidoms Foems - - Form1 =@t - tution Besores{Ct P
4 Common Contron) Soliaien ; fpca Button's name
4 [is buttonl
i
Button dragged E c P
from Toolbox — @ o Dty)
onto Form A e sotlion Explocer Click arrow to
A g K B switch between
B :":si_ Button! System. Windows Forms. Butten Forml properties
Text of Button Ao i EAOCE AR to buttonl
changed to OK in Voo 3 .) Tabindex ° f properties
properties window [: i e
Outputt -9 x Tag
and placed on 5 o 1
TeaAlgn MidaCentar -
Button surface ot | Slide to see
The text mszocisted with the control. Other Dropertles

Figure 3-5 A Button dragged onto a Form

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using the Toolbox to Add a Button to a Form_

In Figure 3-5, the programmer has clicked buttonl, so the Properties window shows the
properties for buttonl. (If you click the Form, the Properties window changes to show Form
properties instead of Button properties.) The Text property of buttonl has been changed

to OK, and the button on the Form has handles that can be used to resize it. You can scroll
through the Properties list and examine other properties that can be modified for the Button.
For example, you can change its BackColor, ForeColor, Font, and Size. Table 3-2 describes a
few of the properties available for Button objects. This chapter discusses only a few properties
of each control. You can learn about other properties in the chapter “Using Controls”

109

Property Name Description

BackCoTor Gets or sets the background color for the control
EnabTled Gets or sets whether the control is enabled

Font Gets or sets the current font for the control

ForeColor Gets or sets the foreground color of the control

Name Gets or sets the name of the control

Size Gets or sets the size of the control

Text Gets or sets the text associated with the control

Visible Gets or sets a value indicating whether the control is visible

IELICRREVA Selected properties of Buttons

click the arrow next to the current control name shown at the top of the Properties list and select the desired

ﬂ You can click a control on a Form to display its Properties list in the Properties window. Alternatively, you can
control to view from a drop-down list. See Figure 3-5.

Adding Functionality to a Button on a Form

Adding functionality to a Button is easy when you use the IDE. After you have dragged a
Button onto a Form, you can double-click it to create a method that executes when the user
clicks the Button. For example, if you have dragged a Button onto a Form and have not changed
its default name from buttonl, code is automatically generated when you double-click the
button, as shown in Figure 3-6. (The viewing windows in the figure have been resized by
dragging their borders so that you can see more of the code.) You can view the Form Designer
again by selecting View and then Designer from the menu bar. Then, you can revert to the code
window by selecting View and Code. As you create GUI applications, you frequently will switch
back and forth between the visual environment and the code. Alternatively, you can use the tabs
or press one of the shortcut keys displayed on the drop-down menu to switch the view.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 3 Using GUI Objects and the Visual Studio IDE

: o WindowsFormsApplication] - Microsoft Visual Studic X © " S - B x
Tabs to SWItC_h file Ede View Projet Buld Debug Team Took Test Arhitecture LlosdTem Amafyze Window sevn B
between design o
and code views comet a9 ebg | any CPU psmel W TN

=] stion] =] % “Formelp «§ % button'_Chick{obyect sendes, « @

public pactisl class

{

&) Solution Wine «
s @

public Fare1() b Propet
(b »8 Referen

110

InitislizeCompoment ()} ¥ Appen
1 4 3 Foemla

Automatically

:(,qm.— va n..::cm](u;.(aujz,z sender, €) Sel.. m generated shell for
- buttonl_Click()

method

3 TR

100 % -.~‘ ' '

Show outpt frem

[N Outpen

a2 Cul 13 chid "

Figure 3-6 The automatically generated code after double-clicking buttonl

When you double-click a button to generate a click method, you generate code for the button’s default event.
Clicking is a button’s default event because users typically expect to click a button. As you learn more about
C#, you will find that you can write other events for a button. For example, perhaps you want to take a
specific action if a user double-clicks or right-clicks a button.

If you scroll through the exposed code, you see many generated statements, some of which
are confusing. However, to make a Button perform an action, you can ignore most of the
statements. You only need to write code between the curly braces of the method with the
following header:

private void buttonl_Click(object sender, EventArgs e)

Instead of automatically generating the method header that executes when a user clicks a
Button, you could write it yourself. However, you would have to know more about both
methods and event handlers because other code is also automatically written elsewhere in

the project that links the Form’s button to the method. You will learn about these topics in later
chapters.

You have seen the following method header used in console applications:
static void Main()

The GUI application also contains a Main() method that is created automatically; you can see
it by opening the Program.cs file that is part of the application.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using the Toolbox to Add a Button to a Form_

The buttonl_Click() method and the Main() method headers both use the void return
type, but the methods differ in the following ways:

e The buttonl_Click() method has a private access specifier. An access specifier is a
keyword that dictates which types of outside classes can use a method. By default, Visual
Studio makes the buttonl_C1ick() method private, which limits the ability of other 111
classes to use the method, but you could remove the word private and notice no difference
in how the button works. You will learn more about access specifiers later in this book.

e TheMain() method is static, whereas the buttonl_Click() method is not. A static
method executes without an object. The buttonl_C1ick() method cannot be static
because it needs an object, which is the Form in which it is running. The chapter called
“Using Classes and Objects” provides more detail about the keyword static.

e The Main() method header shown above contains no parameters between its parentheses,
but the buttonl_C1ick() method has two parameters, separated with a comma. These
represent values about the event (the user clicking the button) that causes execution of the
method. When a user interacts with a GUI object, an event is generated that causes the
program to perform a task. When a user clicks a Button, the action fires a click event,
which causes the Button’s C1ick() method to execute. This chapter discusses only click
events. You can learn about other events in the “Event Handling” chapter.

If you change the Name property of the buttonl object in the IDE, the name of its subsequently
created C1ick() method will also change automatically. For example, if you rename buttonl
to okButton in the Properties list and then double-click it, the name of the generated method
is okButton_ClickQ.

