
C H A P T E R 14
Files and Streams

In this chapter you will:

�� Learn about computer files and the File and Directory
classes

�� Understand file data organization

�� Understand streams

�� Write to and read from a sequential access text file

�� Search a sequential access text file

�� Understand serialization and deserialization

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

656

C H A P T E R 1 4 Files and Streams

In the early chapters of this book, you learned that using variables to store values in computer
memory provides programs with flexibility; a program that uses variables to replace constants
can manipulate different values each time the program executes. However, when data values
in a program are stored in memory, they are lost when the program ends. To retain data
values for future use, you must store them in files. In this chapter, you will learn to create and
manage files in C#.

Files and the File and Directory Classes
When data items are stored in a computer system, they can be stored for varying periods of
time—temporarily or permanently.
Temporary storage is usually called computer memory, or random access memory (RAM).
When you write a C# program that stores a value in a variable, you are using temporary
storage; the value you store is lost when the program ends or the computer loses power.
This type of storage is volatile.
Permanent storage, on the other hand, is not lost when a computer loses power; it is
nonvolatile. When you write a program and save it to a disk, you are using permanent storage.
Likewise, you use permanent storage when you write a program that saves data to a file.

 When discussing computer storage, temporary and permanent refer to volatility, not length of time. For
example, a temporary variable might exist for several hours in a large program or one that the user forgets
to end, but a permanent piece of data might be saved and then deleted within a few seconds.

A computer file is a collection of data stored on a nonvolatile device in a computer system.
Files exist on permanent storage devices, such as hard disks, USB drives, reels of magnetic
tape, and optical discs, which include CDs and DVDs.
You can categorize files by the way they store data:
 Text files contain data that can be read in a text editor because the data has been encoded

using a scheme such as ASCII or Unicode. Text files might include facts and figures used by
business programs; when they do, they are also called data files. The C# source programs
you have written (with .cs extensions) are stored in text files.

 Binary files contain data that has not been encoded as text. Their contents are in binary
format, which means that you cannot understand them by viewing them in a text editor.
Examples include images, music, videos, and the compiled program files with an .exe
extension that you have created using this book.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

657

Files and the File and Directory Classes

Although their contents vary, text and binary files have many common characteristics, as
follows:
 Each has a name. The name often includes a dot and a file extension that describes the type

of the file. For example, MyNotes.txt is a plain text file, and MyPicture.jpg is an image file in
Joint Pictures Expert Group format.

 Each file has a specific time of creation and a time it was last modified.
 Each file occupies space on a section of a storage device; that is, each file has a size. Sizes

are measured in bytes. A byte is a small unit of storage; for example, in a simple text file, a
byte holds only one character. Because a byte is so small, file sizes usually are expressed in
kilobytes (thousands of bytes), megabytes (millions of bytes), or gigabytes (billions of bytes).

When you use data, you never directly use the copy that is stored in a file. Instead, you use a
copy that has been loaded into memory. Especially when data items are stored on a hard disk,
their locations might not be clear to you—data just seems to be “in the computer.” However,
when you work with stored data, you must transfer copies from the storage device into memory.
When you copy data from a file on a storage device into RAM, you read from the file. When
you store data in a computer file on a persistent storage device, you write to the file. This means
you copy data from RAM to the file.

 Because you can erase data from files, some programmers prefer the term persistent storage to
permanent storage. In other words, you can remove data from a file stored on a device such as a disk
drive, so it is not technically permanent. However, the data remains in the file even when the computer loses
power, so, unlike RAM, the data persists, or perseveres.

Computer files are the electronic equivalent of paper documents stored in file cabinets. In a
physical file cabinet, the easiest way to store a document is to toss it into a drawer without
a folder. When storing computer files, this is the equivalent of placing a file in the main or
root directory of your storage device. However, for better organization, most office clerks
place documents in folders; most computer users also organize their files into folders or
directories. Users also can place folders within folders to form a hierarchy. The combination
of the disk drive plus the complete hierarchy of directories in which a file resides is its path.
For example, in the Windows operating system, the following line would be the complete path
for a file named Data.txt on the C drive in a folder named Chapter.14 within the C# folder:
C:\C#\Chapter.14\Data.txt

 The terms directory and folder are used synonymously to mean an entity that is used to organize files.
Directory is the more general term; the term folder came into use in graphical systems. For example,
Microsoft began calling directories folders with the introduction of Windows 95.

C# provides built-in classes named File and Directory that contain methods to help you
manipulate files and their directories, respectively.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

658

C H A P T E R 1 4 Files and Streams

Using the File and Directory Classes
The File class contains methods that allow you to access information about files. Some of the
methods are listed in Table 14-1.

Method Description
Create() Creates a file

CreateText() Creates a text file

Delete() Deletes a file

Exists() Returns true if the specified file exists

GetCreationTime() Returns a DateTime object specifying when a file was created

GetLastAccessTime() Returns a DateTime object specifying when a file was last accessed

GetLastWriteTime() Returns a DateTime object specifying when a file was last modified

Move() Moves a file to the specified location

 Table 14-1 Selected File class methods

 DateTime is a structure that contains data about a date and time. In the chapter “Using Controls,” you used
the data from DateTime structures with MonthCalendar and DateTimePicker GUI objects. DateTime values
can be expressed using Coordinated Universal Time (UTC), which is the internationally recognized name for
Greenwich Mean Time (GMT). By default, DateTime values are expressed using the local time set on your
 computer. The property DateTime.Now returns the current local time. The property DateTime.UtcNow returns
the current UTC time.

The File class is contained in the System.IO namespace. So, to use the File class, you
can use its fully qualified name, System.IO.File, or you can just use File if you include
the statement using System.IO; at the top of your program file as shown in the first
shaded statement in Figure 14-1. Figure 14-1 shows a program which demonstrates several
File class methods. The program prompts the user for a filename and then tests the file’s
existence in the second shaded statement. If the file exists, the creation time, last access
time, and last write time are displayed. If the file does not exist, a message is displayed.
Figure 14-2 shows two executions of the program. In the first execution, the user enters
a filename that is not found. In the second execution, the file is found, and the three
significant dates and times are displayed.

 The System.IO.FileInfo class also allows you to access information about a file. See the Microsoft
 documentation at http://msdn.microsoft.com for more information.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

659

using static System.Console;
using System.IO;
class FileStatistics
{
 static void Main()
 {
 string fileName;
 Write("Enter a filename >> ");
 fileName = ReadLine();
 if(File.Exists(fileName))
 {
 WriteLine("File exists");
 WriteLine("File was created " +
 File.GetCreationTime(fileName));
 WriteLine("File was last accessed " +
 File.GetLastAccessTime(fileName));
 WriteLine("File was last written to " +
 File.GetLastWriteTime(fileName));
 }
 else
 {
 WriteLine("File does not exist");
 }
 }
}

Figure 14-1 The FileStatistics program

 In the FileStatistics program in Figure 14-1, the file must be in the same directory as the program that
is running.

Figure 14-2 Two typical executions of the FileStatistics program

Files and the File and Directory Classes

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

660

C H A P T E R 1 4 Files and Streams

The Directory class provides you with information about directories or folders. Table 14-2
lists some available methods in the Directory class.

Method Description
CreateDirectory() Creates a directory

Delete() Deletes a directory

Exists() Returns true if the specified directory exists

GetCreationTime() Returns a DateTime object specifying when a directory was created

GetDirectories() Returns a string array that contains the names of the subdirectories in
the specified directory

GetFiles() Returns a string array that contains the names of the files in the
specified directory

GetLastAccessTime() Returns a DateTime object specifying when a directory was last accessed

GetLastWriteTime() Returns a DateTime object specifying when a directory was last modified

Move() Moves a directory to the specified location

 Table 14-2 Selected Directory class methods

Figure 14-3 contains a program that declares an array of string where filenames can be stored.
(See the first shaded statement.) The program prompts a user for a directory and then fills
the string array with a list of filename using the GetFiles() method. (See second shaded
statement.) Then a for loop is used to display the list of files. Figure 14-4 shows two typical
executions of the program.

