
C H A P T E R 13
Handling Events

In this chapter you will:

�� Learn about event handling

�� Learn about delegates

�� Declare your own events and handlers and use the built-in
EventHandler

�� Handle Control component events

�� Handle mouse and keyboard events

�� Manage multiple Controls

�� Learn how to continue your exploration of Controls and
events

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

608

C H A P T E R 1 3 Handling Events

Throughout this book, you have learned how to create interactive GUI programs in which
a user can manipulate a variety of Controls. You have worked with several Controls that
respond to a user-initiated event, such as a mouse click, and you have provided actions for
Control default events. In this chapter, you will expand your understanding of the event-
handling process. You will learn more about the object that triggers an event and the object
that captures and responds to that event. You also will learn about delegates—objects that act
as intermediaries in transferring messages from senders to receivers. You will create delegates
and manage interactive events. You will learn to manage multiple events for a single Control
and to manage multiple Controls for a project.

Event Handling
In C#, an event is a reaction to an occurrence in a program; an event transpires when
something interesting happens to an object. When you create a class, you decide exactly what
is considered “interesting.” For example, when you create a Form, you might decide to respond
to a user clicking a Button but ignore a user who clicks a Label—clicking the Label is not
“interesting” to the Form.
A program uses an event to notify a client when something happens to an object. Events are
used frequently in GUI programs—for example, a program is notified when the user clicks a
Button or chooses an option from a ListBox. In addition, you can use events with ordinary
classes that do not represent GUI controls. When an object’s client might want to know about
any changes that occur in the object, events enable the object to signal the client.

 The actions that occur during the execution of a program occur at runtime. The expression at runtime is
used to distinguish execution-time activities from those that occur during development time and compile
time. Events are runtime occurrences.

You have learned that when a user interacts with a GUI object, an event is generated that
causes the program to perform a task. GUI programs are event driven—an event such as a
button click “drives” the program to perform a task. Programmers also say that an action like a
button click raises an event, fires an event, or triggers an event.
For example, Figure 13-1 shows a Form that contains a Label and a Button. The following
changes are the only ones that have been made to the default Form in the IDE:
 The Size property of the Form has been adjusted to 500, 120.
 A Label has been dragged onto the Form, its Name property has been set to helloLabel, its
Text property has been set to Hello, and its Font has been increased to 9.

 A Button has been dragged onto the Form, its Name property has been set to changeButton,
and its Text property has been set to Change Label.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

609

Event Handling

 When you double-click the button on the form, Visual Studio generates the following empty
method in the program code:

 private void changeButton_Click(object sender, EventArgs e)
 {
 }

Figure 13-1 A Form with a Label and a Button

Figure 13-2 Output of the EventDemo application after the user clicks the button

A method that performs a task in response to an event is an event handler. The
changeButton_Click() method is an event handler. Although it is legal to create an event
handler using any legal identifier, conventionally, event handlers are named using the identifier
of the Control (in this case, changeButton), an underscore, and the name of the event type
(in this case, Click).
Suppose that when a user clicks the button, you want the text on the label to change from Hello
to Goodbye. You can write the following code for the event handler:
private void changeButton_Click(object sender, EventArgs e)
{
 helloLabel.Text = "Goodbye";
}

Then, when you run the application and click the button, the output appears as shown in
Figure 13-2.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

610

C H A P T E R 1 3 Handling Events

The event-handler method is also known as an event receiver. The control that generates an
event is an event sender. The first parameter in the list for the event receiver method is an
object named sender; it is a reference to the object that generated the event. For example, if
you code the event handler to display sender’s information as follows, the output appears as in
Figure 13-3.
private void changeButton_Click(object sender, EventArgs e)
{
 helloLabel.Text = sender.ToString();
}

Figure 13-3 The EventDemo application modified to display sender information

Figure 13-4 The EventDemo application modified to display EventArgs information

The label in Figure 13-3 shows that the sender of the event is an instance of
System.Windows.Forms.Button, whose Text property is Change Label.
The second parameter in the event-handler parameter list is a reference to an event arguments
object of type EventArgs; in this method, the EventArgs argument is named e. EventArgs is
a C# class designed for holding event information. If you change the code in the event handler
to display the EventArgs ToString() value as in the following and then run the program and
click the button, you see the output in Figure 13-4.
private void changeButton_Click(object sender, EventArgs e)
{
 helloLabel.Text = e.ToString();
}

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

611

Event Handling

In Figure 13-4, you can see that the e object is a MouseEventArgs object. That makes sense,
because the user used the mouse to click the Button. (If the user has a touch screen, the user
can also touch the Button to generate the event.)
When you open the Designer.cs file in the IDE, you can examine all the code generated for the
application that creates the Form shown in Figure 13-4. Expanding the code generated by the
Windows Form Designer lets you see comments as well as statements that set the Controls’
properties. For example, the code generated for changeButton appears in Figure 13-5. You can
recognize that such features as the button’s Location, Name, and Size have been set.

Figure 13-5 Code involving changeButton generated by Visual Studio

 The code generated in Design mode in the IDE is not meant to be altered by typing. You should modify
 Control properties through the Properties window in the IDE, not by typing in the Designer.cs file.

All the code in Figure 13-5 was created by Visual Studio when the programmer clicked
changeButton in the IDE. The most unusual statement in the section of changeButton code
is shaded in Figure 13-5. This statement concerns a click event, which is an action fired when
a user clicks a button during program execution. The shaded statement is necessary because
changeButton does not automatically “know” what method will handle its events—C# and
all other .NET languages allow you to choose your own names for event-handling methods
for events generated by GUI objects. In other words, the event-handling method is not
required to be named changeButton_Click(). You could create your program so that when
the user clicks the button, the event-handling method is named calculatePayroll(),
changeLabel(), or any other identifier for a method you could then write. Of course, you do
not want to make such a change; using the name changeButton_Click() for the method that
executes when changeButton is clicked is the clearest approach.
Connecting an event to its resulting actions is called event wiring. The event wiring for the
changeButton_Click() method is accomplished in the shaded statement in Figure 13-5. The
statement indicates that, for this program, the method named changeButton_Click() is the
receiver for changeButton’s Click event; the method executes when a user clicks the button
and an event is fired. Programmers say the statement creates a delegate or, more specifically,

//
// changeButton
//
this.changeButton.Location = new System.Drawing.Point(359, 24);
this.changeButton.Name = "changeButton";
this.changeButton.Size = new System.Drawing.Size(101, 23);
this.changeButton.TabIndex = 1;
this.changeButton.Text = "Change Label";
this.changeButton.UseVisualStyleBackColor = true;
this.changeButton.Click += new
 System.EventHandler(this.changeButton_Click);

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

612

C H A P T E R 1 3 Handling Events

a composed delegate. The delegate’s type is EventHandler, and it takes a reference to the
changeButton_Click() method. You will learn about delegates in the next two sections of
this chapter, and you will also learn why the += operator is used in the statement.

TWO TRUTHS & A LIE

Event Handling
1. An action such as a key press or button click raises an event.

2. A method that performs a task in response to an event is an event handler.

3. The control that generates an event is an event receiver.

The false statement is #3. The control that generates an event is an event sender.

Understanding Delegates
A delegate is an object that contains a reference to a method; object-oriented programmers
would say that a delegate encapsulates a method. In government, a delegate is a representative
that you authorize to make choices for you. For example, states send delegates to presidential
nominating conventions. When human delegates arrive at a convention, they are free to make
last-minute choices based on current conditions. Similarly, C# delegates provide a way for a
program to take alternative courses that are not determined until runtime. When you write a
method, you don’t always know which actions will occur at runtime, so you give your delegates
authority to run the correct methods.

 In Chapter 1, you learned that encapsulation is a basic feature of object-oriented programming. Recall that
encapsulation is the technique of packaging an object’s attributes and methods into a cohesive unit that can
then be used as an undivided entity.

After you have instantiated a C# delegate, you can pass this object to a method, which then can
call the method referenced within the delegate. In other words, a delegate provides a way to
pass a reference to a method as an argument to another method. In other words, although you
can’t pass a method to a method, you can pass an object that is a reference to a method. For
example, if del is a delegate that contains a reference to the method M1(), you can pass del to
a new method named MyMethod(). Alternatively, you could create a delegate named del that
contains a reference to a method named M2() and then pass this version to MyMethod(). When
you write MyMethod(), you don’t have to know whether it will call M1() or M2(); you only need
to know that it will call whatever method is referenced within del. Perhaps the decision about

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

613

Understanding Delegates

which method will execute will be made as the result of user input the date of execution, or
some other factor.