If you change a Button’s Name from buttonl and then place a second button on the Form, the
new Button is named buttonl. If you leave the first Button’s default name as buttonl, then
the second Button you place on the Form is named button2, and its default C1ick () method
is named button2_Click(). C# automatically creates a method name for each Button based
on its associated object’s name. Later in this chapter you will learn what to do if you create the
event method first and change the control’s name later.

You are not required to create a C1ick () method for a Button. If, for some reason, you did
not want to take any action when a user clicked a Button, you simply would not include the
method in your program. Alternatively, you could create an empty method that contains no
statements between its curly braces and thus does nothing. However, these choices would be
unusual and a poor programming practice—you usually place a Button on a Form because you
expect it to be clicked at some point. You will frustrate users if you do not allow your controls
to act in expected ways.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 3 Using GUI Objects and the Visual Studio IDE

You can write any statements you want between the curly braces of the buttonl_Click()
method. For example, you can declare variables, perform arithmetic statements, and produce
output. You also can include block or line comments. The next sections of this chapter include
several statements added to a C1ick () method.

112 o0

@ Watch the video Creating a Functional Button.

TWO TRUTHS ALIE

Using the Toolbox to Add a Button to a Form

1. When a user clicks a Button, the action fires a click event that causes the
Button's Cl1ick() method to execute.

2. If a Button’s identifier is reportButton, then the name of its C1ick () method
is reportButton.Click().

3. You can write any statements you want between the curly braces of a Button’s
Click () method.

*()>2 LD uoaangidodad S| poyaw ()X2L1D SY Jo sweu
9y} Usy} ‘uoaangadodad SI JBIHIUSPI S,U01INgG B J| Z# SI JUSLISIL]S BS|e) YL

Adding Labels and TextBoxes to a Form

Suppose that you want to create an interactive GUI program that accepts two numbers from a
user and outputs their sum when the user clicks a Button. To provide prompts for the user and
to display output, you can add LabeTs to a Form, and to get input from a user, you can provide
TextBoxes.

A label is a control that you use to display text to communicate with an application’s user; the
C# class that creates a label is LabeT. Just like a Button, you can drag a Label onto a Form, as
shown in Figure 3-7. By default, the first Label you drag onto a Form is named labe11, and the
text that appears on the Labe also is Tabe11. You can change its Text property to display any
string of text; depending on the amount of text you enter, you might need to change the size

of the Labe1 by dragging its resizing handles or altering its Size property. In Figure 3-7, Enter
a number has been assigned to Tabe11’s Text property. If you want to create multiple lines of
text on a LabeT, click the small, downward-pointing arrow to the right of the Text property
value to open an editor, and type the needed text in separate lines. You might want a program

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using the Toolbox to Add a Button to a Form_

to start with no text appearing on a label. If so, just delete the entry from the Text property in
the Properties list. If you execute a program that starts with a blank label and don’t make any
changes to its color, the label will be invisible to the user. Note that a label’s Text property can

be blank, but a Label’s Name property cannot

o AdaTwoNumbers - Microsoft Visual Studio Y2 = £ - B
Fie it View Project Buld Debug Tesm Tooh Tet Anchitecture Losd Test Amsbyze Window H Sgnin
B2 BP| 20 | oebug -+ anyoru o b St e G | 0
Toolba » 3 x| Formlas [Deign]® © X ~ | Solution Explorer v 0 X
. e —— T Y
b All Windows Foems. - w Form1 =8 N search Sokstion Explorer (Cirle

4 Cemenon Contrels

27 Solution ‘AddTwoNumbers' (! project)

p-

Figure 3-7 A Label ona Form

A text box is a GUI control through which a user can enter input data; the C# class is TextBox.
Figure 3-8 shows a TextBox on a Form. If the intention is for a user to enter data in a TextBox,

t Pointer
-

® Buton > Propeties

B Checkiox s e b = References

IS Chechedlitéon b ———1 ¥ Appconfig Label dragged
B ComboBox 4 el

B DateTimePicker ¥ 1 FomiDesgner.cs onto Form
A Lbe B Famisen ¥ from Toolbox

Sahsion Esplorer

A Lnkisbe

B LstBa Properties -0 x

U LatView belt System Windows.Forms.Label -

Gl MaskedTestBon E RN AR

B MorthCalendar B Sce 35.13 - Text property
k= Notéyicon Tabindex []

§ e Y of Tabel
B PictureBos " = atera ke [changed

W Progesar TestAlgn Toptett S

o Cabac s

S5 RichTetBex The test sssociated with the control.
Server bxplores [QEEITESY HEEY Output

you might want to start with its Text property empty, but you are allowed to add text to its

Text property if desired.

b AddTwoNumbers - Microsoft Visual Studio

Window Help
OlB-L MWD

LIl 7o <3 [Design]* = %

«|[oeug

. 1m s
CheckedLutBox

Comboliox
DeteTimePicker
Label
LinkLabel
LisBex

Be>EHME:

Any CPU

Y2 =
File Mt View Project Build Debug Tesm Formet Took Tet Architecture Losd Test Anelyse Sign in H

Tervien
MaskedTextBon

MonthCatendar
Netifylcon
NumesicUpDomn

A Textbox
dragged onto a
Form

Do NBEFEF3

TextBes
TeolTip

TreeView

Figure 3-8 A Label and TextBox on a form

b s L |

Picturebics

Progrengar q o
RadioButton

RichTetfax <

F - x

D o-9CFH osp "
tion AddTwoNumbers (1 project)

ini 0N
S

¥ App.confiy
4 B Fomlas
») Form!Designer.cs

-
Solution Explorer

textBox1 System.Windows Forms TextBox

H8 N I A
Tobindes 1
Tabstop Troe
Ty
Tet
TestAlign Left -

The Textbox
Text property
can be empty
initially

113

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 3 Using GUI Objects and the Visual Studio IDE

Figure 3-9 shows a Form with three LabeTs, two TextBoxes, and a Button. The third Label
has not yet been provided with new text, so it still contains label3. You can delete the Text
value in the Properties window if you want the Label to be empty at first.