Figure 14-3 The DirectoryInformation program (continues)

using static System.Console;
using System.IO;
class DirectoryInformation
{
 static void Main()
 {
 string directoryName;
 string[] listOfFiles;
 Write("Enter a folder >> ");
 directoryName = ReadLine();
 if(Directory.Exists(directoryName))
 {
 WriteLine("Directory exists, " +
 "and it contains the following: ");

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

661

Figure 14-3 The DirectoryInformation program

Figure 14-3 The DirectoryInformation program

 listOfFiles = Directory.GetFiles(directoryName);
 for(int x = 0; x < listOfFiles.Length; ++x)
 WriteLine(" {0}", listOfFiles[x]);
 }
 else
 {
 WriteLine("Directory does not exist");
 }
 }
}

TWO TRUTHS & A LIE

Files and the File and Directory Classes
1. Temporary storage is nonvolatile; permanent storage is volatile.

2. When you write to a file, you copy data from RAM to a permanent storage device.

3. Most computer users organize their files into directories; the complete hierarchy of
directories in which a file resides is its path.

The false statement is #1. Temporary storage is volatile; permanent storage is
nonvolatile.

Figure 14-4 Two typical executions of the DirectoryInformation program

 Watch the video File Handling.

Files and the File and Directory Classes

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

662

C H A P T E R 1 4 Files and Streams

Understanding File Data Organization
Businesses store data in a relationship known as the data hierarchy, as described in
Figure 14-5. For most users, the smallest useful piece of data is the character. A character
is any one of the letters, numbers, or other special symbols (such as punctuation marks and
arithmetic symbols) that constitute data. Characters are made up of bits (the zeros and ones
that represent computer circuitry), but people who use data do not care whether the internal
representation for an A is 01000001 or 10111110; rather, they are concerned with the meaning
of A. For example, it might represent a grade in a course, a person’s initial, or a company code.

 C# uses Unicode to represent its characters. You first learned about Unicode in Chapter 1. The set of all the
characters used to represent data on a particular computer is that computer’s character set.

File: Personnel file

Record: Lee record Record: Smith record

Field: Employee number Field: Last name Field: Salary

Character: L Character: e Character: e

Figure 14-5 Hierarchical relationships of data components

 You can think of a character as a unit of information instead of data with a particular appearance.
For e xample, the mathematical character pi (π) and the Greek letter pi look the same, but have two
 different Unicode values.

In computer terminology, a character can be any group of bits, and it does not necessarily
represent a letter or number. Some characters do not correspond to those in natural language;
for example, some “characters” produce a sound or control your display. You also have used the
'\n' character to start a new line.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

663

Understanding File Data Organization

When businesses use data, they group characters into fields. A field is a character or group of
characters that has some meaning. For example, the characters T, o, and m might represent
your first name. Other data fields might represent items such as last name, Social Security
number, zip code, and salary.
Fields are grouped together to form records. A record is a collection of fields that contain
data about an entity. For example, the fields that hold a person’s first and last names,
Social Security number, zip code, and salary collectively are that person’s record. When
programming in C#, you have created many classes, such as an Employee class or a
Student class. You can think of the data typically stored in each object that is an instance of
these classes as a record. In other words, classes contain individual variables that represent
data fields. A business’s data records usually represent a person, item, sales transaction, or
some other concrete object or event.
Records are grouped to create files. Data files consist of related records. For example, a
company’s personnel file contains many related records—one record for each company
employee. Some files have only a few records; perhaps your professor maintains a file for
your class with 25 records—one record for each student. Other files contain thousands
or even millions of records. For example, a large insurance company maintains a file of
policyholders, and a mail-order catalog company maintains a file of available items.
A data file is a sequential access file when each record is read in order from first to last
in the file. Usually, the records are stored in order based on the value in some field; for
example, employees might be stored in Social Security number order, or inventory items
might be stored in item number order. The field used to uniquely identify each record in a
sequential file is the key field. Frequently, records are sorted based on the key field. When
records are not used in sequence, the file is used as a random access file, in which records
can be accessed in any order.
Before an application can use a data file, it must open the file. A C# application opens a file
by creating an object and associating a stream of bytes with that object. When you finish
using a file, the program should close the file—that is, make the file no longer available
to your application. Failing to close an input file (a file from which you are reading data)
usually does not result in serious consequences; the data still exists in the file. However,
if you fail to close an output file (a file to which you are writing data), the data might
become inaccessible. You should always close every file you open, and you should close
the file as soon as you no longer need it. Leaving a file open for no reason uses computer
resources, and your computer’s performance will suffer. Also, within a network, another
program might be waiting to use the file. For example, if your program leaves the company’s
inventory file open after adding a new item, the program that fills orders for customers
might fail to work correctly.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

664

C H A P T E R 1 4 Files and Streams

Understanding Streams
Whereas people view files as a series of records, with each record containing data
fields, C# views files as just a series of bytes. When you perform an input operation in
an application, you can picture bytes flowing into your program from an input device
through a stream, which functions as a pipeline or channel. When you perform output,
some bytes flow out of your application through another stream to an output device,
as shown in Figure 14-6. A stream is an object, and like all objects, streams have data
and methods. The methods allow you to perform actions such as opening, closing, and
flushing (clearing) the stream.

Application
Input

Output

Figure 14-6 File streams

When you produce screen output and accept keyboard input, you use the Console class, which
provides access to several standard streams:
 Console.In refers to the standard input stream object, which accepts data from the keyboard.
 Console.Out refers to the standard output stream object, which allows a program to

produce output on the screen.
 Console.Error refers to the standard error stream object, which allows a program to write

error messages to the screen.

TWO TRUTHS & A LIE

Understanding File Data Organization
1. A field is a character or group of characters that has some meaning.

2. A record is a collection of data files that contain information about an entity.

3. A sequential access data file frequently contains records stored in order based on
the value in some field.

The false statement is #2. A record is a collection of fields that contain data about
an entity. Data files consist of related records.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

665

Understanding Streams

You have been using Console.Out and its WriteLine() and Write() methods throughout
this book. However, you may not have realized it because you do not need to refer explicitly
to Out, so you have been writing the instruction as WriteLine(). Likewise, you have used
Console.In with the ReadLine() and Read() methods.
Most streams flow in only one direction; each stream is either an input or output stream. You
might open several streams at once within an application. For example, an application that
reads a data disk and separates valid records from invalid ones might require three streams.
The data arrives via an input stream, and as the program checks the data for invalid values, one
output stream writes some records to a file of valid records, and another output stream writes
other records to a file of invalid records.
When you read from or write to a file, you use a file-processing class instead of Console. Many
file-processing classes are available in C#, including:
 StreamReader, for text input from a file
 StreamWriter, for text output to a file
 FileStream (which is used alone for bytes and with either StreamReader and
StreamWriter for text), for either input from and output to a file

 StreamReader and StreamWriter inherit from TextReader and TextWriter, respectively. Console.In
and Console.Out are properties of TextReader and TextWriter, respectively.

When you write a program that stores data in a file, you create a FileStream object that
defines a file’s characteristics and abilities. Programmers say FileStream exposes a stream
around a file. Table 14-3 lists some FileStream properties.

Property Description
CanRead Gets a value indicating whether current FileStream supports reading

CanSeek Gets a value indicating whether current FileStream supports seeking

CanWrite Gets a value indicating whether current FileStream supports writing

Length Gets the length of the FileStream in bytes

Name Gets the name of the FileStream

Position Gets or sets the current position of the FileStream

 Table 14-3 Selected FileStream properties

The FileStream class has 15 overloaded constructors. One that is used frequently includes the
filename (which might include the complete path), mode, and type of access. For example, you
might construct a FileStream object using the following statement:
FileStream outFile = new FileStream("SomeText.txt",
 FileMode.Create, FileAccess.Write);

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

666

C H A P T E R 1 4 Files and Streams

In this example, the filename is SomeText.txt. Because no path is indicated, the file is assumed
to be in the current directory. The mode is Create, which means a new file will be created even
if one with the same name already exists. The access is Write, which means you can write data
to the file but not read from it.
Another of FileStream’s overloaded constructors requires only a filename and mode. If you
use this version and the mode is set to Append, then the default access is Write; otherwise, the
access is set to ReadWrite.
Table 14-4 describes the available file modes, and Table 14-5 describes the access types.

