
C H A P T E R 12
Using Controls

In this chapter you will:

�� Learn about Controls

�� Examine the IDE’s automatically generated code

�� Set a Control’s Font

�� Create a Form that contains LinkLabels

�� Add color to a Form

�� Add CheckBox and RadioButton objects to a Form

�� Add a PictureBox to a Form

�� Add ListBox, ComboBox, and CheckedListBox items
to a Form

�� Add a MonthCalendar and DateTimePicker to
a Form

�� Work with a Form’s layout

�� Add a MenuStrip to a Form

�� Learn to use other controls

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

542

C H A P T E R 1 2 Using Controls

Throughout this book, you have created both console and GUI applications. Your GUI
applications have used only a few Controls—Forms, Labels, TextBoxes, and Buttons.
Graphical control elements are the components through which a user interacts with a
GUI program. (Since Chapter 3, you have used the simpler name controls for these objects.)

If you have been creating mostly console applications while learning the concepts in this book, you might
want to review the chapter “Using GUI Objects and the Visual Studio IDE.” That chapter provides instruction
in the basic procedures used to create GUI applications and describes Visual Studio Help.

When using programs or visiting Internet sites, you have encountered and used many other
interactive controls such as scroll bars, check boxes, and radio buttons. C# has many classes
that represent these GUI objects, and the Visual Studio IDE makes it easy to add them to your
programs. (Controls are also often called widgets.) In this chapter, you will learn to incorporate
some of the most common and useful widgets into your programs. Additionally, you will see
how these components work in general so you can use other controls that are not covered in
this book or that become available to programmers in future releases of C#.

GUI components are referred to as widgets, which some sources claim is a combination of the terms window
and gadgets. Originally, widget comes from the 1924 play “Beggar on Horseback,” by George Kaufman
and Marc Connelly. In the play, a young composer gets engaged to the daughter of a rich businessman and
foresees spending his life doing pointless work in a bureaucratic big business that manufactures widgets,
which represent a useless item whose purpose is never explained.

Understanding Controls
When you design a Form, you can place Buttons and other controls on the Form surface.
In C#, the Control class provides the definitions for these GUI objects. Control objects such
as Forms and Buttons, like all other objects in C#, ultimately derive from the Object class.
Figure 12-1 shows where the Control class fits into the inheritance hierarchy.

System.Object
 System.MarshalByRefObject
 System.ComponentModel.Component
 System.Windows.Forms.Control
 26 Derived classes

Figure 12-1 The Control class inheritance hierarchy

Figure 12-1 shows that all Controls are Objects, of course. They are also all
MarshalByRefObjects. (A MarshalByRefObject is one you can instantiate on a remote
computer so that you can manipulate a reference to the object rather than a local copy of
the object.) Controls also descend from Component. (The Component class provides

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

543

Understanding Controls

containment and cleanup for other objects—inheriting from Component allows Controls to
be contained in objects such as Forms and provides for disposal of Controls when they are
destroyed. The Control class adds visual representation to Components.) The Control class
implements very basic functionality required by classes that define the GUI objects the user
sees on the screen. This class handles user input through the keyboard, pointing devices, and
touch screens as well as message routing and security. It defines the bounds of a Control by
determining its position and size.
Table 12-1 shows the 26 direct descendents of Control and some commonly used descendents
of those classes. It does not show all the descendents that exist; rather, it shows only the
descendents covered previously or in this chapter. For example, the ButtonBase class is the
parent of Button, a class you have used throughout this book. In this chapter, you will use two
other ButtonBase children—CheckBox and RadioButton. This chapter cannot cover every
Control that has been invented; however, after you learn to use some Controls, you will
find that others work in much the same way. You also can read more about them in the Visual
Studio Help documentation.