114

ol Form1 (===

Enter a number

Enter another number

Click to add Jabel3 |

Figure 3-9 A Form with several controls

When a user runs the program that displays the Form in Figure 3-9, the intention is for the
user to enter a number in each TextBox. When the user clicks the Button, the sum of the

two numbers will be displayed in Tabe13. To sum the numbers, you must write code for the
Button. In the Form Designer, you can double-click the Button to expose the prewritten shell
of the buttonl_Click() method.

Figure 3-10 shows the code you can write within the buttonl_C1ick() method. The
method contains declarations for three integers. When a user types a value into a TextBox
in an executing program, it becomes the value for the Text property of the TextBox.
Because a user might type any value, the value in a TextBox is a string by default. When
you write an application in which the user is supposed to enter a number, you must convert
the entered string into a number. You are familiar with this process because it’s exactly the
same action required when a user enters data in response to a ReadLine() statement in a
console application.

The last two statements in the method perform the necessary addition operation and assign a
string with the concatenated sum to the Text property of the Labe1 that displays the output.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using the Toolbox to Add a Button to a Form_

private void buttonl_Click(object sender, EventArgs e)
{
int numl;
int num2;
int sum;
numl = Convert.ToInt32(textBoxl.Text); 115
num2 = Convert.ToInt32(textBox2.Text);
sum = numl + num2;
label13.Text = "Sum is " + sum;
}
Figure 3-10 The buttonl_CT1ck() method that calculates the sum of the entries in two
TextBoxes

You can execute a program from the IDE by selecting Debug from the menu bar and then
Start Without Debugging. (As an alternative, you can hold down the Ctrl key and press F5.)
Figure 3-11 shows how the Form appears when the program executes and the result after the
user has entered numbers and clicked the Button. The period during which you design a
program is called design time. When you execute a program, the stage is called runtime.

Enter a number [r:] Enter a number [5

Enter another number | | Enter another number |12

Click to add Click to add Sumis 17

Figure 3-11 The Form when it first appears and after a user has entered two integers and
clicked the Button

You can change the values in either or both of the TextBoxes in the Form and click the Button
to see a new result. When you finish using the application, you can close it by clicking the
Close button in the upper-right corner of the Form.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 3 Using GUI Objects and the Visual Studio IDE

Understanding Focus and Tab Control

When a GUI program displays a Form, one of the components on the Form has focus. The

control with focus is the one that can receive keyboard input. When a Button has focus, a thin,

bright line appears around it to draw your attention, and the Button’s associated event executes

116 when you click the button or press the Enter key on the keyboard. When a TextBox has focus,
a blinking cursor appears inside it.

When an application is running, the user can give focus to a component by clicking it or can
switch focus from one component to another using the Tab key. The order in which con-

trols receive focus from successive Tab key presses is their tab order. By default, controls are
assigned a tab order based on the order in which you place them on a Form when designing a
program. The first control you place on a Form has TabIndex 0, the next control has TabIndex
1, and so on. When you start a program, the control with TabIndex 0 automatically has focus.
You can check a control’s tab order by viewing its TabIndex property in the Properties list of
the IDE. If you do not want a control to be part of the tabbing sequence for a Form, you can
change its TabStop property from true to false in the Properties list.

You can change a control’s TabIndex value by changing the entry next to TabIndex in the
Properties list of the IDE. Alternatively, you can select View from the menu bar and then select
Tab Order. You see a representation of the Form with a small blue number next to each control
to represent the tab values. To change the focus order for the controls, simply click each control
in the desired order. Select View and then Tab Order again to remove the blue numbers.

o0
¥ Watch the video Visual Studio’s Automatically Generated Code.

Formatting Data in GUI Applications

In Chapter 2, you learned about format strings that can be used to make numeric data
align appropriately, display the desired number of decimal places, and display dollar signs.
For example, the following displays Total is $4.55 because the doub1e variable myMoney is
converted to currency format and placed in position 0 in a string:

double myMoney = 4.558;

string mySentence = String.Format("Total is {0}",
myMoney.ToString("C"));

WriteLine(mySentence);

You can use the same String.Format() method to create formatted strings in your GUI
applications. For example, suppose you have retrieved a double from a TextBox with a
statement similar to the following:

double money = Convert.ToDouble(textBoxl.Text);

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using the Toolbox to Add a Button to a Form_

You can display the value on a label with explanatory text and as currency with two decimal
places with a statement similar to the following:

Tabell.Text = String.Format("The money value 1is {0}",
money.ToString("C2"));

If necessary, you also can use escape characters in strings that are assigned to controls such as 117
labels. For example, a two-line label might be created using the following code:

Tabell.Text = "Hello\nthere";

Changing a Label’s Font

The Font property for controls was described briefly in Table 3-2 earlier in this chapter. You
will learn more about this property in Chapter 12, but you might want to experiment with it
now to align numbers.

When you click any control on a Form and examine its Properties list, you discover that the
default font for controls is Microsoft Sans Serif. This font is a proportional font, which means
that different characters have different pitches or widths. For example, a w is wider than an i.
The opposite of a proportional font is a fixed-pitch font, or a monospaced font, in which each
character has the same width. You might want to use a fixed-pitch font to help align text values
on controls. For example, when you stack $11.11 and $88.88 on a Labe1, you typically want the
characters to be an equal width so that the values align.

To change the font for a Label, select the small box with an ellipsis (three dots) to the right of
the existing Font name in the Properties list, and select a new Font from the dialog box that
opens. For example, Courier New and Consolas are popular fixed-pitch fonts. (You can also
change the font style and size if desired.)

TWO TRUTHS ALIE

Adding Labels and TextBoxes to a Form
1. ALabel and a TextBox both have a Text property.