Member Description
Append Opens the file if it exists and seeks the end of the file to append new data

Create Creates a new file; if the file already exists, it is overwritten

CreateNew Creates a new file; if the file already exists, an IOException is thrown

Open Opens an existing file; if the file does not exist, a System.IO.
FileNotFoundException is thrown

OpenOrCreate Opens an existing file; if the file does not exist, it is created

Truncate Opens an existing file; once opended, the file is truncated so its size is
zero bytes

Table 14-4 The FileMode enumeration

Member Description
Read Data can be read from the file.

ReadWrite Data can be read from and written to the file.

Write Data can be written to the file.

Table 14-5 The FileAccess enumeration

You can use a FileStream object as an argument to the StreamWriter constructor. Then
you use WriteLine() or Write() with the StreamWriter object in much the same way
you use it with Console.Out. The FileStream object must be created first, followed by the
StreamWriter. At the end of the application, they must be closed in reverse order.
For example, Figure 14-7 shows an application in which a FileStream object named outFile
is created, then associated with a StreamWriter named writer in the first shaded line. The
writer object then uses WriteLine() to send a string to the FileStream file instead of
sending it to the Console. Figure 14-8 shows a typical execution of the program, and
Figure 14-9 shows the file as it appears in Notepad.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

667

Understanding Streams

Figure 14-7 The WriteSomeText program

using static System.Console;
using System.IO;
class WriteSomeText
{
 static void Main()
 {
 FileStream outFile = new
 FileStream("SomeText.txt", FileMode.Create,
 FileAccess.Write);
 StreamWriter writer = new StreamWriter(outFile);
 Write("Enter some text >> ");
 string text = ReadLine();
 writer.WriteLine(text);
 // Error occurs if the next two statements are reversed
 writer.Close();
 outFile.Close();
 }
}

 Although the WriteSomeText application uses ReadLine() to accept user input, you could also create
a GUI Form to accept input. You will create an application that writes to and reads from files using a GUI
 environment in a “You Do It” exercise at the end of this chapter.

Figure 14-8 Typical execution of the WriteSomeText program

Figure 14-9 File created by the WriteSomeText program

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

668

C H A P T E R 1 4 Files and Streams

 In most applications that use files, you will want to place all the statements that open, write to, read from,
and close files in a try block and then catch any IOExceptions that are thrown. Exception handling is
 eliminated from many examples in this chapter so that you can concentrate on the details of handling
files without extra statements. In the “You Do It” section at the end of this chapter, you will add exception
 handling to an application.

 The classes BinaryReader and BinaryWriter exist for working with binary files, which can store any of
the 256 combinations of bits in any byte instead of just those combinations that form readable text. For
example, photographs and music are stored in binary files.

 The classes XmlTextReader and XmlTextWriter exist for working with XML files. XML is an abbreviation
of eXtensible Markup Language, which is a standard for exchanging data over the Internet.

TWO TRUTHS & A LIE

Understanding Streams
1. When a file is opened in C#, an object is created, and a stream is associated with

that object.

2. Most streams flow in only one direction; each stream is either an input or output
stream.

3. You can open only one stream at a time within a C# application.

The false statement is #3. You might open several streams at once within an
application.

Writing and Reading a Sequential Access File
Although people think of data files as consisting of records that contain fields, C# uses files only
as streams of bytes. Therefore, when you write a program to store a data file or write a program
to retrieve data from an already-created file, you must dictate the form in which the program
will handle the file. Additionally, whether you are writing data to a file or reading data from
one, you create a FileStream object.

Writing Data to a Sequential Access Text File
For example, suppose that you want to store Employee data in a file. Assume that an
Employee contains an ID number, a name, and a salary that are respectively an int,

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

669

Writing and Reading a Sequential Access File

a string, and a double. You could write stand-alone data for each of the three data types
to a file, or you could create an Employee class that is similar to many you have seen
throughout this book. Figure 14-10 shows a typical Employee class that contains three
fields and properties for each.

Figure 14-10 An Employee class

class Employee
{
 public int EmpNum {get; set;}
 public string Name {get; set;}
 public double Salary {get; set;}
}

To store Employee data to a persistent storage device, you declare a FileStream object to
define the characteristics of the stored file. For example:
FileStream outFile = new FileStream(FILENAME,
 FileMode.Create, FileAccess.Write);

The FileStream object is then passed to the constructor of a StreamWriter object so that
text can be written. For example:
StreamWriter writer = new StreamWriter(outFile);

You can then use the writer object’s WriteLine() method to write Employee data to
the output stream. You can compose strings to write using text fields and commas. A
block of text within a string that represents an entity or field is a token. Each comma that
separates tokens is a delimiter, which is a character used to specify the boundary between
data items in text files. Without a delimiter, the process of separating and interpreting
tokens is more difficult. For example, suppose you define a delimiter as a comma using
the following statement:
const string DELIM = ",";

Then, when you write data to a file, you can separate the fields with the comma delimiter using
a statement such as the following:
writer.WriteLine(emp.EmpNum + DELIM + emp.Name + DELIM + emp.Salary);

A delimiter can be any character that is not needed as part of the data in a file, but a comma is
commonly used. A file that contains comma-separated values is often called a CSV file. When
a comma cannot be used as a delimiter because commas are needed as characters within the
data, sometimes either the Tab character, the pipe character (|), or a comma within quotation
marks is used as a delimiter.
The WriteLine() method ends output with a carriage return. When you use this
method to create file output, the automatically appended carriage return becomes the
record delimiter.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

670

C H A P T E R 1 4 Files and Streams

Figure 14-11 The WriteSequentialFile class

using System;
using static System.Console;
using System.IO;
class WriteSequentialFile
{
 static void Main()
 {
 const int END = 999;
 const string DELIM = ",";
 const string FILENAME = "EmployeeData.txt";
 Employee emp = new Employee();
 FileStream outFile = new FileStream(FILENAME,
 FileMode.Create, FileAccess.Write);
 StreamWriter writer = new StreamWriter(outFile);
 Write("Enter employee number or " + END +
 " to quit >> ");
 emp.EmpNum = Convert.ToInt32(ReadLine());
 while(emp.EmpNum != END)
 {
 Write("Enter last name >> ");
 emp.Name = ReadLine();
 Write("Enter salary >> ");
 emp.Salary = Convert.ToDouble(ReadLine());
 writer.WriteLine(emp.EmpNum + DELIM + emp.Name +
 DELIM + emp.Salary);
 Write("Enter next employee number or " +
 END + " to quit >> ");
 emp.EmpNum = Convert.ToInt32(ReadLine());
 }
 writer.Close();
 outFile.Close();
 }
}

Figure 14-11 contains a complete program that opens a file and continuously prompts the
user for Employee data. The first shaded statement in the figure is a priming read—an input
statement that gets a first data item or record. In this case, the first item is an employee
number. If the first input is the END value, the while loop is never entered. If a valid employee
number value is entered, the rest of the record’s data is retrieved within the loop, and the next
employee number is entered in the second shaded statement at the bottom of the loop. When
all three fields have been entered for an employee, the fields are written to the file, separated
by commas. When the user enters the sentinel value 999 for an Employee ID number, the data
entry loop ends, and the file is closed. Figure 14-12 shows a typical execution, and Figure 14-13
shows the contents of the sequential data file that is created.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

671

Writing and Reading a Sequential Access File

 In the WriteSequentialFile class, the delimiter is defined to be a string instead of a char to force the
composed argument to WriteLine() to be a string. If the first data field sent to WriteLine() was a
string, then DELIM could have been declared as a char.

 In the WriteSequentialFile program in Figure 14-11, the constant END is defined to be 999 so it can
be used to check for the sentinel value. You first learned to use named constants in Chapter 2. Defining a
named constant eliminates using a magic number in a program. The term magic number refers to the bad
programming practice of hard-coding numbers (unnamed, literal constants) in code without explanation. In
most cases, this makes programs harder to read, understand, and maintain.