 A C# delegate is similar to a function pointer in C++. A function pointer is a variable that holds a method’s
memory address. In the C++ programming language, you pass a method’s address to another method using
a pointer variable. Java does not allow function pointers because they are dangerous—if the program alters
the address, you might inadvertently execute the wrong method. C# provides a compromise between the
dangers of C++ pointers and the Java ban on passing functions. Delegates allow flexible method calls, but
they remain secure because you cannot alter the method addresses.

You declare a delegate using the keyword delegate, followed by an ordinary method
declaration that includes a return type, method name, and argument list. For example, by
entering the following statement, you can declare a delegate named GreetingDelegate(),
which accepts a string argument and returns nothing:
delegate void GreetingDelegate(string s);

Any delegate can encapsulate any method that has the same return type and parameter list
as the delegate. So GreetingDelegate can encapsulate any method as long as it has a void
return type and a single string parameter. If you declare a delegate and then write a method
with the same return type and parameter list, you can assign an instance of the delegate
to represent it. For example, the following Hello() method is a void method that takes a
string parameter:
public static void Hello(string s)
{
 WriteLine("Hello, {0}!", s);
}

Because the Hello() method matches the GreetingDelegate definition, you can assign a
reference to the Hello() method to a new instance of GreetingDelegate, as follows:
GreetingDelegate myDel = new GreetingDelegate(Hello);

Once the reference to the Hello() method is encapsulated in the delegate myDel, each of the
following statements will result in the same output: “Hello, Kim!”.
Hello("Kim");
myDel("Kim");

In this example, the ability to use the delegate myDel does not seem to provide any benefits
over using a regular method call to Hello(). If you have a program in which you pass the
delegate to a method, however, the method becomes more flexible; you gain the ability to send
a reference to an appropriate method you want to execute at the time.
For example, Figure 13-6 shows a Greeting class that contains Hello() and Goodbye()
methods. The Main() method declares two delegates named firstDel and secondDel. One
is instantiated using the Hello() method, and the other is instantiated using the Goodbye()
method. When the Main() method calls GreetMethod() two times, it passes a different
method and string each time. Figure 13-7 shows the output.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

614

C H A P T E R 1 3 Handling Events

using static System.Console;
delegate void GreetingDelegate(string s);
class Greeting
{
 public static void Hello(string s)
 {
 WriteLine("Hello, {0}!", s);
 }
 public static void Goodbye(string s)
 {
 WriteLine("Goodbye, {0}!", s);
 }
 static void Main()
 {
 GreetingDelegate firstDel, secondDel;
 firstDel = new GreetingDelegate(Hello);
 secondDel = new GreetingDelegate(Goodbye);
 GreetMethod(firstDel, "Cathy");
 GreetMethod(secondDel, “Bob”);
 }
 public static void GreetMethod(GreetingDelegate gd, string name)
 {
 WriteLine("The greeting is:");
 gd(name);
 }
}

Figure 13-6 The Greeting program

Figure 13-7 Output of the Greeting program

 Delegates are useful in that a method reference can be passed to another method, so the receiving method
can be customized. As with many other features of C# (and all other programming languages), you can use
other techniques to accomplish the same result. For example, you certainly can produce simple output such
as Hello, Cathy using other techniques. However, you should understand at least a little about delegates
because they are used in the code that responds to events in C#’s GUI environment.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

615

Understanding Delegates

Creating Composed Delegates
You can assign one delegate to another using the = operator. You also can use the + and +=
operators to combine delegates into a composed delegate that calls the delegates from which
it is built. As an example, assume that you declare three delegates named del1, del2, and del3,
and that you assign a reference to the method M1() to del1 and a reference to method M2()
to del2. When the statement del3 = del1 + del2; executes, del3 becomes a delegate that
executes both M1() and M2(), in that order. Only delegates with the same parameter list can be
composed, and the delegates used must have a void return type. Additionally, you can use the −
and −= operators to remove a delegate from a composed delegate. A composed delegate is a
collection of delegates. The += and −= operators add and remove items from the collection.
Figure 13-8 shows a program that contains a composed delegate. This program contains only
two changes from the Greeting program in Figure 13-6: the class name (Greeting2) and the
shaded statement that creates the composed delegate. The delegate firstDel now executes
two methods, Hello() and Goodbye(), whereas secondDel still executes only Goodbye().
Figure 13-9 shows the output; Cathy is used with two methods, but Bob is used with only one.

Figure 13-8 The Greeting2 program

using static System.Console;
delegate void GreetingDelegate(string s);
class Greeting2
{
 public static void Hello(string s)
 {
 WriteLine("Hello, {0}!", s);
 }
 public static void Goodbye(string s)
 {
 WriteLine("Goodbye, {0}!", s);
 }
 static void Main()
 {
 GreetingDelegate firstDel, secondDel;
 firstDel = new GreetingDelegate(Hello);
 secondDel = new GreetingDelegate(Goodbye);
 firstDel += secondDel;
 GreetMethod(firstDel, "Cathy");
 GreetMethod(secondDel, "Bob");
 }
 public static void GreetMethod
 (GreetingDelegate gd, string name)
 {
 WriteLine("The greeting is:");
 gd(name);
 }
}

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

616

C H A P T E R 1 3 Handling Events

Figure 13-9 Output of the Greeting2 program

 Watch the video Event Handling.

TWO TRUTHS & A LIE

Understanding Delegates
1. A delegate is an object that contains a reference to a method.

2. Once you have created a delegate, it can encapsulate any method with the same
identifier as the delegate.

3. A composed delegate can be created using the += operator; it calls the delegates
from which it is built.

The false statement is #2. Once you have created a delegate, it can encapsulate
any method with the same return type and parameter list as the delegate.

Creating Delegates
To demonstrate how delegates work, you create two delegate instances in the next
steps and assign different method references to them.

1. Open a new console project named DiscountDelegateDemo. Type the
necessary using statements, and then create a delegate that encapsulates a
void method that accepts a double argument:
using System;
using static System.Console;
delegate void DiscountDelegate(ref double saleAmount);

You Do It

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

617

Understanding Delegates

2. Begin creating a Discount class that contains a StandardDiscount()
method. The method accepts a reference parameter that represents an
amount of a sale. If the sale amount is at least $1,000, a discount of
5 percent is calculated and subtracted from the sale amount. If the sale
amount is not at least $1,000, nothing is subtracted.
class DiscountDelegateDemo
{
 public static void StandardDiscount(ref double saleAmount)
 {
 const double DISCOUNT_RATE = 0.05;
 const double CUTOFF = 1000.00;
 double discount;
 if(saleAmount >= CUTOFF)
 discount = saleAmount * DISCOUNT_RATE;
 else
 discount = 0;
 saleAmount –= discount;
 }

3. Add a PreferredDiscount() method. The method also accepts a reference
parameter that represents the amount of a sale and calculates a discount of
10 percent on every sale.
public static void PreferredDiscount(ref double saleAmount)
{
 const double SPECIAL_DISCOUNT = 0.10;
 double discount = saleAmount * SPECIAL_DISCOUNT;
 saleAmount –= discount;
}

4. Start a Main() method that declares variables whose values (a sale amount
and a code) will be supplied by the user. Declare two DiscountDelegate
objects named firstDel and secondDel. Assign a reference to the
StandardDiscount() method to one DiscountDelegate object
and a reference to the PreferredDiscount() method to the other
DiscountDelegate object.
static void Main()
{
 double saleAmount;
 char code;
 DiscountDelegate firstDel, secondDel;
 firstDel = new DiscountDelegate(StandardDiscount);
 secondDel = new DiscountDelegate(PreferredDiscount);

(continues)

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

618

C H A P T E R 1 3 Handling Events

5. Continue the Main() method with prompts to the user to enter a sale
amount and a code indicating whether the standard or preferred discount
should apply. Then, depending on the code, use the appropriate delegate to
calculate the correct new value for saleAmount. Display the value and add
closing curly braces for the Main() method and the class.
 Write("Enter amount of sale ");
 saleAmount = Convert.ToDouble(ReadLine());
 Write("Enter S for standard discount,"
 + "or P for preferred discount ");
 code = Convert.ToChar(ReadLine());
 if(code == 'S')
 firstDel(ref saleAmount);
 else
 secondDel(ref saleAmount);
 WriteLine("New sale amount is {0}",
 saleAmount.ToString("C2"));
 }
}

6. Save the file, and then compile and execute it. Figure 13-10 shows the
results when the program is executed several times.