2. When a user types a value on a Labe in an executing program, it becomes the value
for the Text property of the Label.

3. You can display the value on a Labe1 using a format string.

'X0g31x3] 8y} 4o Aadosd Ixe L
3y} 40} |NnjeA 3y} Sawodaqg Y} ‘wes3oid 3uiIndaxa Ue Ul Xogixa| e 0lul anjeA e
SadA1 Jasn e usyp) “L2geT e uo adA} Jou SB0p JasN f Z# SI Juswalels as|e) ay |

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 3 Using GUI Objects and the Visual Studio IDE

Naming Forms and Controls

Usually, you want to provide reasonable Name property values for all the controls you place on a
Form. Although any identifier that starts with a letter is legal, note the following conventions:

118 e Start control names with a lowercase letter, and use camel casing as appropriate.

e Start Form names with an uppercase letter, and use camel casing as appropriate.

e Use the type of object in the name. For example, use names such as okButton,
firstValueTextBox, or ArithmeticForm.

is sometimes made for Labe1s that never change. For example, if three labels provide directions or
explanations to the user and are never altered during a program’s execution, many programmers would
approve of retaining their names as Tabel1, 1abe12, and 1abel3.

ﬂ Professional programmers usually do not retain the default names for Forms and controls. An exception

Most often, you will want to name controls as soon as you add them to a Form. If you rename

a control after you have created an event for it, the program still works, but the name of the
control no longer corresponds to its associated method, making the code harder to understand.
If you simply change the method name to match the control name, the event code will generate
errors. For example, assume that you have created a button named buttonl and that you have
double-clicked it, creating a method named buttonl _Click().

Then suppose that you decide to change the Name property of the Button to sumButton.
Afterward, when you look at the program code, the C1ick () method is still named
buttonl_Click(). To fix this, you must refactor the code. Code refactoring is the process
of changing a program’s internal structure without changing the way the program works. To
refactor the code after changing the button’s name, do the following:

e After you change the name of the control using the Designer, switch to view the code.
e Right-click the name of the method buttonl_Cl1ick(Q).

e From the menu that appears, click Rename, as shown in Figure 3-12.

0 AGITwWONUMDErs - Miciasolt Viewd Studio c . P w B X
Fia B Vem Nojmt Dol Dubuy Tee Toik e Arhhechr Ansbis Windew bals 2 eyt ol +

g
=

Figure 3-12 Choosing the Rename option for a method

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using the Toolbox to Add a Button to a Form_

e When you click Rename, the buttonl_C11ick method name is highlighted and a box
appears with the heading Rename buttonl_Click, as shown in Figure 3-13.

e Type the new method name (sumButton_C11ck) to replace buttonl_Click in the code.

e When you finish, you can check the Preview changes checkbox if you want to view all the
changes before they are applied, although at this point, the changes will not have much 119
meaning for you. Click Apply or press Enter. A Preview Changes dialog box will highlight
the change. You can confirm the change by clicking Apply.

oG AGTwoNumbers - Microsoft Visus! Studio ¥-s asuch (Col Pe B x
Fle ES Vew o Bl Ocbug Tem Teoh Tel Anhiscuis Anrhie Wndew Help t JopteFanell >
o- BRI A Debug = | Any CPU bRt iun

<] %t AT wctiumberfom)], sumen Cickistyact snde b < &le-%ce "
. P-

+
public forei() Rename ‘button] Click’ x . §
fo 5

o |

Selhsion “AddTweMbsmzers (1 p)

Adt luaumber

InitializeComponent ()

P == ——

1

Figure 3-13 Renaming the buttonl_C11 ck() method

TWO TRUTHS ALIE

Naming Forms and Controls

1. Label and TextBox names usually start with an uppercase letter, but Form names
usually start with a lowercase letter.

2. Professional programmers usually do not retain the default names for Forms and
controls.

3. If you rename a control after you have created an event for it, you must refactor the
code.

"Ja)19| aseoasaddn ue yyum S1iels Ajjensn salleu wao4 ing ‘4s1s| 8SLIIaMO|
B YIM JIE)S Ajlensn Saweu xogixa] pue [dqeT ‘T# S| juswsalels as|e} ay|

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 3 Using GUI Objects and the Visual Studio IDE

Correcting Errors

Just like in console-based programs, you will often generate syntax errors when you use the visual
developer to create GUI applications. If you build or run a program that contains a syntax error,
you see Build failed in the lower-left corner of the IDE. You also see an error dialog box like the
120 one shown in Figure 3-14. When you are developing a program, you should always click No in
response to “Would you like to continue and run the last successful build?” Clicking Yes will run
the previous version of the program you created before inserting the mistake that caused the dialog
box to appear. Instead, click No, examine the error messages and code, and correct the mistake.

(i] There were build errors. Would you like to continue and run the last
successful build?

[[] Do not show this dialog again

Figure 3-14 Dialog box that appears when an error occurs during compilation

Solution option uses only files that have changed since the most recent build, whereas Rebuild Solution
works with all the files in a project, regardless of whether they have changed. The Build Solution option is
usually sufficient and faster, but if you have made many changes to several parts of a project, you might
choose Rebuild Solution to make sure that all files are currently coordinated.

ﬂ When you select Build from the menu bar, two options are Build Solution and Rebuild Solution. The Build

When errors occur, they are shown in the error list at the bottom of the screen. If you do not
see error messages, you can click View from the IDE’s menu bar and then click Error List. If
the list is partially or completely hidden, you can drag up the divider between the development
window and the error list and then click the Error List tab. Figure 3-15 shows a single error
message, ; expected, which means semicolon expected. The error list also shows the file and line
number in which the error occurred. If you double-click the error message, the cursor is
placed at the location in the code where the error was found. A wiggly red underline will help
you locate the error in the code window. In this case, a semicolon is missing at the end of a
statement. You can fix the error and attempt another compilation.

Error List v B X

W '1 €3 1Error ’ 1 0Warnings | @) 0Messages | SearchErorList P ~

Code Description Project File Line
(X) C51002 ; expected AddTwoNumbers Forml.cs 2

M Output

Figure 3-15 The error list

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using the Toolbox to Add a Button to a Form_

You can add line numbers to your code for reference by selecting Tools from Visual Studio’s
menu bar, then selecting Options. Use the triangle-shaped node to expand the Text Editor,
and then click the node next to C# from the list that appears. Click General, select the Line
numbers check box, and then click OK.