Figure 14-12 Typical execution of the
WriteSequentialFile program

Reading from a Sequential Access Text File
A program that reads from a sequential access data file contains many similar components
to one that writes to a file. For example, a FileStream object is created, as in a program
that writes a file. However, the access must be FileAccess.Read (or ReadWrite), as in the
following statement:
FileStream inFile = new FileStream(FILENAME,
 FileMode.Open, FileAccess.Read);

Then, as data is being written, the FileStream object is passed to a StreamReader object’s
constructor, as in the following statement:
StreamReader reader = new StreamReader(inFile);

Figure 14-13 Contents of file
created by the WriteSequentialFile
program

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

672

C H A P T E R 1 4 Files and Streams

After the StreamReader has been defined, the ReadLine() method can be used to retrieve
one line at a time from the data file. For example, the following statement gets one line of data
from the file and stores it in a string named recordIn:
string recordIn = reader.ReadLine();

Using ReadLine() assumes a carriage return is the record delimiter, which is true, for example,
if the records were created using WriteLine().
If the value of recordIn is null, then no more data exists in the file. Therefore, a loop that
begins while(recordIn != null) can be used to control the data entry loop.
After a record (line of data) is read in, the Split() method can be used to separate the data fields
into an array of strings. The Split() method is a member of the String class; it takes a character
delimiter parameter and separates a string into substrings at each occurrence of the delimiter. For
example, the following code splits recordIn into the fields array at each DELIM occurrence.
Then the three array elements can be stored as an int, string, and double, respectively.
string[] fields;
fields = recordIn.Split(DELIM);
emp.EmpNum = Convert.ToInt32(fields[0]);
emp.Name = fields[1];
emp.Salary = Convert.ToDouble(fields[2]);

Figure 14-14 contains a complete ReadSequentialFile application that uses the data file created
in Figure 14-12. The records stored in the EmployeeData.txt file are read in one at a time,
split into their Employee record components, and displayed. The first shaded statement is
the priming read, and all subsequent records are input using the second shaded statement.
Figure 14-15 shows the output.

Figure 14-14 The ReadSequentialFile program (continues)

using System;
using static System.Console;
using System.IO;
class ReadSequentialFile
{
 static void Main()
 {
 const char DELIM = ',';
 const string FILENAME = "EmployeeData.txt";
 Employee emp = new Employee();

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

673

Writing and Reading a Sequential Access File

Figure 14-14 The ReadSequentialFile program

 FileStream inFile = new FileStream(FILENAME,
 FileMode.Open, FileAccess.Read);
 StreamReader reader = new StreamReader(inFile);
 string recordIn;
 string[] fields;
 WriteLine("\n{0,-5}{1,-12}{2,8}\n",
 "Num", "Name", "Salary");
 recordIn = reader.ReadLine();
 while(recordIn != null)
 {
 fields = recordIn.Split(DELIM);
 emp.EmpNum = Convert.ToInt32(fields[0]);
 emp.Name = fields[1];
 emp.Salary = Convert.ToDouble(fields[2]);
 WriteLine("{0,-5}{1,-12}{2,8}",
 emp.EmpNum, emp.Name, emp.Salary.ToString("C"));
 recordIn = reader.ReadLine();
 }
 reader.Close();
 inFile.Close();
 }
}

(continued)

Figure 14-15 Output of the ReadSequentialFile program

 Watch the video Sequential Access Files.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

674

C H A P T E R 1 4 Files and Streams

TWO TRUTHS & A LIE

Writing and Reading a Sequential Access File
1. Although people think of data files as consisting of records that contain fields, C#

uses files only as streams of bytes.

2. A comma is the default C# delimiter.

3. The Split() method can be used to separate data fields into an array of strings
based on the placement of the designated delimiter.

The false statement is #2. A delimiter is any character used to specify the
boundary between characters in text files. Although a comma is commonly used
for this purpose, there is no default C# delimiter, and any character could be used.

Creating a File
In the next steps, you create a file that contains a list of names.

1. Open a new file named CreateNameFile, and write the first lines needed for
a program that creates a file of names.

using System;
using System.IO;
class CreateNameFile
{

2. Start a Main() method that declares a FileStream you can use to create a
file named Names.txt that is open for writing. Also create a StreamWriter to
which you associate the file.
static void Main()
{
 FileStream file = new FileStream("Names.txt",
 FileMode.Create, FileAccess.Write);
 StreamWriter writer = new StreamWriter(file);

You Do It

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

675

Writing and Reading a Sequential Access File

3. Add an array of names as follows. Each name is padded with spaces to make
it 10 characters long so that you can easily demonstrate the Seek() method
in a later exercise.
string[] names = {"Anthony ",
 "Belle ",
 "Carolyn ",
 "David ",
 "Edwin ",
 "Frannie ",
 "Gina ",
 "Hannah ",
 "Inez ",
 "Juan "};

4. Declare a variable to use as an array subscript, then write each name to the
output file.
int x;
for(x = 0; x < names.Length; ++x)
 writer.WriteLine(names[x]);

5. Close the StreamWriter and the FileStream. Also add two closing curly
braces—one for the Main() method and one for the class.
 writer.Close();
 file.Close();
 }
}

6. Save the file, and then compile and
execute it. Open the newly created
Names.txt file in a text editor. The file
contents appear in Figure 14-16.

(continues)

(continued)

Figure 14-16 File created by
the CreateNameFile program

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

676

C H A P T E R 1 4 Files and Streams

Reading from a File
In the next steps, you read the text from the file created by the CreateNameFile program.

1. Start a new file named ReadNameFile as follows:
using static System.Console;
using System.IO;
class ReadNameFile
{

2. Start a Main() method that declares a FileStream that uses the same filename
as the one created by the CreateNameFile program. Declare the file mode
to be Open and the access to be Read. Declare a StreamReader with which
to associate the file. Also declare an integer that counts the names read and a
string that holds the names.
static void Main()
{
 FileStream file = new FileStream("Names.txt",
 FileMode.Open, FileAccess.Read);
 StreamReader reader = new StreamReader(file);
 int count = 1;
 string name;

3. Display a heading, and read the first line from the file. While a name is not
null, display a count and a name, and increment the count.

WriteLine("Displaying all names");
name = reader.ReadLine();
while(name != null)
{
 WriteLine("" + count + " " + name);
 name = reader.ReadLine();
 ++count;
}

4. Close the StreamReader and the File, and add closing curly braces for the
method and the class.

 reader.Close();
 file.Close();
 }
}

(continued)

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

677

Searching a Sequential Text File

5. Save the file, and then compile and execute it. The output appears in
 Figure 14-17.

(continued)

Figure 14-17 Output produced by the ReadNameFile program

Searching a Sequential Text File
When you read data from a sequential text file, as in the ReadSequentialFile program in
Figure 14-14, the program starts at the beginning of the file and reads each record in turn
until all the records have been read. Subsequent records are read in order because a file’s file
position pointer holds the byte number of the next byte to be read. For example, if each record
in a file is 32 bytes long, then the file position pointer holds 0, 32, 64, and so on in sequence
during the execution of the program.
Sometimes it is necessary to process a file multiple times from the beginning during a
program’s execution. For example, suppose you want to continue to prompt a user for a
minimum salary and then search through a file for Employees who make at least that salary.
You can compare the user’s entered minimum with each salary in the data file and list those
employees who meet the requirement. However, after one list is produced, the file pointer is
at the end of the file, and no more records can be read. To reread the file, you could close it
and reopen it, but that requires unnecessary overhead. Instead, you can just reposition the
file pointer using the Seek() method and the SeekOrigin enumeration. For example, the
following statement repositions the pointer of a file named inFile to 0 bytes away from the
Begin position of the file:
inFile.Seek(0, SeekOrigin.Begin);

Table 14-6 lists the values in the SeekOrigin enumeration that you can use.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

678

C H A P T E R 1 4 Files and Streams

Member Description
Begin Specifies the beginning of a stream

Current Specifies the current position of a stream

End Specifies the end of a stream

Table 14-6 The SeekOrigin enumeration

Figure 14-18 contains a program that repeatedly searches a file to produce lists of employees
who meet a minimum salary requirement. The shaded portions of the program represent
differences from the ReadSequentialFile application in Figure 14-14. In this program, each time
the user enters a minimum salary that does not equal 999, the file position pointer is set to the
beginning of the file, and then each record is read and compared to the minimum. Figure 14-19
shows a typical execution of the program.