(continued)

(continues)

Figure 13-10 Sample executions of the DiscountDelegateDemo program

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

619

Understanding Delegates

Creating a Composed Delegate

When you compose delegates, you can invoke multiple method calls using a single
statement. In the next steps, you create a composed delegate to demonstrate how
composition works.

1. Open the DiscountDelegateDemo file, and immediately save it as
DiscountDelegateDemo2.

2. Within the Main() method, add a third DiscountDelegate object to the
statement that declares the two existing versions, as follows:
DiscountDelegate firstDel, secondDel, thirdDel;

3. After the statements that assign values to the existing DiscountDelegate
objects, add statements that assign the firstDel object to thirdDel, and
then add secondDel to it through composition.

thirdDel = firstDel;
thirdDel += secondDel;

4. Change the prompt for the code, as follows, to reflect three options.
The standard and preferred discounts remain the same, but the extreme
discount (supposedly for special customers) provides both types of
discounts, first subtracting 5 percent for any sale equal to or greater than
$1,000, and then providing a discount of 10 percent more.

Write("Enter S for standard discount, " +
 "P for preferred discount," +
 "\nor X for eXtreme discount ");

5. Change the if statement so that if the user does not enter S or P, then the
extreme discount applies.
if(code == 'S')
 firstDel(ref saleAmount);
else
 if(code == 'P')
 secondDel(ref saleAmount);
 else
 thirdDel(ref saleAmount);

(continued)

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

620

C H A P T E R 1 3 Handling Events

6. Save the program, and then compile and execute it. For reference,
Figure 13-11 shows the complete program. Figure 13-12 shows the output
when the program is executed several times. When the user enters a sale
amount of $1,000 and an S, a 5 percent discount is applied. When the user
enters a P for the same amount, a 10 percent discount is applied. When the user
enters X with the same amount, a 5 percent discount is applied, followed by a
10 percent discount, which produces a net result of a 14.5 percent discount.

(continued)

(continues)

using System;
using static System.Console;
delegate void DiscountDelegate(ref double saleAmount);
class DiscountDelegateDemo2
{
 public static void StandardDiscount(ref double saleAmount)
 {
 const double DISCOUNT_RATE = 0.05;
 const double CUTOFF = 1000.00;
 double discount;
 if(saleAmount >= CUTOFF)
 discount = saleAmount * DISCOUNT_RATE;
 else
 discount = 0;
 saleAmount –= discount;
 }
 public static void PreferredDiscount(ref double saleAmount)
 {
 const double SPECIAL_DISCOUNT = 0.10;
 double discount = saleAmount * SPECIAL_DISCOUNT;
 saleAmount –= discount;
 }
 static void Main()
 {
 double saleAmount;
 char code;
 DiscountDelegate firstDel, secondDel, thirdDel;
 firstDel = new DiscountDelegate(StandardDiscount);
 secondDel = new DiscountDelegate(PreferredDiscount);
 thirdDel = firstDel;
 thirdDel += secondDel;
 Write("Enter amount of sale ");

Figure 13-11 The DiscountDelegateDemo2 program (continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

621

Understanding Delegates

(continued)

 saleAmount = Convert.ToDouble(ReadLine());
 Write("Enter S for standard discount, " +
 "P for preferred discount, " +
 "\nor X for eXtreme discount ");
 code = Convert.ToChar(ReadLine());
 if(code == 'S')
 firstDel(ref saleAmount);
 else
 if(code == 'P')
 secondDel(ref saleAmount);
 else
 thirdDel(ref saleAmount);
 WriteLine("New sale amount is {0}",
 saleAmount.ToString("C2"));
 }
}

 (continued)

Figure 13-11 The DiscountDelegateDemo2 program

 For static methods like StandardDiscount and PreferredDiscount, a delegate object
encapsulates the method to be called. When creating a class that contains instance methods,
you create delegate objects that encapsulate both an instance of the class and a method of the
instance. You will create this type of delegate in the next section.

Figure 13-12 Three executions of the DiscountDelegateDemo2 program

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

622

C H A P T E R 1 3 Handling Events

Declaring Your Own Events and Handlers and Using the
Built-in EventHandler
To declare your own event, you use a delegate. An event provides a way for the clients of a class
to dictate methods that should execute when an event occurs. The clients identify methods
to execute by associating the delegate with the method that should execute when the event
occurs. Just like the event handlers that are automatically created in the IDE, each of your own
event handler delegates requires two arguments: the object where the event was initiated (the
sender) and an EventArgs argument. You can create an EventArgs object that contains event
information, or you can use the EventArgs class static field named Empty, which represents
an event that contains no event data. In other words, using the EventArgs.Empty field simply
tells the client that an event has occurred, without specifying details. For example, you can
declare a delegate event handler named ChangedEventHandler, as follows:
public delegate void ChangedEventHandler
 (object sender, EventArgs e);

The identifier ChangedEventHandler can be any legal identifier you choose. This delegate
defines the set of arguments that will be passed to the method that handles the event. The
delegate ChangedEventHandler can be used in a client program that handles events.
For example, Figure 13-13 contains the ChangedEventHandler delegate and a simple Student
class that is similar to many classes you already have created. The Student class contains just
two data fields and will generate an event when the data in either field changes.

Figure 13-13 The Student class (continues)

public delegate void ChangedEventHandler(object sender, EventArgs e);
class Student
{
 private int idNum;
 private double gpa;
 public event ChangedEventHandler Changed;
 public int IdNum
 {
 get
 {
 return idNum;
 }
 set
 {
 idNum = value;
 OnChanged(EventArgs.Empty);
 }
 }

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

623

Declaring Your Own Events and Handlers

 public double Gpa
 {
 get
 {
 return gpa;
 }
 set
 {
 gpa = value;
 OnChanged(EventArgs.Empty);
 }
 }
 private void OnChanged(EventArgs e)
 {
 Changed(this, e);
 }
}

(continued)

Figure 13-13 The Student class

The class in Figure 13-13 contains fields that hold an ID number and grade point average for
a Student. The first shaded statement in the figure defines a third attribute of the Student
class—an event named Changed. The declaration for an event looks like a field, but instead of
being an int or a double, it is a ChangedEventHandler.

 Events usually are declared as public, but you can use any accessibility modifier.

The Student class event (Changed) looks like an ordinary field. However, you cannot assign
values to the event as easily as you can to ordinary data fields. You can take only two actions on
an event: You can compose a new delegate onto it using the += operator, and you can remove
a delegate from it using the −= operator. For example, to add StudentChanged to the Changed
event of a Student object named stu, you would write the following:
stu.Changed += new ChangedEventHandler(StudentChanged);

In the Student class, each set accessor assigns a value to the appropriate class instance
field. However, when either idNum or gpa changes, the method in the Student class
named OnChanged() is also called, using EventArgs.Empty as the argument. The value of
EventArgs.Empty is a read-only instance of EventArgs. You can pass it to any method that
accepts an EventArgs parameter.
The OnChanged() method calls Changed() using two arguments: a reference to the Student
object that was changed and the empty EventArgs object. Calling Changed() is also known as
invoking the event.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

624

C H A P T E R 1 3 Handling Events

 If no client has wired a delegate to the event, the Changed field will be null, rather than referring to the
 delegate that should be called when the event is invoked. Therefore, programmers often check for null
before invoking the event, as in the following example:

if(Changed != null)
 Changed(this, e);

For simplicity, the example in Figure 13-13 does not bother checking for null.

Figure 13-14 shows an EventListener class that listens for Student events. This
class contains a Student object that is assigned a value using the parameter to the
EventListener class constructor. The StudentChanged() method is added to the
Student’s event delegate using the += operator. The StudentChanged() method is
the event-handler method that executes in response to a Changed event; it displays a
message and Student data.

Figure 13-15 shows a program that demonstrates using the Student and EventListener
classes. The program contains a single Main() method, which declares a Student and an
EventListener that listens for events from the Student class. Then three assignments are
made. Because this program is registered to listen for events from the Student, each change
in a data field triggers an event. That is, each field assignment not only changes the value
of the data field, it also executes the StudentChanged() method that displays two lines
of explanation. In Figure 13-16, the program output shows that an event occurs three times—
once when IdNum becomes 2345 (and Gpa is still 0), again when IdNum becomes 4567 (and
Gpa still has not changed), and a third time when Gpa becomes 3.2.