Class Commonly used descendents

Microsoft.WindowsCE.Forms.DocumentList

System.Windows.Forms.AxHost

System.Windows.Forms.ButtonBase Button, CheckBox, RadioButton

System.Windows.Forms.DataGrid

System.Windows.Forms.DataGridView

System.Windows.Forms.DateTimePicker

System.Windows.Forms.GroupBox

System.Windows.Forms.Integration.ElementHost

System.Windows.Forms.Label LinkLabel

System.Windows.Forms.ListControl ListBox, ComboBox,
CheckedListBox

System.Windows.Forms.ListView

System.Windows.Forms.MdiClient

System.Windows.Forms.MonthCalendar

System.Windows.Forms.PictureBox

 Table 12-1 Classes derived from System.Windows.Forms.Control (continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

544

C H A P T E R 1 2 Using Controls

Class Commonly used descendents

System.Windows.Forms.PrintPreviewControl

System.Windows.Forms.ProgressBar

System.Windows.Forms.ScrollableControl

System.Windows.Forms.ScrollBar

System.Windows.Forms.Splitter

System.Windows.Forms.StatusBar

System.Windows.Forms.TabControl

System.Windows.Forms.TextBoxBase TextBox

System.Windows.Forms.ToolBar

System.Windows.Forms.TrackBar

System.Windows.Forms.TreeView

System.Windows.Forms.WebBrowserBase

 Table 12-1 Classes derived from System.Windows.Forms.Control

Because Controls are all relatives, they share many of the same attributes. Each Control has
more than 80 public properties and 20 protected properties. For example, each Control
has a Font and a ForeColor that dictate how its text is displayed, and each Control has a
Width and Height. Table 12-2 shows just some of the public properties associated with
Controls in general; reading through them will give you an idea of the Control attributes
that you can change.

Property Description

AllowDrop Gets or sets a value indicating whether the control can accept data that the
user drags onto it

Anchor Gets or sets the edges of the container to which a control is bound and
determines how a control is resized with its parent

BackColor Gets or sets the background color for the control

BackgroundImage Gets or sets the background image displayed in the control

(continued)

 Table 12-2 Selected public Control properties (continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

545

Understanding Controls

Property Description

Bottom Gets the distance, in pixels, between the bottom edge of the control and the
top edge of its container’s client area

Bounds Gets or sets the size and location of the control, including its nonclient
elements, in pixels, relative to the parent control

CanFocus Gets a value indicating whether the control can receive focus

CanSelect Gets a value indicating whether the control can be selected

Capture Gets or sets a value indicating whether the control has captured the mouse

Container Gets the IContainer that contains the Component (inherited from Component)

ContainsFocus Gets a value indicating whether the control or one of its child controls
currently has the input focus

Cursor Gets or sets the cursor that is displayed when the mouse pointer is over the
control

Disposing Gets a value indicating whether the base Control class is in the process of
disposing

Dock Gets or sets which control borders are docked to their parent control and
determines how a control is resized with its parent

Enabled Gets or sets a value indicating whether the control can respond to user
interaction

Focused Gets a value indicating whether the control has input focus

Font Gets or sets the font of the text displayed by the control

ForeColor Gets or sets the foreground color of the control

HasChildren Gets a value indicating whether the control contains one or more child
controls

Height Gets or sets the height of the control

IsDisposed Gets a value indicating whether the control has been disposed of

Left Gets or sets the distance, in pixels, between the left edge of the control and
the left edge of its container’s client area

Location Gets or sets the coordinates of the upper-left corner of the control relative to
the upper-left corner of its container

Margin Gets or sets the space between controls

(continued)

 Table 12-2 Selected public Control properties (continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

546

C H A P T E R 1 2 Using Controls

Property Description

ModifierKeys Gets a value indicating which of the modifier keys (Shift, Ctrl, and Alt) is in a
pressed state

MouseButtons Gets a value indicating which of the mouse buttons is in a pressed state

MousePosition Gets the position of the mouse cursor in screen coordinates

Name Gets or sets the name of the control

Parent Gets or sets the parent container of the control

Right Gets the distance, in pixels, between the right edge of the control and the left
edge of its container’s client area

Size Gets or sets the height and width of the control

TabIndex Gets or sets the tab order of the control within its container

TabStop Gets or sets a value indicating whether the user can give focus to the control
using the Tab key

Text Gets or sets the text associated with this control

Top Gets or sets the distance, in pixels, between the top edge of the control and
the top edge of its container’s client area

TopLevelControl Gets the parent control that is not parented by another Windows Forms
control; typically, this is the outermost Form in which the control is contained

Visible Gets or sets a value indicating whether the control and all its parent controls
are displayed

Width Gets or sets the width of the control

 Table 12-2 Selected public Control properties

The description of each property in Table 12-2 indicates whether the property is read-only; such properties
only get values and do not set them.