Figure 14-18 The FindEmployees program (continues)

using System;
using static System.Console;
using System.IO;
class FindEmployees
{
 static void Main()
 {
 const char DELIM = ',';
 const int END = 999;
 const string FILENAME = "EmployeeData.txt";
 Employee emp = new Employee();
 FileStream inFile = new FileStream(FILENAME,
 FileMode.Open, FileAccess.Read);
 StreamReader reader = new StreamReader(inFile);
 string recordIn;
 string[] fields;
 double minSalary;
 Write("Enter minimum salary to find or " +
 END + " to quit >> ");
 minSalary = Convert.ToDouble(ReadLine());
 while(minSalary != END)
 {
 WriteLine("\n{0,-5}{1,-12}{2,8}\n",
 "Num", "Name", "Salary");
 inFile.Seek(0, SeekOrigin.Begin);
 recordIn = reader.ReadLine();

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

679

Searching a Sequential Text File

 while(recordIn != null)
 {
 fields = recordIn.Split(DELIM);
 emp.EmpNum = Convert.ToInt32(fields[0]);
 emp.Name = fields[1];
 emp.Salary = Convert.ToDouble(fields[2]);
 if(emp.Salary >= minSalary)
 WriteLine("{0,−5}{1,−12}{2,8}", emp.EmpNum,
 emp.Name, emp.Salary.ToString("C"));
 recordIn = reader.ReadLine();
 }
 Write("\nEnter minimum salary to find or " +
 END + " to quit >> ");
 minSalary = Convert.ToDouble(ReadLine());
 }
 reader.Close(); // Error occurs if
 inFile.Close(); // these two statements are reversed
 }
}

Figure 14-18 The FindEmployees program

(continued)

Figure 14-19 Typical execution of the FindEmployees program

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

680

C H A P T E R 1 4 Files and Streams

 The program in Figure 14-18 is intended to demonstrate using the Seek() method. In a business setting,
you might prefer to not leave a file open in one application if other users might be waiting for it. As an alter-
native, you could load all the records into an array and then search the array for desired records. Problems
also exist with this approach because you would have to overestimate the number of records in the file to
create an array large enough to hold them.

 When you seek beyond the length of the file, you do not cause an error. Instead, the file size grows. In
Microsoft Windows NT and later, any data added to the end of a file is set to zero. In Microsoft Windows 98
or earlier, any data added to the end of the file is not set to zero. This means that previously deleted data
might become visible to the stream.

TWO TRUTHS & A LIE

Searching a Sequential Text File
1. When you read data from a sequential file, the program starts at the beginning of

the file and reads each record in turn until all the records have been read.

2. When you read from a sequential file, its file position pointer holds the number of the
record to be read.

3. To reread a file, you can close it and reopen it, or you can reposition the file pointer
to the beginning of the file.

The false statement is #2. When you read from a sequential file, its file position
pointer holds the byte number of the next byte to be read.

Using the Seek() Method
In the next steps, you use the Seek() method to reposition a file pointer so you can access
a file from any location. The user will be prompted to enter a number representing a starting
point to list the names in the Names.txt file. Names from that point forward will be listed,
and then the user will be prompted for another selection.

1. Start a new program named AccessSomeNames that demonstrates how
to access requested names from the Names.txt file you created in the
CreateNameFile application.

You Do It

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

681

Searching a Sequential Text File

using System;
using static System.Console;
using System.IO;
class AccessSomeNames
{
 static void Main()
 {
 FileStream file = new FileStream("Names.txt",
 FileMode.Open, FileAccess.Read);
 StreamReader reader = new StreamReader(file);

2. Declare a constant named END that represents an input value that allows
the user to exit the program. Then declare other variables that the program
will use.
const int END = 999;
int count = 0;
int num;
int size;
string name;

3. Read a line from the input file. While names are available, continue to read
and count them. Then compute the size of each name by dividing the file
length by the number of strings stored in it.
name = reader.ReadLine();
while(name != null)
{
 ++count;
 name = reader.ReadLine();
}
size = (int)file.Length / count;

4. Prompt the user for the number of the first record to read, and read the value
from the Console.
Write("\nWith which number do you want to start? >> ");
num = Convert.ToInt32(ReadLine());

5. Start a loop that continues as long as the user does not enter the sentinel
END value. Within the loop, display the user’s number, and then use the
Seek() method to position the file pointer at the correct file location.
Because users enter numbers starting with 1 and file positions start with
0, you calculate the file position by first subtracting 1 from the user’s
entry. The calculated record number is then multiplied by the size of

(continues)

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

682

C H A P T E R 1 4 Files and Streams

each name in the file. For example, if each name is 10 bytes long, then
the calculated starting position should be 0, 10, 20, 30, or some other
multiple of the name size.
while(num != END)
{
 WriteLine("Starting with name " + num +": ");
 file.Seek((num - 1) * size, SeekOrigin.Begin);

6. Read and write the name at the calculated location. Then, in a nested loop,
read and write all the remaining names until the end of the file.
name = reader.ReadLine();
WriteLine(" " + name);
while(name != null)
{
 name = reader.ReadLine();
 WriteLine(" " + name);
}

7. Finally, prompt the user for the next starting value for a new list, inform
the user how to quit the application, and accept the next input value. Add a
closing brace for the outer while loop.
 WriteLine("\nWith which number do you " +
 "want to start?");
 Write(" (Enter " + END + " to quit) >> ");
 num = Convert.ToInt32(ReadLine());
}

8. Close the StreamReader and File objects, and add closing braces for the
method and the class.
 reader.Close();
 file.Close();
 }
}

9. Save the file, and then compile and execute it. Figure 14-20 shows a typical
execution during which the user displays three sets of names starting at a
different point each time.

(continued)

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

683

Understanding Serialization and Deserialization

Understanding Serialization and Deserialization
Writing to a text file allows you to store data for later use. However, writing to a text file does
present two disadvantages:
 Data in a text file is easily readable in a text editor such as Notepad. Although this feature is

useful to developers when they test programs, it is not a very secure way to store data.
 When a record in a data file contains many fields, it is cumbersome to convert each field

to text and combine the fields with delimiters before storing the record on a disk. Similarly,
when you read a text file, it is somewhat unwieldy to eliminate the delimiters, split the text
into tokens, and convert each token to the proper data type. Writing an entire object to a file
at once would be more convenient.

(continued)

Figure 14-20 Typical execution of the AccessSomeNames program

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

684

C H A P T E R 1 4 Files and Streams

C# provides a technique called serialization that can be used for writing objects to and
reading objects from data files. Serialization is the process of converting objects into
streams of bytes. Deserialization is the reverse process; it converts streams of bytes back
into objects.
To create a class that can be serialized, you mark it with the [Serializable] attribute, as
shown in the shaded statement in Figure 14-21. The Employee class in the figure is identical to
the one in Figure 14-10 except for the [Serializable] attribute.

[Serializable]
class Employee
{
 public int EmpNum {get; set;}
 public string Name {get; set;}
 public double Salary {get; set;}
}

Figure 14-21 The serializable Employee class

 Attributes provide a method of associating information with C# code. They are always contained in square
brackets. Search for C# attributes at http://msdn.microsoft.com for more details.

In a class marked with the [Serializable] attribute, every instance variable must also be
serializable. By default, all C# simple data types are serializable, including strings. However, if
your class contains fields that are more complex data types, you must check the declaration of
those classes to ensure they are serializable. By default, array objects are serializable. However,
if the array contains references to other objects, such as Dates or Students, those objects must
be serializable.

 If you create a class and want to be able to write its objects to a file, you can implement the
 ISerializable interface instead of marking a class with the [Serializable] attribute. When you use
this approach, you must write a method named GetObjectData(). Marking the class with the attribute
is simpler.