Figure 13-14 The EventListener class

class EventListener
{
 private Student stu;
 public EventListener(Student student)
 {
 stu = student;
 stu.Changed += new ChangedEventHandler(StudentChanged);
 }
 private void StudentChanged(object sender, EventArgs e)
 {
 WriteLine("The student has changed.");
 WriteLine("ID# {0} GPA {1}",
 stu.IdNum, stu.Gpa);
 }
}

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

625

Declaring Your Own Events and Handlers

Figure 13-15 The DemoStudentEvent program

using System;
using static System.Console;
class DemoStudentEvent
{
 static void Main()
 {
 Student oneStu = new Student();
 EventListener listener = new EventListener(oneStu);
 oneStu.IdNum = 2345;
 oneStu.IdNum = 4567;
 oneStu.Gpa = 3.2;
 }
}

Using the Built-in EventHandler
The C# language allows you to create events using any delegate type. However, the .NET
Framework provides guidelines you should follow if you are developing a class that others will use.
These guidelines indicate that the delegate type for an event should take exactly two parameters:
a parameter indicating the source of the event, and an EventArgs parameter that encapsulates
any additional information about the event. For events that do not use additional information, the
.NET Framework has already defined an appropriate delegate type named EventHandler.
Figure 13-17 shows all the code necessary to demonstrate an EventHandler. Note the
following changes from the classes used in the DemoStudentEvent program:
 No delegate is declared explicitly in the Student class.
 In the first statement with shading in the Student class, the event is associated with the

built-in delegate EventHandler.
 In the second statement with shading, which appears in the EventListener class, the

delegate composition uses EventHandler.

Figure 13-16 Output of the DemoStudentEvent program

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

626

C H A P T E R 1 3 Handling Events

Figure 13-17 The Student, EventListener, and DemoStudentEvent2 classes (continues)

using System;
using static System.Console;
class Student
{
 private int idNum;
 private double gpa;
 public event EventHandler Changed;
 public int IdNum
 {
 get
 {
 return idNum;
 }
 set
 {
 idNum = value;
 OnChanged(EventArgs.Empty);
 }
 }
 public double Gpa
 {
 get
 {
 return gpa;
 }
 set
 {
 gpa = value;
 OnChanged(EventArgs.Empty);
 }
 }
 private void OnChanged(EventArgs e)
 {
 Changed(this, e);
 }
}
class EventListener
{
 private Student stu;
 public EventListener(Student student)
 {
 stu = student;
 stu.Changed += new EventHandler(StudentChanged);
 }

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

627

Declaring Your Own Events and Handlers

Figure 13-17 The Student, EventListener, and DemoStudentEvent2 classes

 private void StudentChanged(object sender, EventArgs e)
 {
 WriteLine("The student has changed.");
 WriteLine(" ID# {0} GPA {1}"
 stu.IdNum, stu.Gpa);
 }
}
class DemoStudentEvent2
{
 static void Main()
 {
 Student oneStu = new Student();
 EventListener listener = new EventListener(oneStu);
 oneStu.IdNum = 2345;
 oneStu.IdNum = 4567;
 oneStu.Gpa = 3.2;
 }
}

(continued)

When you compile and execute the program in Figure 13-17, the output is identical to that
shown in Figure 13-16.

TWO TRUTHS & A LIE

Declaring Your Own Events and Handlers and
Using the Built-in EventHandler

1. When an event occurs, any delegate that a client has given or passed to the event is
invoked.

2. Built-in event handler delegates have two arguments, but those you create yourself
have only one.

3. You can take only two actions on an event field: composing a new delegate onto
the field using the += operator, and removing a delegate from the field using
the –= operator.

The false statement is #2. Every event handler delegate requires two arguments—
the object where the event was initiated (the sender) and an EventArgs argument.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

628

C H A P T E R 1 3 Handling Events

Creating a Delegate That Encapsulates Instance Methods

In the next set of steps, you create a simple BankAccount class that contains just
two data fields: an account number and a balance. It also contains methods to make
withdrawals and deposits. An event is generated after any withdrawal or deposit.

1. Open a project named DemoBankEvent. Type the using statements you
need, and then begin a class named BankAccount. The class contains an
account number, a balance, and an event that executes when an account’s
balance is adjusted.
using System
using static System.Console;
class BankAccount
{
 private int acctNum;
 private double balance;
 public event EventHandler BalanceAdjusted;

2. Add a constructor that accepts an account number parameter and initializes
the balance to 0.
public BankAccount(int acct)
{
 acctNum = acct;
 balance = 0;
}

3. Add read-only properties for both the account number and the account balance.
public int AcctNum
{
 get
 {
 return acctNum;
 }
}
public double Balance
{
 get
 {
 return balance;
 }
}

You Do It

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

629

Declaring Your Own Events and Handlers

4. Add two methods. One makes account deposits by adding the parameter to
the account balance, and the other makes withdrawals by subtracting the
parameter value from the bank balance. Each uses the OnBalanceAdjusted
event handler that reacts to all deposit and withdrawal events by displaying
the new balance.
public void MakeDeposit(double amt)
{
 balance += amt;
 OnBalanceAdjusted(EventArgs.Empty);
}
public void MakeWithdrawal(double amt)
{
 balance –= amt;
 OnBalanceAdjusted(EventArgs.Empty);
}

5. Add the OnBalanceAdjusted() method that accepts an EventArgs
parameter and calls BalanceAdjusted(), passing it references to the newly
adjusted BankAccount object and the EventArgs object. (Earlier in the
chapter, you learned that calling a method such as OnBalanceAdjusted() is
also known as invoking the event.) Include a closing curly brace for the class.
 public void OnBalanceAdjusted(EventArgs e)
 {
 BalanceAdjusted(this, e);
 }
}

6. Save the file.

Creating an Event Listener

1. When you write an application that declares a BankAccount, you might want
the client program to listen for BankAccount events. To do so, you create an
EventListener class.

2. After the closing curly brace of the BankAccount class, type the following
EventListener class that contains a BankAccount object. When
the EventListener constructor executes, the BankAccount field is
initialized with the constructor parameter. Using the += operator, add the
BankAccountBalanceAdjusted() method to the event delegate. Next,
write the BankAccountBalanceAdjusted() method to display a message
and information about the BankAccount.

(continued)

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

630

C H A P T E R 1 3 Handling Events

class EventListener
{
 private BankAccount acct;
 public EventListener(BankAccount account)
 {
 acct = account;
 acct.BalanceAdjusted += new EventHandler
 (BankAccountBalanceAdjusted);
 }
 private void BankAccountBalanceAdjusted(object sender,
 EventArgs e)
 {
 WriteLine("The account balance has been adjusted.");
 WriteLine(" Account# {0} balance {1}",
 acct.AcctNum, acct.Balance.ToString("C2"));
 }
}

3. Create a class to test the BankAccount and EventListener classes.
Below the closing curly brace for the EventListener class, start a
DemoBankAccountEvent class that contains a Main() method. Declare
an integer to hold the number of transactions that will occur in the
demonstration program. Also declare two variables: one can hold a code that
indicates whether a transaction is a deposit or withdrawal, and one is the
amount of the transaction.
class DemoBankAccountEvent
{
 static void Main()
 {
 const int TRANSACTIONS = 5;
 char code;
 double amt;

4. Declare a BankAccount object that is assigned an arbitrary account number,
and declare an EventListener object so this program is registered to
listen for events from the BankAccount. Each change in the BankAccount
balance will not only change the balance data field, it will execute the
BankAccountBalanceAdjusted() method that displays two lines of
explanation.
BankAccount acct = new BankAccount(334455);
EventListener listener = new EventListener (acct);

(continued)

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

631

Declaring Your Own Events and Handlers

5. Add a loop that executes five times (the value of TRANSACTIONS). On each
iteration, prompt the user to indicate whether the current transaction
is a deposit or withdrawal and to enter the transaction amount. Call the
MakeDeposit() or MakeWithdrawal() method accordingly.
for(int x = 0; x < TRANSACTIONS; ++x)
{
 Write("Enter D for deposit or W for withdrawal ");
 code = Convert.ToChar(ReadLine());
 Write("Enter dollar amount ");
 amt = Convert.ToDouble(ReadLine());
 if(code == 'D')
 acct.MakeDeposit(amt);
 else
 acct.MakeWithdrawal(amt);
}

6. At the end of the for loop, add a closing curly brace for the Main() method
and another one for the class.

7. Save the file, and then compile and execute it. Figure 13-18 shows a typical
execution in which five transactions modify the account. The output shows that
an event occurs five times—twice for deposits and three times for withdrawals.