As with console-based programs, GUI applications might compile successfully but contain 121
logical errors. For example, you might type a minus sign instead of a plus sign in the statement
that is intended to calculate the sum of two input numbers. You should be prepared to execute
a program multiple times and carefully examine the output to discover any logical errors.

Deleting an Unwanted Event-Handling Method

When you are working in the Form Designer in the IDE, it is easy to inadvertently double-
click a control and automatically create an event-handling method that you do not want. For
example, you might double-click a Label named Tabe11 by mistake and generate a method
named Tabell _Click(). You can leave the automatically created method empty so that no
actions result, but in a professional program you typically would not include empty methods.
Such empty methods that never execute are known as orphaned methods. You should not just
delete an orphaned method because, behind the scenes, other code might have been created
that refers to the method; if so, the program will not compile. Instead of deleting the method
code, you should click the control with the unwanted method so it appears in the Properties
window, then click the Events button, which looks like a lightning bolt. Select the event you
want to eliminate, and delete the name of the method (see Figure 3-16). This eliminates all the
references to the method, and your program can again run successfully.

Properties
label1 System.\I/Vindows.Forms.LabeI - Events
B0 F |~ puton
B Action -
Click label1_Click
DoubleClick
MouseCaptureChanged
MouseClick v
Click
Occurs when the component is clicked.

Delete method by
deleting its name

Figure 3-16 Deleting an event from the Properties window

Failing to Close a Form Before Attempting to Reexecute a Program

Often you will execute a GUI application and notice something you want to correct in the
program. For example, you might want to reword the Text on a LabeT, or reposition a Button
on the Form. In your haste to make the improvement, you might forget to close the application
that is still running. If you make a change to the program and then try to rerun it, you get an
error message that indicates that changes are not allowed while the program is running. The
solution is simply to close the previous execution of the application and then try again.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 3 Using GUI Objects and the Visual Studio IDE

Using Visual Studio Help

When working with a class that is new to you, such as Button or Form, no book can answer all of

your questions. The ultimate authority on C# classes is the Visual Studio Help documentation.

You should use this tool often as you continue to learn about C# in particular and the Visual

122 Studio products in general. The Help documentation for Visual Studio is in the MSDN
Library, which you can install locally on your own computer. It is also available at http://msdn.
microsoft.com. From within Visual Studio, you can click Help on the menu bar, and then click
View Help. You will be taken to the Visual Studio Web site where you can type a topic in the
Search box.

TWO TRUTHS ALIE

Correcting Errors

1. When a program in Visual Studio has a syntax error, you see an error dialog box
that asks if you want to continue with the last successful build. You should always
respond No.

2. Program errors are harder to locate in the Visual Studio IDE than they are in
applications written using a plain text editor.

3. If you inadvertently create a C14ck () method in Visual Studio, you should not delete its
code. You should select the event in the Properties window and delete it there.

‘pa4IN220
049 3y} yoiym ur 109foad pue ‘aulj ay} ui uoisod ‘aull ‘aweus|l} 3y} apnjoul
10449 XeluAs pakeidsip Aue ‘Jq| OIPNIS [BNSIA SUY Ul “Z# SI JUsWalels as|e} ay |

Deciding Which Interface to Use

You have learned to create console applications in which most of the action occurs in a
Main() method and the WriteLine() and ReadLine() methods are used for input and
output. You also have learned to create GUI applications in which most of the action occurs
within an event-handling method such as a C1ick() method and Labels and TextBoxes are
used for input and output. Both types of applications can use declared variables and constants,
and, as you will learn in the next few chapters, both types of programs can contain the basic
building blocks of applications—decisions, loops, arrays, and calls to other methods. When

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using the Toolbox to Add a Button to a Form_

you want to write a program that displays a greeting or sums some integers, you can do so
using either type of interface and employing the same logic to get the same results. So, should
you develop programs using a GUI interface or a console interface?

e GUI applications look “snazzier” It is easy to add colors and fonts to them, and they
contain controls that a user can manipulate with a mouse or touch screen. Also, users 123
are accustomed to GUI applications from their experiences on the Web. However,
GUI programs usually take longer to develop than their console counterparts because
you can spend a lot of time setting up the controls, placing them on a Form, and
adjusting their sizes and relative positions before you write the code that does the
actual work of the program. GUI applications created in the IDE also require much
more disk space to store.

ﬂ Designing aesthetically pleasing, functional, and user-friendly Forms is an art; entire books are devoted to
the topic.

e Console applications look dull in comparison to GUIs, but they can often be developed
more quickly because you do not spend much time setting up objects for a user to
manipulate. When you are learning programming concepts like decision making and
looping, you might prefer to keep the interface simple so that you can better concentrate on
the new logical constructs being presented.

In short, it doesn’t matter which interface you use to develop programs while learning the
intricacies of the C# programming language. In the following “You Do It” section, you
develop an application that is similar to the one you developed at the console in Chapter 1.
In the programming exercises at the end of this chapter, you will develop programs that are
identical in purpose to programs written using the console in the chapter called “Using Data”
Throughout the next several chapters on decisions, looping, and arrays, many concepts will be
illustrated in console applications, because the programs are shorter and the development is
simpler. However, you also will occasionally see the same concept illustrated in a program
that uses a GUI interface, to remind you that the program logic is the same no matter which
interface is used. After you complete the chapters “Using Classes and Objects,” “Using
Controls,” and “Handling Events,” you will be able to write even more sophisticated GUI
applications.

When writing your own programs, you will use the interface you prefer or one that your
instructor or boss requires. If time permits, you might even want to develop programs both
ways in future chapter exercises.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 3 Using GUI Objects and the Visual Studio IDE

TWO TRUTHS ALIE

Deciding Which Interface to Use

124 1. Console applications are used for declaring variables and constants and performing
arithmetic, but GUI applications are not.

2. GUI programs usually take longer to develop than their console counterparts because
you can spend a lot of time setting up and arranging the controls.

3. Console applications look dull compared to GUI applications, but they can often be
developed more quickly because you do not spend much time setting up objects for a
user to manipulate.