Two namespaces are included in programs that employ serialization:
 System.Runtime.Serialization.Formatters.Binary;

 System.Runtime.Serialization;

When you create a program that writes objects to files, you declare an instance of the
BinaryFormatter class with a statement such as the following:
BinaryFormatter bFormatter = new BinaryFormatter();

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

685

Understanding Serialization and Deserialization

Then, after you fill a class object with data, you can write it to the output file stream named
outFile with a statement such as the following:
bFormatter.Serialize(outFile, objectFilledWithData);

The Serialize() method takes two arguments—a reference to the output file and a reference
to a serializable object that might contain any number of data fields. The entire object is written
to the data file with this single statement.
Similarly, when you read an object from a data file, you use a statement like the following:
objectInstance = (TypeOfObject)bFormatter.Deserialize(inFile);

This statement uses the Deserialize() method with a BinaryFormatter object to read in
one object from the file. The object is cast to the appropriate type and can be assigned to an
instance of the object. Then you can access individual fields. An entire object is read with this
single statement, no matter how many data fields it contains.
Figure 14-22 shows a program that writes Employee class objects to a file and later reads
them from the file into the program. After the FileStream is declared for an output file, a
BinaryFormatter is declared in the first shaded statement. The user enters an ID number,
name, and salary for an Employee, and the completed object is written to a file in the second
shaded statement. When the user enters 999, the output file is closed.

using System;
using static System.Console;
using System.IO;
using System.Runtime.Serialization.Formatters.Binary;
using System.Runtime.Serialization;
class SerializableDemonstration
{
 static void Main()
 {
 const int END = 999;
 const string FILENAME = "Data.ser";
 Employee emp = new Employee();
 FileStream outFile = new FileStream(FILENAME,
 FileMode.Create, FileAccess.Write);
 BinaryFormatter bFormatter = new BinaryFormatter();
 Write("Enter employee number or " + END +
 " to quit >> ");
 emp.EmpNum = Convert.ToInt32(ReadLine());
 while(emp.EmpNum != END)
 {
 Write("Enter last name >> ");
 emp.Name = ReadLine();
 Write("Enter salary >> ");
 emp.Salary = Convert.ToDouble(ReadLine());

Figure 14-22 The SerializableDemonstration program (continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

686

C H A P T E R 1 4 Files and Streams

After the output file closes in the SerializableDemonstration program in Figure 14-22, it is
reopened for reading. A loop is executed while the Position property of the input file is less
than its Length property. In other words, the loop executes while there is more data in the
file. The last shaded statement in the figure deserializes data from the file and casts it to an
Employee object, where the individual fields can be accessed. Figure 14-23 shows a typical
execution of the program.

Figure 14-23 Typical execution of the SerializableDemonstration program

Figure 14-22 The SerializableDemonstration program

 bFormatter.Serialize(outFile, emp);
 Write("Enter employee number or " + END +
 " to quit >> ");
 emp.EmpNum = Convert.ToInt32(ReadLine());
 }
 outFile.Close();
 FileStream inFile = new FileStream(FILENAME,
 FileMode.Open, FileAccess.Read);
 WriteLine("\n{0,−5}{1,−12}{2,8}\n",
 "Num", "Name", "Salary");
 while(inFile.Position < inFile.Length)
 {
 emp = (Employee)bFormatter.Deserialize(inFile);
 WriteLine("{0,−5}{1,−12}{2,8}",
 emp.EmpNum, emp.Name, emp.Salary.ToString("C"));
 }
 inFile.Close();
 }
}

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

687

Understanding Serialization and Deserialization

The file created by the SerializableDemonstration program is not as easy to read as the text file
created by the WriteSequentialFile program discussed earlier in the chapter (in Figure 14-11).
Figure 14-24 shows the file contents displayed in Notepad (with some newline characters
inserted so the output can fit on this page). If you examine the file carefully, you can discern the
string names and some Employee class information, but the rest of the file is not easy to read.

Figure 14-24 Data file created using the SerializableDemonstration program

 Watch the video Understanding Serialization and Deserialization.

TWO TRUTHS & A LIE

Understanding Serialization and Deserialization
1. An advantage of writing data to a text file is that the data is easily readable in a text

editor such as Notepad.

2. Serialization is the process of converting objects into streams of bytes.
Deserialization is the reverse process; it converts streams of bytes back into
objects.

3. By default, all C# classes are serializable.

The false statement is #3. By default, all C# simple data types are serializable,
including strings. However, if your class contains fields that are more complex
data types, you must check the declaration of those classes to ensure they are
serializable.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

688

C H A P T E R 1 4 Files and Streams

Creating a Text File in a GUI Environment

The file writing and reading examples in this chapter have used console applications so
that you could concentrate on the features of files in the simplest environment. However,
you can write and read files in GUI environments as well. In the next steps, you create two
 applications. The first allows a user to enter invoice records using a Form and to store them
in a file. The second application allows a user to view stored records using a Form.

1. Open the Visual Studio IDE, and start a new Windows Forms Application
project named EnterInvoices.

2. Create a Form like the one shown in Figure 14-25 by making the following
changes:

 Change the Text property of the Form to Invoice Data.

 Drag a Label onto the Form, and change its Text property to Enter invoice
data. Increase the Label’s Font to 12.

 Drag three more Labels onto the Form,
and change their Text properties to
Invoice number, Last name, and
Amount, respectively.

 Drag three TextBoxes onto the Form
next to the three descriptive Labels.
Change the Name properties of the three
TextBoxes to invoiceBox, nameBox, and
amountBox, respectively.

 Drag a Button onto the Form, change
its Name to enterButton, and change its
Text to Enter record. If necessary, resize
enterButton so all of its text is visible.

3. View the code for the Form. At the start of the class, before the Form1()
constructor, add the shaded code shown in Figure 14-26. The new code
contains statements that perform the following:

 Declare a delimiter that will be used to separate records in the output file.

 Declare a path and filename. You can change the path if you want to store
the file in a different location on your system.

You Do It

(continues)

Figure 14-25 Designing the
EnterInvoices Form

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

689

Understanding Serialization and Deserialization

 Declare variables for the number, name, and amount of each invoice.

 Open the file, and associate it with a StreamWriter.

namespace EnterInvoices
{
 public partial class Form1 : Form
 {
 const string DELIM = ",";
 const string FILENAME =
 @"C:\C#\Chapter.14\Invoices.txt";
 int num;
 string name;
 double amount;
 static FileStream outFile = new
 FileStream(FILENAME, FileMode.Create,
 FileAccess.Write);
 StreamWriter writer = new StreamWriter(outFile);
 public Form1()
 {
 InitializeComponent();
 }

Figure 14-26 Partial code for the EnterInvoices program with typed
statements shaded

 Remember that placing an at sign (@) in front of a string indicates that its characters should be
interpreted literally. The @ sign is used with the filename so that the backslashes in the path will not
be interpreted as escape sequence characters.

4. At the top of the file, with the other using statements, add the following so
that the FileStream can be declared:

using System.IO;

5. Click Save All (and continue to do so periodically as you work). Return to Design
view, and double-click the Enter record button. As shown in the shaded portions
of Figure 14-27, add statements within the method to accept data from each
of the three TextBoxes, and convert each field to the appropriate type. Then
write each field to a text file, separated by delimiting commas. Finally, clear the
TextBox fields to be ready for the user to enter a new set of data.

(continued)

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

690

C H A P T E R 1 4 Files and Streams

private void enterButton_Click(object sender, EventArgs e)
{
 num = Convert.ToInt32(invoiceBox.Text);
 name = nameBox.Text;
 amount = Convert.ToDouble(amountBox.Text);
 writer.WriteLine(num + DELIM + name + DELIM + amount);
 invoiceBox.Clear();
 nameBox.Clear();
 amountBox.Clear();
}

Figure 14-27 Code for the enterButton_Click() method of the
EnterInvoices program

6. Locate the Dispose() method, which executes when the user clicks the
Close button to dismiss the Form. A quick way to locate the method in the
Visual Studio IDE is to select Edit from the main menu, click Find and
Replace, click Quick Find, and type Dispose in the dialog box. (The Look
in: setting can be either Entire Solution or Current Project.) The method
appears on the screen. Add two statements to close writer and outFile,
as shown in the shaded statements in Figure 14-28.

protected override void Dispose(bool disposing)
{
 writer.Close();
 outFile.Close();
 if (disposing && (components != null))
 {
 components.Dispose();
 }
 base.Dispose(disposing);
}

Figure 14-28 The Dispose() method in the EnterInvoices program

7. Click Save All. Execute the program. When the Form appears, enter data
in each TextBox, and then click the Enter record button when you finish.

(continued)

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

691

Understanding Serialization and Deserialization

The TextBoxes clear in preparation
for you to enter another record.
Enter at least three records before
dismissing the Form. Figure 14-29
shows data entry in progress.