(continued)

Figure 13-18 Typical execution of the DemoBankEvent program

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

632

C H A P T E R 1 3 Handling Events

Handling Control Component Events
Handling events requires understanding several difficult concepts. Fortunately, you most
frequently will want to handle events in GUI environments when the user will manipulate
Controls, and the good news is that these events have already been defined for you. When
you want to handle events generated by GUI Controls, you use the same techniques as when
you handle any other events. The major difference is that when you create your own classes,
like Student, you must define both the data fields and events you want to manage. However,
existing Control components, like Buttons and ListBoxes, already contain fields and public
properties, like Text, as well as events with names, like Click. Table 13-1 lists just some of
the more commonly used Control events. You can consult the Visual Studio Help feature
to discover additional Control events as well as more specific events assigned to individual
Control child classes.

Event Description
BackColorChanged Occurs when the value of the BackColor property has changed

Click Occurs when a control is clicked

ControlAdded Occurs when a new control is added

ControlRemoved Occurs when a control is removed

CursorChanged Occurs when the Cursor property value has changed

DragDrop Occurs when a drag-and-drop operation is completed

DragEnter Occurs when an object is dragged into a control’s bounds

DragLeave Occurs when an object has been dragged into and out of a control’s
bounds

DragOver Occurs when an object has been dragged over a control’s bounds

EnabledChanged Occurs when the Enabled property value has changed

Enter Occurs when a control is entered

FontChanged Occurs when the Font property value has changed

ForeColorChanged Occurs when the ForeColor property value has changed

GotFocus Occurs when a control receives focus

HelpRequested Occurs when a user requests help for a control

KeyDown Occurs when a key is pressed while a control has focus; event is
followed immediately by KeyPress

KeyPress Occurs when a key is pressed while a control has focus; event
occurs just after KeyDown

 Table 13-1 Some Control class public instance events (continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

633

Handling Control Component Events

Event Description
KeyUp Occurs when a key is released while a control has focus

Leave Occurs when a control is left

LocationChanged Occurs when the Location property value has changed

LostFocus Occurs when a control loses focus

MouseDown Occurs when the mouse pointer hovers over a control and a mouse
button is pressed

MouseEnter Occurs when the mouse pointer enters a control

MouseHover Occurs when the mouse pointer hovers over a control

MouseLeave Occurs when the mouse pointer leaves a control

MouseMove Occurs when the mouse pointer moves over a control

MouseUp Occurs when the mouse pointer hovers over a control and a mouse
button is released

MouseWheel Occurs when the mouse wheel moves while a control has focus

Move Occurs when a control is moved

Resize Occurs when a control is resized

TextChanged Occurs when the Text property value has changed

VisibleChanged Occurs when the Visible property value has changed

 Table 13-1 Some Control class public instance events

(continued)

You have already used the IDE to create some event-handling methods. These methods have been
the default events generated when you double-click a Control in the IDE. For example, you have
created a Click() method for a Button and a LinkClicked() method for a LinkLabel. A Form
can contain any number of Controls that might have events associated with them. Additionally,
a single Control might be able to raise any number of events. For example, besides creating a
Button’s default Click event, you might want to define various actions when the user’s mouse
rolls over the button. Table 13-1 lists only a few of the many events available with Controls; any
Control could conceivably raise many of the available events.
Suppose you want to create a project that takes a different set of actions when the mouse is
over a Button than when the mouse is clicked. Figure 13-19 shows a project that has been
started in the IDE. The following actions have been taken:
 The Form was resized to 225, 150.
 A Button was dragged onto the Form, and its Text was set to Click me.
 A Label was added to the Form, its Text was set to Hello, and its Font was increased.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

634

C H A P T E R 1 3 Handling Events

When you double-click the Button on the Form in the IDE, you generate the shell of a Click()
method into which you can type a command to change the Label’s text and color, as follows:
private void button1_Click(object sender, EventArgs e)
{
 label1.Text = "Button was clicked";
 label1.BackColor = Color.CornflowerBlue;
}

 Color.CornflowerBlue is one of C#’s predefined Color properties. A complete list appears in Table 12-5
in Chapter 12.

With the Button selected on the design Form, you can click the Events icon in the Properties
window at the right side of the screen. The Events icon looks like a lightning bolt. Figure 13-20
shows that the Properties window displays events instead of properties and that the Click
event has an associated method.

Figure 13-19 Start of the OneButtonTwoEvents project in the IDE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

635

If you scroll through the Events listed in the
Properties window, you can see a wide variety of
Event choices. If you scroll down to MouseEnter
and double-click, you can view the code for an event
handler in the Form1.cs file as follows:
private void button1_MouseEnter(object
 sender, EventArgs e)
{
}

 When you are viewing events in the Properties window,
you can return to the list of properties by clicking the
Properties icon. This icon is to the immediate left of
the Events icon.

You can type any statements you want within this method. For example, you might write the
following method:
private void button1_MouseEnter(object sender, EventArgs e)
{
 label1.Text = "Go ahead";
 button1.BackColor = Color.Red;
}

When you run the program with the two new methods, two different events can occur:
 When you enter the button with the mouse (that is, pass the mouse over it), the Label’s
Text changes to Go ahead, and the button turns red, as shown on the left in Figure 13-21.

 After the button is clicked, the Label’s Text changes again to Button was clicked, and the
Label becomes blue, as shown on the right in Figure 13-21.

Figure 13-20 The Properties window
displaying events

Figure 13-21 The OneButtonTwoEvents program when the mouse enters the
button and after the button is clicked

Handling Control Component Events

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

636

C H A P T E R 1 3 Handling Events

If you examine the code generated by the Windows Form Designer, you will find the following
two statements:
this.button1.Click += new System.EventHandler(this.button1_Click);
this.button1.MouseEnter += new
 System.EventHandler(this.button1_MouseEnter);

These EventHandler statements are similar to those in the Student class in Figure 13-17.
The Click and MouseEnter delegates have been set to handle events appropriately for this
application. You could have used the IDE to create these events just by selecting them from
the Properties list and writing the action statements you want. The IDE saves you time by
automatically entering the needed statement correctly. However, by knowing how to manually
create a GUI program that contains events, you gain a greater understanding of how event
handling works. This knowledge helps you troubleshoot problems and helps you create your
own new events and handlers when necessary.

 Watch the video Handling Control Component Events.

TWO TRUTHS & A LIE

Handling Control Component Events
1. The default methods generated when you double-click a Control in the IDE are

known as procedures.

2. A Form can contain any number of Controls that might have events associated
with them, and a single Control might be able to raise any number of events.

3. You can type any statements you want within an automatically generated event
method.

The false statement is #1. The default methods generated when you double-click a
Control in the IDE are known as event handlers.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

637

Handling Mouse and Keyboard Events

Handling Mouse and Keyboard Events
Users can interact with GUI applications in multiple ways. Certainly the most common tactics
are to use a mouse or to type on a keyboard. Mouse and keyboard events are similar in that
every mouse or key event-handling method must have two parameters: an object representing
the sender and an object that holds information about the event.

Handling Mouse Events
Mouse events include all the actions a user takes with a mouse, including clicking, pointing,
and dragging. Mouse events can be handled for any Control through an object of the class
MouseEventArgs, which descends from EventArgs. The delegate used to create mouse event
handlers is MouseEventHandler. Depending on the event, the type of the second parameter
in the event-handling method is EventArgs or MouseEventArgs. Table 13-2 describes several
common mouse events, and Table 13-3 lists some properties of the MouseEventArgs class.