*JljaWyILIe Wioyad pue SjueISuOd pue Sa|qelien
palejosp asn ued suonealdde |NY pue 8jOSU0D YI0g "T# SI JUBWISILIS 8S|e) 3y |

X You Do It

Working with the Visual Studio IDE

In the next steps, you use the IDE to create a Form with a Button and a Label. Your
first console application in Chapter 1's “You Do It” section displayed “Hello, world!" at the
command prompt. This application displays “Hello, Visual World!” on a Form.

1. Open Microsoft Visual Studio. You might have a desktop shortcut you can
double-click, or in Windows 8.1 you can swipe from the right, click Search,
type the first few letters of Visual Studio in the search box, and then select
it from the list of choices. Your steps might differ slightly from the ones
listed here if you are using a different version of Visual Studio or a different
operating system. If you are using a school network, you might be able to
select Visual Studio from the school's computing menu.

2. Select New Project. Then, in the New Project window, select Visual C# and
Windows Forms Application. (Refer to Figure 3-1.) Instead of using the
default project name, use HelloVisualWorld, and select a location to store
the project. Then click OK.

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using the Toolbox to Add a Button to a Form_

(continued)

3. The HelloVisualWorld development environment opens, as shown in
Figure 3-17. The text in the title bar of the blank Form contains the default
text Form1. If you click the Form, its Properties window appears in the
lower-right portion of the screen, and you can see that the Text property
for the Form is set to Form1. Take a moment to scroll through the list in the
Properties window, examining the values of other properties of the Form. For
example, the value of the Size property is 300, 300 by default.

o HellovisugiWorid - Microsoft Visual Studio AL £ -8 x
L T e e C a ae an o

@

@

=

A P

s v

M Default Text

‘ —| property for
Form

¥« D0k | 4 OWunng O 0Messages
Code Omergtion preyec

Figure 3-17 The HelloVisualWorld project development environment

If you do not see the Properties window in the lower-right corner of your screen, click the title bar
on the Form. Alternatively, click View in the menu bar and click Properties Window.

If you do not see the Toolbox shown in Figure 3-17, click the Toolbox tab at the left side of the
screen, and then click the pushpin near the top to pin the Toolbox to the screen. Alternatively, click
View from the menu bar and then click Toolbox.

If you do not see the error list at the bottom of the screen, as in Figure 3-17, you can select View
from the menu bar and then select Error List. You might have to drag up the divider that separates
the error list from the window above it.

NNV

4. In the Properties window, change the Name of the Form to HelloForm. (The
Name property is under Design if you choose to have the list categorized;
if you choose to display it alphabetically, then Name is near the top.) Then
change the Text of the Form to Hello Visual World. Press Enter; the title of
the Form in the center of the screen changes to Hello Visual World, as shown
in Figure 3-18.

(continues)

125

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 3 Using GUI Objects and the Visual Studio IDE

(continued)
s Hello Visual World [= |[& |5 |
126 I Form's text
is changed
e - - A Button with
R Text changed
39“,"‘3‘?’? S and handles
for resizing

Figure 3-18 A Form with changed Text and a Button

5. Examine the Toolbox on the left side of the screen. Select Common
Controls if it is not already selected. In the Toolbox, click and hold Button.
As you move your mouse off the Toolbox and onto the Form, the mouse
pointer changes so that it appears to carry a Button. Position your mouse
anywhere on the form, then release the mouse button. The Button appears
on the Form and contains the text buttonl. When you click the Button,
handles appear that you can drag to resize it. When you click off the
Button on the Form, the handles disappear. Click the Button to display
the properties for button1. Change its Name t0 displayOutputButton,
and change its Text property to Click here. When you press Enter on the
keyboard or click anywhere on the Form, the text of the Button on the Form
changes to Click here. See Figure 3-18.

6. Scroll through the other displayOutputButton properties. For example,
examine the Location property. The first value listed for Location indicates
horizontal position, and the second value indicates vertical position. Drag
the Button across the Form to a new position. Each time you release your
mouse button, the value of the Form Button’s Location property is updated
to reflect the new location. Try to drag the Button to Location 100, 150.
Alternatively, delete the contents of the Location property field and type
100, 150. The Button moves to the requested location on the Form.

7. Save your form by clicking File on the menu bar, then clicking Save All.
Alternatively, you can click the Save All button on the toolbar; its icon is two
overlapping disks.

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using the Toolbox to Add a Button to a Form_

(continued)

8. Although your Form doesn't do much yet, you can execute the program
anyway. Click Debug on the menu bar, and then click Start Without 127
Debugging. The Form appears. You can drag, minimize, and restore it, and
you can click its Button. The Button has not yet been programmed to do
anything, but it appears to be pressed when you click it. Click the Form's
Close button to dismiss the Form.

9. You can close a project at any time and come back to it later. Exit Visual
Studio now by clicking the Close button in the upper-right corner of the
screen, or by clicking File on the menu bar and then clicking Exit. If you have
made more changes since the last time you saved, you will be prompted to
save again. When you choose Yes, the program closes.

Providing Functionality for a Button

In the next steps, you make the Button on the HelToVisualWorld Form
functional; it will display a message when the user clicks it.

1. Start Visual Studio. Select File from the menu, click Open, and browse for
the HelloVisualWorld project. Alternatively, select File from the menu, click
Recent Projects and Solutions, and select the project from the pop-up list.

2. When the Form appears, drag a Label from the Toolbox to the Form. Change
its Name to helloLabel and its Text property to Hello, Visual World!. If you
want your Form to match Figure 3-19 exactly, change the Label’s Location
property to 90, 75.

s HelloVisualWorld [= |[@ |[2]

7 Helo, Vi o |

Click here

Figure 3-19 The helloLabel on the Form
(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using GUI Objects and the Visual Studio IDE

(continued)

3. Scroll through the Properties list for the Label, and change its Visible

- 128 property from True to False. You can still see the Labe1 in the Designer, but

the Label will be invisible when you execute the program.