Reading Data from a Text File into a Form

In the next steps, you create a Form that you
can use to read records from a File.

1. Open a new Windows project in Visual
Studio, and name it ViewInvoices.

2. Create a Form like the one shown in
Figure 14-30 by making the following
changes:

 Change the Text of Form1 to
Invoice Data.

 Add four Labels with the text,
font size, and approximate locations
shown in Figure 14-30. (You can
click the down arrow next to the
Text property of a component to
get a box into which you can type
multiline text.)

 Add a Button with the Text View
records. Resize the Button if
necessary. Name the Button viewButton.

 Add three TextBoxes. Name them invoiceBox, nameBox, and amountBox,
respectively.

3. In the IDE, double-click the View records Button to view the code.

(continued)

(continues)

Figure 14-30 The ViewInvoices
Form

Figure 14-29 Entering data in
the EnterInvoices application

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

692

C H A P T E R 1 4 Files and Streams

4. Add the shaded statements shown in Figure 14-31. They include:

 A using System.IO statement

 Constants for the file delimiter character and the filename (change the path
for your file if necessary)

 A string into which whole records can be read before they are split into
fields

 An array of strings used to hold the separate, split fields of the entered
string

 A FileStream and StreamReader to handle the input file

 Within the viewButton_Click() method, statements to read in a line from
the file and split it into three components

(continued)

Figure 14-31 Partial code for the ViewInvoices application (continues)

(continues)

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.IO;
namespace ViewInvoices
{
 public partial class Form1 : Form
 {
 const char DELIM = ',';
 const string FILENAME = @"C:\C#\Chapter.14\Invoices.txt";
 string recordIn;
 string[] fields;
 static FileStream file = new FileStream(FILENAME,
 FileMode.Open, FileAccess.Read);
 StreamReader reader = new StreamReader(file);
 public Form1()
 {
 InitializeComponent();
 }

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

693

Understanding Serialization and Deserialization

5. Add two Close() statements to the Dispose() method in the
Form1Designer.cs file, as shown in Figure 14-32.

protected override void Dispose(bool disposing)
{
 reader.Close();
 file.Close();
 if (disposing && (components != null))
 {
 components.Dispose();
 }
 base.Dispose(disposing);
}

Figure 14-32 The Dispose() method for the ViewInvoices program

6. Save the project, and then
execute it. When the Form
appears, click the Button
to view records. You see the
data for the first record you
entered when you ran the
EnterInvoices application;
your Form should look like
the one in Figure 14-33.
Click the Button again to
display the next record.

(continued)

 private void viewButton_Click(object sender, EventArgs e)
 {
 recordIn = reader.ReadLine();
 fields = recordIn.Split(DELIM);
 invoiceBox.Text = fields[0];
 nameBox.Text = fields[1];
 amountBox.Text = fields[2];
 }
 }
}

Figure 14-31 Partial code for the ViewInvoices application

(continues)

Figure 14-33 Typical execution
of the ViewInvoices program

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

694

C H A P T E R 1 4 Files and Streams

7. Continue to click the Button to view each record. After you view the last
record you entered, click the Button again. An unhandled exception is
generated, as shown in Figure 14-34, because you attempted to read data
past the end of the input file.

Figure 14-34 Error message window displayed after user attempts to
read past the end of the file

 Your error message might look different than the one in Figure 14-34 depending on the version of
Visual Studio you are using.

8. Click the Details button in the UnhandledException window to view details
of the error. Figure 14-35 shows that a System.NullReferenceException
was thrown and not handled.

Figure 14-35 Details displayed by the unhandled exception window

(continued)

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

695

Understanding Serialization and Deserialization

 9. Click Quit to close the unhandled exception window.

10. To remedy the unhandled NullReferenceException problem, you could
take any number of actions. Depending on the application, you might want
to do one or more of the following:

 Display a message.

 Disallow any more button clicks.

 End the program.

 Reposition the file pointer to the file’s beginning so the user can view the
records again.

 For this example, you take the first two actions: display a message and
disallow further button clicks. Return to Visual Studio, and locate the code
for the viewButton_Click() method. Add a try…catch block, as shown
in Figure 14-36. Place all the record-handling code in a try block, and if
a NullReferenceException is thrown, change the Text in label1 and
disable the View records Button.

Figure 14-36 The viewButton_Click() method modified to handle an exception

private void viewButton_Click(object sender, EventArgs e)
{
 try
 {
 recordIn = reader.ReadLine();
 fields = recordIn.Split(DELIM);
 invoiceBox.Text = fields[0];
 nameBox.Text = fields[1];
 amountBox.Text = fields[2];
 }
 catch (NullReferenceException)
 {
 label1.Text = "You have viewed\nall the records";
 viewButton.Enabled = false;
 }
}

(continued)

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

696

C H A P T E R 1 4 Files and Streams

Chapter Summary
 A computer file is a collection of information stored on a nonvolatile, permanent

storage device in a computer system. Computer users organize their files into folders
or directories. The File class contains methods that allow you to access information
about files. The Directory class provides you with information about directories
or folders.

 Data items are stored in a hierarchy of character, field, record, and file. A data file is a
sequential access file when each record is read in order from first to last. Usually, the records
are stored in order based on the value in a key field. Before an application can use a data file,
it must open the file by creating an object and associating a stream of bytes with that object.
When you close a file, it is no longer available to your application.

 Bytes flow into and out of applications through streams. When you use the Console
class, you have access to several standard streams: Console.In, Console.Out, and

11. Save the project, and then execute it. This time, after you have viewed
all the available records, the last record remains on the Form, an
appropriate message is displayed, and the button is disabled, as shown
in Figure 14-37.

Figure 14-37 The ViewInvoices Form after user has viewed the last record

12. Dismiss the Form. Close Visual Studio.

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Key Terms

697

Console.Error. When you read from or write to a file, you use a file-processing
class instead of Console. Many file-processing classes are available in C#, including
StreamReader for text input from a file, StreamWriter for text output to a file, and
FileStream for both input and output.

 You can use a StreamWriter object to write objects to a file using the WriteLine()
method. Fields should be separated by a delimiter. Data can be read from a file using a
StreamReader object and the ReadLine() method. If the value of the returned string
from ReadLine() is null, then no more data exists in the file. After a record (line of data) is
read in, the String class Split() method can be used to separate the data fields into an
array of strings.

 When you read data from a sequential file, subsequent records are read in order because a
file’s position pointer holds the byte number of the next byte to be read. To reread a file, you
could close it and reopen it, or you can just reposition the file pointer using the Seek()
method and the SeekOrigin enumeration.

 Serialization is the process of converting objects into streams of bytes. Deserialization is the
reverse process; it converts streams of bytes back into objects. To create a class that can be
serialized, you mark it with the [Serializable] attribute. A serializable object can be
written to or read from a data file with a single statement.

Key Terms
Random access memory (RAM) is temporary storage in a computer.
Volatile describes storage in which data is lost when power is interrupted.
Nonvolatile storage is permanent storage; it is not lost when a computer loses power.
A computer file is a collection of information stored on a nonvolatile device in a computer
system.
Permanent storage devices, such as hard disks, USB drives, reels of magnetic tape, and
optical discs, are used to store files.
Text files contain data that can be read in a text editor because the data has been encoded
using a scheme such as ASCII or Unicode.
Data files contain facts and figures.
Binary files contain data that has been encoded in binary format.
A byte is a small unit of storage; in a simple text file, a byte holds only one character.
A kilobyte is approximately one thousand bytes.
A megabyte is approximately one million bytes.
A gigabyte is approximately one billion bytes.
To read from a file is to copy data from a file on a storage device into RAM.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