Mouse event Description Event argument type
MouseClick Occurs when the user clicks the mouse within the

Control’s boundaries
MouseEventArgs

MouseDoubleClick Occurs when the user double-clicks the mouse
within the Control’s boundaries

MouseEventArgs

MouseEnter Occurs when the mouse cursor enters the
 Control’s boundaries

EventArgs

MouseLeave Occurs when the mouse cursor leaves the
 Control’s boundaries

EventArgs

MouseDown Occurs when a mouse button is pressed while the
mouse is within the Control’s boundaries

MouseEventArgs

MouseHover Occurs when the mouse cursor is within the
 Control’s boundaries

MouseEventArgs

MouseMove Occurs when the mouse is moved while within the
Control’s boundaries

MouseEventArgs

MouseUp Occurs when a mouse button is released while the
mouse is within the Control’s boundaries

MouseEventArgs

 Table 13-2 Common mouse events

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

638

C H A P T E R 1 3 Handling Events

MouseEventArgs property Description
Button Specifies which mouse button triggered the event; the value can be

Left, Right, Middle, or none

Clicks Specifies the number of times the mouse was clicked

X The x-coordinate where the event occurred on the control that
 generated the event

Y The y-coordinate where the event occurred on the control that
 generated the event

 Table 13-3 Properties of the MouseEventArgs class

 A MouseDown event can occur without a corresponding MouseUp if the user presses the mouse but switches
focus to another control or application before releasing the mouse button.

 MouseClick and Click are separate events. The Click event takes an EventArgs parameter, but
 MouseClick takes a MouseEventArgs parameter. For example, if you define a Click event, you do not
have the MouseEventArgs class properties.

Each part of Figure 13-22 contains a Form with a single Label named clickLocationLabel
that changes as the user continues to click the mouse on it. The figure shows how the Label
changes in response to a series of user clicks. Initially, the Label is empty (that is, the default
Text property has been deleted and not replaced), but the following code was added to the
Form.cs file:
private void Form1_MouseClick(object sender, MouseEventArgs e)
{
 clickLocationLabel.Text += "\nClicked at " + e.X +
 ", " + e.Y;
}

Every time the mouse is clicked on the Form, the Label is appended with a new line that
contains “Clicked at” and the x- and y-coordinate position where the click occurred on
the Form.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

639

Handling Mouse and Keyboard Events

When the programmer selects the MouseClick() event for Form1 from the Event list in
the IDE, the following code is generated in the Designer.cs file. This code instantiates the
MouseClick delegate.
this.MouseClick += new System.Windows.Forms.MouseEventHandler
 (this.Form1_MouseClicked);

Handling Keyboard Events
Keyboard events, also known as key events, occur when a user presses and releases keyboard
keys. Table 13-4 lists some common keyboard events. Similar to the way mouse events
work, every keyboard event-handling method must have two parameters. Depending on the
event, the delegate used to create the keyboard event handler is either KeyEventHandler
or KeyPressEventHandler and the type of the second parameter is KeyEventArgs or
KeyPressEventArgs.

Figure 13-22 A Form that responds to clicks

Keyboard event Description Event argument type
KeyDown Occurs when a key is first pressed KeyEventArgs

KeyUp Occurs when a key is released KeyEventArgs

KeyPress Occurs when a key is pressed KeyPressEventArgs

 Table 13-4 Keyboard events

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

640

C H A P T E R 1 3 Handling Events

Table 13-5 describes KeyEventArgs properties, and Table 13-6 describes KeyPressEventArgs
properties. An important difference is that KeyEventArgs objects include data about helper
keys or modifier keys that are pressed with another key. For example, if you need to distinguish
between a user pressing A and pressing Alt+A in your application, then you must use a
keyboard event that uses an argument of type KeyEventArgs.

Property Description
Alt Indicates whether the Alt key was pressed

Control Indicates whether the Control (Ctrl) key was pressed

Shift Indicates whether the Shift key was pressed

KeyCode Returns the code for the key

KeyData Returns the key code along with any modifier key

KeyValue Returns a numeric representation of the key (this number is known as the
Windows virtual key code)

Table 13-5 Some properties of KeyEventArgs class

Property Description
KeyChar Returns the ASCII character for the key pressed

Table 13-6 A property of KeyPressEventArgs class

For example, suppose that you create a Form with a Label, like the Form in Figure 13-24. From
the Properties window for the Form, you can double-click the KeyUp event to generate the shell
for a method named Form1_KeyUp(). Suppose you then insert the statements into the method
in the Form1.cs file, as shown in Figure 13-23. When the user runs the program and presses
and releases a keyboard key, the Label is filled with information about the key. Figure 13-24
shows three executions of this modified program. During the first execution, the user typed a.
You can see on the form that the KeyCode is A (uppercase), but you also can see that the user
did not press the Shift key.

Figure 13-23 The KeyUp() method

private void Form1_KeyUp(object sender, KeyEventArgs e)
{
 label1.Text += "Key Code " + e.KeyCode;
 label1.Text += "\nAlt " + e.Alt;
 label1.Text += "\nShift " + e.Shift;
 label1.Text += "\nControl " + e.Control;
 label1.Text += "\nKey Data " + e.KeyData;
 label1.Text += "\nKey Value " + e.KeyValue + "\n\n";
}

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

641

Handling Mouse and Keyboard Events

Figure 13-24 Three executions of the KeyDemo program

In the second execution in Figure 13-24, the user held down Shift, pressed a, and then released
the Shift key. This causes two separate KeyUp events. The first has KeyCode A with Shift true,
and the second has KeyCode ShiftKey. Notice that the Key values generated after typing a
and A are the same, but the value after typing Shift is different.
In the third execution in Figure 13-24, the user pressed the number 1, whose code is D1.
When you view the Form1.Designer.cs file for the KeyDemo program, you see the following
automatically created statement, which defines the composed delegate:
this.KeyUp += new System.Windows.Forms.KeyEventHandler
 (this.Form1_KeyUp);

TWO TRUTHS & A LIE

Handling Mouse and Keyboard Events
1. The delegate used to create mouse event handlers is MouseEventHandler.

2. Keyboard events, also known as key events, occur when a user presses and
releases keyboard keys.

3. Unlike mouse events, every keyboard event-handling method must be
parameterless.

The false statement is #3. Like mouse events, every keyboard event-handling
method must have two parameters: an object representing the sender, and an
object that holds information about the event.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

642

C H A P T E R 1 3 Handling Events

Managing Multiple Controls
When Forms contain multiple Controls, you often want one to have focus. You also might
want several actions to have a single, shared consequence. For example, you might want the
same action to occur whether the user clicks a button or presses the Enter key, or you might
want multiple buttons to generate the same event when they are clicked.

Defining Focus
When users encounter multiple GUI Controls on a Form, usually one Control has focus. For
example, when a Button has focus, a user expects that clicking the button or pressing the Enter
key will raise an event.
TabStop is a Boolean property of a Control that identifies whether the Control will serve
as a stopping place—that is, a place that will receive focus—in a sequence of Tab key presses.
The default value for TabStop for a Button is true, but the default value for a Label is false
because Labels are not expected to be part of a tabbing sequence. TabIndex is a numeric
property that indicates the order in which the Control will receive focus when the user presses
the Tab key. Programmers typically use small numbers for TabIndex values, beginning with
0. When a Control’s TabStop value is true and the Control has the lowest TabIndex of a
Form’s Controls, it receives focus when the Form is initialized.

 Setting the TabIndex values of two or more Controls to 0 does not cause an error. Only one Control will
receive focus, however.

Figure 13-25 shows a Form that contains three Buttons and a Label. Each Button has been
associated with a Click() event such as the following:
private void button1_Click(object sender, EventArgs e)
{
 buttonInfoLabel.Text = "Button 1 selected";
}

Each Button has been assigned a TabIndex value in ascending order. When the application
starts, the first Button (labeled 1) has focus. Whether the user clicks that button or presses
Enter, the message appears as shown on the left in Figure 13-25. In the next part of the figure,
the user has pressed Tab and Enter to select button2, so it has focus, and the Label’s Text
property has changed. Alternatively, the user could have clicked button2 to achieve the same
result. The user could then select either of the other Buttons by clicking them as usual or by
pressing Tab until the desired button has focus and then pressing Enter.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

643

Managing Multiple Controls

Figure 13-25 Execution of the FocusDemo application

Handling Multiple Events with a Single Handler
When a Form contains multiple Controls, you can create a separate event handler for each
Control. However, you can also associate the same event handler with multiple Controls.
For example, suppose you create a Form that contains three Buttons and a Label. The buttons
have been labeled A, B, and 3. Further suppose you want to display one message when the user
clicks a letter button and a different message when the user clicks a number button. In the IDE,
you can double-click the first Button and create an associated method such as the following:
private void button1_Click(object sender, EventArgs e)
{
 buttonInfoLabel.Text = "You clicked a letter button";
}

If you click the second button so its properties are displayed in the IDE’s Properties list, you can
click the Events icon to see a list of events associated with the second button. If no Click event
has been chosen yet, a list box is available. This list contains all the existing events that have the
correct signature to be the event handler for the event. Because the button1_Click() handler
can also handle a button2_Click() event, you can select it as the event for button2. When
you run the program, clicking either letter button produces the output shown in Figure 13-26.