4. Double-click the Button on the Form. A new window that contains program
code is displayed, revealing a newly created displayOutputButton_
Click () method with no statements. Between the curly braces, type the
following statement that causes the Label to appear when the user clicks the
Button on the Form:

hellolLabel.Visible = true;

5. Save the file, then run the program by clicking Debug on the menu bar and
clicking Start Without Debugging, or by pressing Ctrl+F5. When the Form
appears, click the Click here button to reveal the greeting. If you want,
experiment with values for some of the Label properties, such as Font,
BackColor, and ForeColor.

Adding a Second Button to a Form

In the next steps, you add a second Button to the Form in the HelloVisualWorld
project.

1. In the IDE, switch to Design View. Drag a second button onto the Form
below the first Button. Change the new Button’s Name property to
changeOutputButton and change its Text to Click me last.

2. Double-click the changeOutputButton to expose the changeOutputButton_
Click (O method.

3. Between the curly braces of the method, add the following code:
helloLabel .Text = "Goodbye";

4, Save the project, then execute the program. Click the displayOutputButton
to reveal Hello, V isual World!. Then click the changeOutputButton to reveal
Goodbye.

5. Execute the program again. This time, click the second Button first. No
message appears because the Label with the message has not been made
visible. When you click the displayOutputButton, the Label becomes
visible, but it displays Goodbye because the changeOutputButton’s Click()
method has already changed the Label’s Text.

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter Surmary

(continued)

6. Return to the Form1.cs [Design] tab. Click the changeOutputButton, and
change its Enabled property to False. Now, when the program executes,

the user will not be immediately able to click the second Button. 129

7. Double-click the displayOutputButton. Add the following statement to
the method so that the changeOutputButton becomes enabled when the
displayOutputButton is clicked:

changeQOutputButton.Enabled = true;

8. Save the project, then execute the program. When the Form appears,
the changeOutputButton is dimmed and not clickable because it is not
enabled. Click the enabled displayOutputButton to reveal the Hello,
Visual World! message and to enable the second Button. Then click the
changeOutputButton to expose the Goodbye message.

9. Dismiss the Form, and close Visual Studio.

Chapter Summary

e Forms are GUI objects that provide an interface for collecting, displaying, and delivering
information. They almost always include controls such as labels, text boxes, and buttons that
users can manipulate to interact with a program. Every Form and control on a Form has
multiple properties you can set using the IDE.

e The Toolbox displays a list of available controls you can add to a Form. The list includes
Button, CheckBox, and Labe. From the Toolbox, you can drag controls onto a Form
where they will be most useful. After you have dragged a Button onto a Form, you can
double-click it to create the method that executes when a user clicks the Button, and you
can write any statements you want between the curly braces of the C11 ck () method.

e LabeTs are controls that you use to display text to communicate with an application’s user.
TextBoxes are controls through which a user can enter input data in a GUI application. Both
have a Text property; frequently an application starts with the Text empty for TextBoxes.
Because a user might type any value, the value in a TextBox is a string by default.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 3 Using GUI Objects and the Visual Studio IDE

130

e Usually, you want to provide reasonable Name property values for all the controls you place
on a Form. Although any identifier that starts with a letter is legal, by convention you should
start control names with a lowercase letter and use camel casing as appropriate, start Form
names with an uppercase letter and use camel casing as appropriate, and use the type of
object in the name.

e Ifyou build or run a program that contains a syntax error, you see Build failed in the lower-
left corner of the IDE and an error dialog box. An error list shows the filename, line, position
in the line, and project for each error. If you double-click an error message, the cursor is
placed at the location in the code where the error was found. If you inadvertently create
an event-handling method that you do not want, you should eliminate the event using the
Properties window in the IDE. If you rename a control after you have created an event for it,
you must refactor the code. The ultimate authority on C# classes is the Visual Studio Help
documentation.

e Both console and GUI applications can contain variables and constants, decisions, loops,
arrays, and calls to other methods. GUI applications look “snazzier;” and they contain
controls that a user can manipulate with a mouse. However, GUI programs usually take
longer to develop than their console counterparts. When writing your own programs, you
will use the interface you prefer or one that your instructor or boss requires.

Key Terms
The interface is the environment a user sees when a program executes.

Forms are GUI objects that provide an interface for collecting, displaying, and delivering
information.

Controls are devices such as labels, text boxes, and buttons that users can manipulate to
communicate with a GUI program.

A node is an icon that appears beside a list or a section of code and that can be expanded or
condensed.

An access specifier is a keyword that dictates what outside classes can use a method.
An event causes a program to perform a task.

A click event is the event generated when a user clicks a control in a GUI program.

A label is a control that you use to display text to communicate with an application’s user.
A text box is a control through which a user can enter input data in a GUI application.

Design time is the period of time during which a programmer designs the interface and writes
the code.

Runtime is the period of time during which a program executes.
Focus describes the attribute of a Form control that stands out visually from the others and

that reacts to keyboard input.

pied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Review Questions e

Tab order describes the sequence of controls selected when the user presses the Tab key.
A proportional font is one in which different characters have different pitches or widths.
A fixed-pitch font is one in which each character occupies the same width.

A monospaced font is one in which each character occupies the same width. 131

Code refactoring is the process of changing a program’s internal structure without changing
the way the program works.

An orphaned method is one that never executes in an application and thus serves no purpose.

Review Questions

1. Which of the following is a GUI object that provides an interface for collecting,
displaying, and delivering information and that contains other controls?

a. Form c. TextBox
b. Button d. Label

2. In the Visual Studio IDE main window, where does the menu bar lie?
a. vertically along the left border
b. vertically along the right border
c. horizontally across the top of the window

d. horizontally across the bottom of the window

3. In the IDE, the area where you visually construct a Form is the

a. Toolbox c. Easel
b. Palette d. Form Designer
4. When you create a new Windows Forms project, by default the first Form you see is
named
a. Form c. FormA
b. Forml d. FormAlpha
5. The Formclass has properties.
a. three c. about 100
b. ten d. about 1000

6. Which of the following is not a Form property?
a. BackColor c. Size
b. ProjectName d. Text

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some thi
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to rem

CHAPTER 3 Using GUI Objects and the Visual Studio IDE

132

10.

11.

12.

13.

14.