698

C H A P T E R 1 4 Files and Streams

To write to a file is to store data in a computer file on a permanent storage device.
Persistent storage is nonvolatile storage.
The root directory is the main directory of a storage device.
Folders or directories are structures used to organize files on a storage device.
A path is composed of the disk drive in which a file resides plus the complete hierarchy of
directories.
The data hierarchy is the relationship of characters, fields, records, and files.
A character is any one of the letters, numbers, or other special symbols (such as punctuation
marks) that constitute data.
A character set is the group of all the characters used to represent data on a particular
computer.
A field is a character or group of characters that has some meaning.
A record is a collection of fields that contain data about an entity.
A sequential access file is a data file in which each record is read in order based on its
position in the file; usually the records are stored in order based on the value in some field.
The key field is the field used to control the order of records in a sequential file.
A random access file is one for which records can be accessed in any order.
Opening a file involves creating an object and associating a stream of bytes with it.
Closing a file means it is no longer available to an application.
A stream is a pipeline or channel through which bytes are input from and output to a file.
Programmers say FileStream exposes a stream around a file.
XML is an abbreviation of eXtensible Markup Language, which is a standard for exchanging
data over the Internet.
A token is a block of text within a string that represents an entity or field.
A delimiter is a character used to specify the boundary between characters in text files.
A CSV file is one that contains comma-separated values.
A priming read is an input statement that gets a first data item or record.
The term magic number refers to the bad programming practice of hard-coding numbers in
code without explanation.
A file’s file position pointer holds the byte number of the next byte to be read.
Serialization is the process of converting objects into streams of bytes.
Deserialization is the process of converting streams of bytes back into objects.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Review Questions

699

Review Questions
1. Random access memory is _____________________.

a. persistent
b. volatile

c. permanent
d. sequential

2. A collection of data stored on a nonvolatile device in a computer
system is a(n) _____________________.
a. application
b. computer file

c. operating system
d. memory map

3. Which of the following is not permanent storage?
a. RAM
b. a hard disk

c. a USB drive
d. all of these

4. When you store data in a computer file on a persistent storage device,
you are _____________________.
a. reading
b. directing

c. writing
d. rooting

5. Which of the following is not a File class method?
a. Create()

b. Delete()

c. Exists()

d. End()

6. In the data hierarchy, a group of characters that has some meaning, such as a last
name or ID number, is a _____________________.
a. byte
b. field

c. file
d. record

7. When each record in a file is stored in order based on the value in some field, the file
is a(n) _____________________file.
a. random access
b. application

c. formatted
d. sequential

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

700

C H A P T E R 1 4 Files and Streams

8. A channel through which data flows between a program and storage
is a _____________________.
a. path
b. folder

c. stream
d. directory

9. Which of the following is not part of a FileStream constructor?
a. the file size
b. the file mode

c. the filename
d. the type of access

10. When a file’s mode is Create, a new file will be created _____________________.
a. even if one with the same name

already exists
b. only if one with the same name

does not already exist

c. only if one with the same name
already exists

d. only if the access is Read

11. Which of the following is not a FileStream property?
a. CanRead

b. CanExist

c. CanSeek

d. CanWrite

12. Which of the following is not a file Access enumeration?
a. Read

c. Write

c. WriteRead

d. ReadWrite

13. A character used to specify the boundary between data items in text
files is a _____________________.
a. sentinel
b. stopgap

c. delimiter
d. margin

14. Which character can be used to specify a boundary between characters in text files?
a. a comma
b. a semicolon

c. either of these
d. neither of these

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Review Questions

701

15. After a StreamReader has been created, the ReadLine() method can be
used to _____________________.
a. retrieve one line at a time from

the file
b. retrieve one character at a time

from the file

c. store one line at a time in a file

d. split a string into tokens

16. The argument to the String class Split() method is _____________________.
a. void

b. the number of fields into which to
split a record

c. the character that identifies a new
field in a string

d. a string that can be split into
tokens

17. The String class Split() method stores its results in _____________________.
a. a string

b. an array of strings

c. an appropriate data type for each
token

d. an array of bytes

18. A file’s _____________________ holds the byte number of the next byte to be read.
a. index indicator
b. position pointer

c. header file
d. key field

19. The process of converting objects into streams of bytes is _____________________.
a. extrication
b. splitting

c. mapping
d. serialization

20. Which of the following is serializable?
a. an int
b. an array of ints

c. a string
d. all of the above

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

702

C H A P T E R 1 4 Files and Streams

Exercises

Programming Exercises

1. Create a program named TestFileAndDirectory that allows a user to continually
enter directory names until the user types end. If the directory name exists, display
a list of the files in it; otherwise, display a message indicating the directory does not
exist. If the directory exists and files are listed, prompt the user to enter one of the
filenames. If the file exists, display its creation date and time; otherwise, display a
message indicating the file does not exist. Create as many test directories and files as
necessary to test your program.

2. Create a program named FileComparison that compares two files. First, use a
text editor such as Notepad to save your favorite movie quote. Next, copy the file
contents, and paste them into a word-processing program such as Word. Then,
write the file-comparison application that displays the sizes of the two files as well
as the ratio of their sizes to each other. To discover a file’s size, you can create a
System.IO.FileInfo object using statements such as the following, where
FILE_NAME is a string that contains the name of the file, and size has been
declared as an integer:
FileInfo fileInfo = new FileInfo(FILE_NAME);
size = fileInfo.Length;

3. Using Visual Studio, create a Form like the one shown in Figure 14-38. Specify
a directory on your system, and when the Form loads, list the files the directory
contains in a CheckedListBox. (You first saw an example of a CheckedListBox
in Chapter 12.) Allow the user to click a file’s corresponding check box, and display
the file’s creation date and time. (Each time the user checks a new filename,
display its creation date in place of the original selection.) Save the project as
TestFileAndDirectory2. Create as many files as necessary to test your program.

Figure 14-38 Typical execution of the TestFileAndDirectory2 program

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exercises

703

4. a. Create a program named WriteCustomerRecords that allows you to enter data for
your business’s customers and saves the data to a file. Create a Customer class that
contains fields for ID number, name, and current balance owed.

 b. Create a program named ReadCustomerRecords that reads the file created in
Exercise 4a and displays each customer’s data on the screen.

 c. Create a program named FindCustomerRecords that prompts the user for a
customer number, reads the file created in Exercise 4a, and displays data for the
specified record.

 d. Create a program named FindCustomerRecords2 that prompts the user for a
minimum balance due, reads the file created in Exercise 4a, and displays all the
records containing a balance greater than or equal to the entered value.

5. Create a program named CustomizeAForm that includes a Form for which a user
can select options for the background color, size, and title. Change each feature of
the Form as the user makes selections. After the user clicks a button to save the form
settings, save the color, size, and title as strings to a file, and disable the button.

6. Design a program named RetrieveCustomizedForm that includes a Form like the
one created in Exercise 5, except that instead of saving settings, the Form’s Button
should retrieve the saved settings. When the user clicks the Button, read the saved
settings from the file created in the CustomizeAForm project, and set the new Form’s
color, size, and title appropriately.

7. Create a program named HighScore containing a Form that hosts a game in which
the computer randomly selects one of three letters (A, B, or C) and the user tries to
guess which letter was selected. At the start of the game, read in the previous high
score from a data file. (Create this file to hold 0 the first time the game is played.)
Display the previous high score on the Form to show the player the score to try to
beat. Play continues for 10 rounds. As the player makes each guess, show the player’s
guess and the computer’s choice, and award a point if the player correctly guesses
the computer’s choice. Keep a running count of the number of correct guesses. After
10 rounds, disable the game controls, and create a file that holds the new high score,
which might be the same as before the game or a new higher number. When the
player begins a new game, the high score will be displayed on the Form as the new
score to beat.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

704

C H A P T E R 1 4 Files and Streams

Debugging Exercises

1. Each of the following files in the Chapter.14 folder of your downloadable student files
has syntax and/or logical errors. In each case, determine the problem, and fix the
 program. After you correct the errors, save each file using the same filename preceded
with Fixed. For example, save DebugFourteen1.cs as FixedDebugFourteen.cs.
a. DebugFourteen1.cs
b. DebugFourteen2.cs
c. DebugFourteen3.cs
d. DebugFourteen4.cs

Case Problems

1. In Chapter 11, you created the most recent version of the GreenvilleRevenue
 program, which prompts the user for contestant data for this year’s Greenville Idol
competition. Now, save all the entered data to a file that is closed when data entry is
complete and then reopened and read in, allowing the user to view lists of contestants
with requested talent types.

2. In Chapter 11, you created the most recent version of the MarshallsRevenue program,
which prompts the user for customer data for scheduled mural painting. Now, save all
the entered data to a file that is closed when data entry is complete and then reopened
and read in, allowing the user to view lists of customer orders for mural types.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