Until you associate an event with the 3 button,
nothing happens when the user clicks it. To
complete the application that is running in
Figure 13-26, you would want to associate an
event with the 3 button to modify the Label’s
Text to You clicked a number button.

 When two or more Controls generate the
same event, many programmers prefer
to generalize the event method name. For
example, if button1 and button2 call the same
method when clicked, it makes sense to name
the event method letterButton_Click()
instead of button1_Click().

Figure 13-26 Output of the SingleHandler
program after a letter button is clicked

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

644

C H A P T E R 1 3 Handling Events

Continuing to Learn about Controls and Events
If you examine the Visual Studio IDE, you will discover many additional Controls that contain
hundreds of properties and events. No single book or programming course can demonstrate all
of them for you. However, if you understand good programming principles and the syntax and
structure of C# programs, learning about each new C# feature becomes progressively easier.
When you encounter a new control in the IDE, you probably can use it without understanding
all the code generated in the background, but when you do understand the background, your
knowledge of C# is more complete.
Continue to explore the Help facility in the Visual Studio IDE. Particularly, read the brief
tutorials there. Also, you should search the Internet for C# discussion groups. C# is a new,
dynamic language, and programmers pose many questions to each other online. Reading
these discussions can provide you with valuable information and suggest new approaches to
resolving problems.

TWO TRUTHS & A LIE

Managing Multiple Controls
1. The Control TabStop property can be set to true or false; it identifies whether

the Control will serve as a stopping place in a sequence of Tab key presses.

2. On a Form with multiple Controls, one Control must have a TabIndex value
of 0.

3. When a Form contains multiple Controls, you can associate the same event with
all of them.

The false statement is #2. TabIndex is a numeric property that indicates the
order in which the control will receive focus when the user presses the Tab key.
Programmers typically use small numbers for TabIndex values, beginning with
0. However, you might choose not to use any TabIndex values, or if you do, you
might choose not to start with 0.

Perhaps you have shopped online at a site that offers multiple ways to “buy now.” For example,
you might click a grocery cart icon, choose Place order now from a menu, or click a button.
Often, Place order now buttons are displayed at several locations on the page. If you want to
encourage a user’s behavior, you should provide multiple ways to accommodate it.

 Watch the video Managing Multiple Controls.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

645

Continuing to Learn about Controls and Events

Using TabIndex

In the next steps, you create a Form in the Visual Studio IDE and add four Buttons
so you can demonstrate how to manipulate their TabIndex properties.

1. Open the Visual Studio IDE and start a new project. Define it to be a
Windows Forms Application named ManyButtons.

2. Change the Size of the Form to 350, 130. Change the Text property of
Form1 to Many Buttons.

3. Drag four Buttons
onto the Form, and
place them so that
they are similar to
the layout shown
in Figure 13-27.
Change the Name
properties of the
buttons to redButton,
whiteButton, blueButton, and favoriteButton. Change the Text on the
Buttons to Red, White, Blue, and My favorite color, respectively. Adjust
the size of the last button so its longer Text is fully displayed.

4. Examine the Properties list for the Red button. The TabIndex is 0. Examine
the properties for the White, Blue, and My favorite color buttons. The IDE has
set their TabIndex values to 1, 2, and 3, respectively.

5. Click the Save All button, and then run the program. When the Form
appears, the Red button has focus. Press the Tab key, and notice that focus
changes to the White button. When you press Tab again, focus changes to
the Blue button. Press Tab several more times, and observe that the focus
rotates among the four Buttons.

6. Dismiss the Form.

7. Change the TabIndex property of the Blue button to 0, and change the
TabIndex of the Red button to 2. (The TabIndex of the White button
remains 1, and the TabIndex of the My favorite color button remains 3.)

You Do It

(continues)

Figure 13-27 Four Buttons on the Many Buttons Form

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

646

C H A P T E R 1 3 Handling Events

Save the program again, and then run it. This time, the Blue button begins
with focus. When you press Tab, the order in which the Buttons receive
focus is Blue, then White, then Red, then My favorite color. (Clicking the
Buttons or pressing Enter raises no event because you have not assigned
events to the Buttons.)

8. Change the TabIndex property for the Red button back to 0 and the
TabIndex property for the Blue button back to 2. Click the Save All button.

Associating One Method with Multiple Events

In the next steps, you add three methods to the Many Buttons Form and cause one
of the methods to execute each time the user clicks one of the four Buttons.

1. If it is not still open, open the ManyButtons project in the Visual Studio IDE.

2. Double-click the Red button on the Form to view the code for the shell of a
redButton_Click() method. Between the method’s curly braces, insert a
statement that will change the Form’s background color to red as follows:
this.BackColor = Color.Red;

 At first glance, you might think this refers to the Button that is clicked. However, if you examine
the redButton_Click() code in the Form1.cs file in the IDE, you will discover that the method is
part of the Form1 class. Therefore, this.BackColor refers to the Form’s BackColor property.

3. Select the Form1.cs [Design] tab, and then double-click the White button.
Add the following code to the whiteButton_Click() method that is
generated:

this.BackColor = Color.White;

4. On the Form, double-click the Blue button. In its Click() method, add the
following statement:

this.BackColor = Color.Blue;

5. On the form, click the My favorite color button. In its Properties list, click
the Events button (the lightning bolt). Select the Click event. From the list
box next to the Click event, select one of the three events to correspond to
your favorite color of the three.

(continued)

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

647

 When you double-click a component on a Form in Design View, you move to the default method
code. By clicking the component, however, you remain in Design View, and the correct set of
 properties appears in the Properties list.

6. Click the Save All button, and then execute the program. As you click
Buttons, the Form’s background color changes appropriately.

7. Dismiss the form, and exit Visual Studio.

(continued)

Chapter Summary
 GUI programs are event driven—an event such as a button click “drives” the program to

perform a task. Programmers also say a button click raises an event, fires an event, or triggers
an event. A method that performs a task in response to an event is an event handler. The
Click event is the event generated when a button is clicked.

 A delegate is an object that contains a reference to a method. C# delegates provide a way
for a program to take alternative courses that are not predetermined; a delegate provides
a way to pass a reference to a method as an argument to another method. You can assign
one delegate to another using the = operator. You also can use the + and += operators to
combine delegates into a composed delegate that calls the delegates from which it is built.

 To declare your own event, you use a delegate. A client identifies methods to execute
by associating the delegate with the method that should execute when the event occurs.
The .NET Framework provides guidelines that the delegate type for an event should take
exactly two parameters: a parameter indicating the source of the event, and an EventArgs
parameter that encapsulates any additional information about the event. For events that do
not use additional information, the .NET Framework has already defined an appropriate
type named EventHandler.

 When you use existing Control components like Buttons and ListBoxes, they contain
fields and public properties like Text as well as events with names like Click. A Form
can contain any number of Controls that might have events associated with them.
Additionally, a single control might be able to raise any number of events.

 Every mouse or keyboard event-handling method must have two parameters: an object
representing the sender, and an object that holds event information. Mouse events include
all the actions a user takes with a mouse, including clicking, pointing, and dragging. Mouse

Chapter Summary

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

648

C H A P T E R 1 3 Handling Events

events can be handled for any Control through an object of the class MouseEventArgs.
The delegate used to create mouse event handlers is MouseEventHandler. Depending
on the event, the type of the second parameter is EventArgs or MouseEventArgs.
Keyboard events, also known as key events, occur when a user presses and releases keyboard
keys. Depending on the event, the type of the second parameter is KeyEventArgs or
KeyPressEventArgs.

 When users encounter multiple GUI Controls on a Form, usually one Control has focus.
That is, if the user presses Enter, the Control will raise an event. When a Form contains
multiple Controls, you can create a separate event for each Control. However, you can
also associate the same event with multiple Controls.

 When you encounter a new control in the IDE, you probably can use it without
understanding all the code generated in the background. However, when you learn about the
background code, your knowledge of C# is more complete.