Which of the following is a legal Form Name property?
a. Payroll Form c. either of the above
b. PayrollForm d. none of the above

Which of the following is a legal Form Text property?
a. Payroll Form c. either of the above
b. Payrol1Form d. none of the above

Which of the following does not appear in the IDE’s Toolbox list?

a. Text c. Label
b. Button d. TextBox

After you have dragged a Button onto a Formin the IDE, you can double-click it
to

a. delete it
b. view its properties
c. create a method that executes when a user clicks the Button

d. execute a method when a user clicks the Button

The buttonl_Click() method that is generated by the IDE

a. hasaprivate access specifier

b. is nonstatic

c. contains parameters between its parentheses

d. all of the above

A(n) is generated when a user interacts with a GUI object.
a. event c. method

b. occasion d. error

If you create a Button named yesButton, the name of the method that responds to
clicks on it is

a. buttonl_Click() c. click_YesButton()
b. yesButton_Method() d. yesButton_Click()

Statements allowed in a C11 ck () method include

a. variable declarations c. both of the above

b. arithmetic statements d. none of the above

pied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

15.

16.

17.

18.

19.

20.

Review Questions

are controls through which a user can enter input data in a

GUI application.

a. Labels c. Tickets

b. Tags d. TextBoxes .
The value in a TextBox is

a. anint c. astring

b. adouble d. It might be any of the above.

Which of the following is a legal and conventional name for a TextBox?

a. Salary TextBox c. both of the above

b. salaryTextBox d. none of the above

The process of changing a program’s internal structure without changing the way the
program works is

a. compiling c. code refactoring

b. debugging d. systems analysis

If you inadvertently create a C11ck () method for a control that should not generate a
click event, you can successfully eliminate the method by

a. deleting the method code from the Form1.cs file

b. eliminating the method from the Events list in the Properties window

c. adding the method to the Discard window

d. making the method a comment by placing two forward slashes at the start of each line

Of the following, the most significant difference between many console applications
and GUI applications is

a. their appearance
b. their ability to accept input
c. their ability to perform calculations

d. their ability to be created using C#

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some thi
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to rem

CHAPTER 3 Using GUI Objects and the Visual Studio IDE

Exercises

- Programming Exercises

134

1. Write a GUI program named MilesToKilometersGUI that allows the user to
input a distance in miles and output the value in kilometers. There are 1.6 kilometers
in a mile.

The exercises in this section should look familiar to you. Each is similar to an exercise in Chapter 2, where
you created solutions using console input and output.

2. Write a GUI program named ProjectedRaisesGUI that allows a user to enter an
employee’s salary. Then display, with explanatory text, next year’s salary, which reflects
a 4 percent increase.

3. Write a program named CarRentallnteractiveGUI that prompts a user for days
and miles for a car rental and displays the total rental fee computed as $20 per day
plus 25 cents per mile.

4. Write a GUI program named EggsInteractiveGUI that allows a user to input the
number of eggs produced in a month by each of five chickens. Sum the eggs, then
display the total in dozens and eggs. For example, a total of 127 eggs is 10 dozen and
7 eggs. Figure 3-20 shows a typical execution.

Enter eags produced by each of 5 chickens

2 |1 | & |

31 | [z
Click to calculate

127 eggsis 10 dozen with 7 left over

Figure 3-20 An EggsInteractiveGUI application

5. Write a GUI program named TestsInteractiveGUI that allows a user to enter scores
for five tests he has taken. Display the average of the test scores to two decimal places.

pied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exercises I

6. Write a GUI program named PayrollGUI that prompts the user for a name, Social
Security number, hourly pay rate, and number of hours worked. In an attractive
format, display all the input data as well as the following:

e Gross pay, defined as hourly pay rate times hours worked
135

e Federal withholding tax, defined as 15 percent of the gross pay
¢ State withholding tax, defined as 5 percent of the gross pay
e Net pay, defined as gross pay minus taxes

7. Create an enumeration named Month that holds values for the months of the year,
starting with JANUARY equal to 1. (Recall that an enumeration must be placed within
a class but outside of any method.) Write a GUI program named MonthNamesGUI
that prompts the user for a month integer. Convert the user’s entry to a Month value,
and display it.

8. DPig Latin is a nonsense language. To create a word in pig Latin, you remove the first
letter and then add the first letter and ay at the end of the word. For example, dog
becomes ogday, and cat becomes atcay. Write a GUI program named PigLatinGUI
that allows the user to enter a word and displays the pig Latin version.

*— Debugging Exercises

1. Each of the following projects in the Chapter.03 folder of your downloadable student
files has syntax and/or logical errors. In each case, immediately save a copy of the
project folder with a new name that begins with Fixed before you open the project
in Visual Studio. For example, the project folder for DebugThreel will become
FixedDebugThreel. All the files within the folders have already been named with
the Fixed prefix, so you do not need to provide new filenames for any of the files in
the top-level folder. After naming the new folder, open the project, determine the
problems, and fix them.

a. DebugThreel c. DebugThree3
b. DebugThree2 d. DebugThree4

Q Case Problems

In Chapter 2, you created a program for the Greenville Idol competltlon that
prompts a user for the number of contestants entered in last year’s competition and
in this year’s competition. The program displays the revenue expected for this year’s
competition if each contestant pays a $25 entrance fee. The application also displays
a statement that indicates whether this year’s competition has more contestants than
last year’s. Now, create an interactive GUI program named GreenvilleRevenueGUI
that performs all the same tasks.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some thi
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to rem

CHAPTER 3 Using GUI Objects and the Visual Studio IDE

2. In Chapter 2, you created a program for Marshall’s Murals that prompts a user for
the number of interior and exterior murals scheduled to be painted during the next
month. The program computes the expected revenue for each type of mural when
interior murals cost $500 each and exterior murals cost $750 each. The application
should display, by mural type, the number of murals ordered, the cost for each
type, and a subtotal. The application also displays the total expected revenue and a
statement that indicates whether more interior murals are scheduled than exterior
ones. Now create an interactive GUI program named MarshallsRevenueGUI that
performs all the same tasks.

136

pied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