Key Terms
An event is a reaction to an occurrence in a program.
"At runtime" describes actions that occur during a program’s execution.
Event-driven programs contain code that causes an event such as a button click to drive the
program to perform a task.
A button click raises an event, fires an event, or triggers an event.
An event handler is a method that performs a task in response to an event.
An event receiver is another name for an event handler.
An event sender is the control that generates an event.
A click event is an action fired when a user clicks a button in a GUI environment.
Event wiring is the act of connecting an event to its resulting actions.
A delegate is an object that contains a reference to a method.
A composed delegate calls the delegates from which it is built.
Invoking the event occurs when you call an event method.
Key events are keyboard events that occur when a user presses and releases keyboard keys.
Focus is the property of a Control that causes an event to be raised when the user presses
Enter.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Review Questions

649

Review Questions
1. In C#, events are _____________________ .

a. triggered by actions
b. handled by catch blocks

c. Boolean objects
d. only used in GUI programs

2. A delegate is an object that contains a reference to a(n) _____________________ .
a. object
b. class

c. method
d. Control

3. C# delegates provide a way for a program to ____________________ .
a. take alternative courses that are not determined until runtime
b. include multiple methods
c. include methods from other classes
d. include multiple Controls that use the same method

4. Which of the following correctly declares a delegate type?
a. void aDelegate(int num);
b. delegate void aDelegate(num);
c. delegate void aDelegate(int num);
d. delegate aDelegate(int num);

5. If you have declared a delegate instance, you can assign it a reference to a method
as long as the method has the same _____________________ as the delegate.
a. return type
b. identifier

c. parameter list
d. two of the above

6. You can combine two delegates to create a(n) _____________________ delegate.
a. assembled
b. classified

c. artificial
d. composed

7. To combine two delegates using the + operator, the delegate objects must
_____________________ .
a. have the same parameter list
b. have the same return type

c. both of these
d. neither of these

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

650

C H A P T E R 1 3 Handling Events

8. In C#, a(n) _____________________ is triggered when specific changes to an object
occur.
a. delegate
b. event

c. notification
d. instantiation

9. An event handler delegate requires _____________________ argument(s).
a. zero
b. one

c. two
d. at least one

10. In an event-handler method, the sender is the ____________________ .
a. delegate associated with the event
b. method called by the event
c. object where the event was initiated
d. class containing the method that the event invokes

11. The EventArgs class contains a static field named _____________________.
a. Empty
b. Text

c. Location
d. Source

12. When creating events, you can use a predefined delegate type named
_____________________ that is automatically provided by the .NET Framework.
a. EventArgs
b. EventHandler

c. EventType
d. Event

13. Which of the following is not a predefined Control event?
a. MouseEnter
b. Click

c. Destroy
d. TextChanged

14. A single Control can raise _____________________ event(s).
a. one
b. two

c. five
d. any number of

15. When you create Forms with Controls that raise events, an advantage to creating
the code by hand over using the Visual Studio IDE is _____________________.
a. you are less likely to make typing errors
b. you save a lot of repetitious typing
c. you are less likely to forget to set a property
d. you gain a clearer understanding of the C# language

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Review Questions

651

16. When a Form contains three Controls and one has focus, you can raise an event by
_____________________.
a. clicking any Control
b. pressing Enter

c. either of these
d. none of these

17. The TabStop property of a Control is a(n) _____________________.
a. integer value indicating the tab order
b. Boolean value indicating whether the Control has a position in the tab

sequence
c. string value indicating the name of the method executed when the Control

raises an event
d. delegate name indicating the event raised when the user tabs to the Control

18. The TabIndex property of a Control is a(n) _____________________.
a. integer value indicating the tab order
b. Boolean value indicating whether the Control has a position in the tab

sequence
c. string value indicating the name of the method executed when the Control

raises an event
d. delegate name indicating the event raised when the user tabs to the Control

19. The Control that causes an event is the _____________________ argument to an
event method.
a. first
b. second

c. third
d. fourth

20. Which of the following is true?
a. A single event can be generated from multiple Controls.
b. Multiple events can be generated from a single Control.
c. Both of the above are true.
d. None of the above are true.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

652

C H A P T E R 1 3 Handling Events

Exercises

Programming Exercises

1. Create a project named WordsOfWisdom with a Form containing at least four
Labels that hold “wise” quotes of your choice. When the program starts, the
background color of the Form and each Label should be black. When the user
passes a mouse over a Label, change its BackColor to white, revealing the text of
the quote.

2. Create a project named RecentlyVisitedSites that contains a Form with a list
of three LinkLabels that link to any three Web sites you choose. When a
user clicks a LinkLabel, link to that site. When a user’s mouse hovers over a
LinkLabel, display a brief message that explains the site’s purpose. After a user
clicks a link, move the most recently selected link to the top of the list, and move
the other two links down, making sure to retain the correct explanation with
each link.

3. Create a project named ClassicBookSelector that contains a Form with a
ListBox that lists at least five classic books that you think all educated people
should have read. When the user places the mouse over the ListBox, display a
Label that contains a general statement about the benefits of reading. The Label
disappears when the user’s mouse leaves the ListBox area. When the user clicks a
book title in the ListBox, display another Label that contains a brief synopsis of
the specific book. Also change the BackColor of the Form to a different color for
each book.

4. Locate an animated .gif file on the Web. Create a project named Animated with a
Form that contains a PictureBox. Display three different messages on a Label—
one when the user’s mouse is over the PictureBox, one when the mouse is not over
the PictureBox, and one when the user clicks the PictureBox.

5. Create a project named FlorencesFloralCreations that allows a user to use
a ListBox to choose an occasion for which to send a floral creation (for example
Get well). When the user selects an occasion, the program should display a second
ListBox that contains at least two main flower choices for each occasion type—
for example, daisy or rose. After the user selects a flower type, the program should
display a congratulatory message on a Label indicating that the choice is a good
one, and the flower choice ListBox also becomes invisible. If the user makes a new
selection from the occasion ListBox, the congratulatory message is invisible until
the user selects a new flower option.

 Hint: You can remove the entire contents of a ListBox using the Items.Clear()
method, as in this.listBox1.Items.Clear();.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exercises

653

6. Create a project named GuessANumber with a Form that contains a guessing
game with five RadioButtons numbered 1 through 5. Randomly choose one of
the RadioButtons as the winning button. When the user clicks a RadioButton,
display a message indicating whether the user is right.

 Add a Label to the Form that provides a hint. When the user’s mouse hovers over
the label, notify the user of one RadioButton that is incorrect. After the user makes
a selection, disable all the RadioButtons.

 You can create a random number that is at least min but less than max using the following statements:

Random ran = new Random();

int randomNumber;

randomNumber = ran.Next(min, max);

7. Create a project named PickLarger with a Form that contains two randomly
generated arrays, each containing 100 numbers. Include two Buttons labeled “1”
and “2”. Starting with position 0 in each array, ask the user to guess which of the two
arrays contains the higher number and to click one of the two buttons to indicate the
guess. After each button click, the program displays the values of the two compared
numbers, as well as running counts of the number of correct and incorrect guesses.
After the user makes a guess, disable the Buttons while the user views the results.
After clicking a Next Button, the user can make another guess using the next
two array values. If the user makes more than 100 guesses, the program should
reset the array subscript to 0 so the comparisons start over but continue to keep a
running score.

Debugging Exercises
1. Each of the following files or projects in the Chapter.13 folder of your downloadable

student files has syntax and/or logical errors. Immediately save the two project folders
with their new names before starting to correct their errors. After you correct the
errors, save each file or project using the same filename preceded with Fixed. For
example, the file DebugThirteen1.cs will become FixedDebugThirteen1.cs and the
project folder for DebugThirteen3 will become FixedDebugThirteen3.
a. DebugThirteen1.cs
b. DebugThirteen2.cs
c. DebugThirteen3
d. DebugThirteen4

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

654

C H A P T E R 1 3 Handling Events

Case Problems

1. In Chapter 12, you created an interactive advertisement named
GreenvilleAdvertisement that can be used to recruit contestants for the Greenville
Idol competition. Now, modify that program to include at least one handled event
using the techniques you learned in this chapter.

2. In Chapter 12, you created an interactive advertisement named
MarshallsAdvertisement that can be used to advertise the available murals painted
by Marshall’s Murals. Now, modify that program to include at least one handled event
using the techniques you learned in this chapter.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