You have altered Label, TextBox, and Button properties such as Text and Visible using the Properties
window in Visual Studio. All the other Controls you learn about in this chapter can be manipulated in the
same way.

A project can contain multiple Forms, each with its own Controls. You will learn how to add more Forms to
a project in the “You Do It” exercises later in this chapter.

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

547

Examining the IDE’s Automatically Generated Code

Examining the IDE’s Automatically Generated Code
Figure 12-2 shows a Form created in the IDE. The following actions have been performed:

1. A new Windows Forms project has been started and given the name
FormWithALabelAndAButton.

2. A Label has been dragged onto Form1. Using the Properties window in the IDE, the
Label’s Text property has been changed to Click the button, and its Font has been
changed to Georgia, Bold, and size 16. Its Name has not been changed from the default
name label1.

3. A Button has been dragged onto Form1. The Button’s Text property has been changed
to OK, and its Name has been changed from the default Name button1 to okButton.

Figure 12-2 A Form generated by the
FormWithALabelAndAButton program

TWO TRUTHS & A LIE

Understanding Controls
1. The Control class implements basic functionality required by GUI objects that a

user sees on the screen.

2. Most Controls have Font and ForeColor properties.

3. Every Control has Width and Height properties.

The false statement is #2. Every Control has Font and ForeColor properties.

As you drag controls in the Form Designer or
change properties in the Properties Window,
Visual Studio automatically generates code
in the file named Form1.Designer.cs. When
you open the Form1.Designer.cs file in Visual
Studio, you can look for the method named
InitializeComponent(), and you can see two
lines of code generated within it near the bottom
as follows:
private System.Windows.Forms.Label
label1;
private System.Windows.Forms.Button
okButton;

If you were to continue to drag additional
components onto the Form, more declarations
would be generated.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

548

C H A P T E R 1 2 Using Controls

The following lines appear just before the method header for the InitializeComponent()
method:
#region Windows Form Designer generated code

/// <summary>
/// Required method for Designer support - do not modify
/// the contents of this method with the code editor.
/// </summary>

Within the InitializeComponent() method, you can see automatically-generated
statements that set the properties of the label, the button, and the form itself as partially
shown in Figure 12-3. In the code in the figure, every instance of this means “this Form”.

Figure 12-3 Some of the code in the InitializeComponent() method for
FormWithALabelAndAButton

So much code is automatically generated by Visual Studio that it can be hard to find what you want.
To locate a line of code, click Edit on the menu bar in the IDE, click Find and Replace, click Quick Find,
type a key phrase to search for. Make sure that the drop down box correctly identifies the area in which you
want to search—for example, the current selection or the current document.

Do not be intimidated by the amount of code automatically generated by the IDE. Based on
what you have learned so far in this book, you can easily make sense of most of it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

549

Examining the IDE’s Automatically Generated Code

 After the InitializeComponent() method header and opening brace, the next two
statements call the constructor for each control that the programmer dragged onto the Form:

this.label1 = new System.Windows.Forms.Label();
this.okButton = new System.Windows.Forms.Button();

These statements create the actual objects.
 The next statement is a method call as follows:
this.SuspendLayout();

SuspendLayout() is a method that prevents conflicts when you are placing Controls on
a form. Its counterparts, ResumeLayout() and PerformLayout(), appear at the bottom of
the method. If you remove these method calls from small applications, you won’t notice the
difference. However, in large applications, suspending the layout logic while you adjust the
appearance of components improves performance.

 Comments that start with forward slashes serve to separate the label1 code from other
code in the method. Following the label1 comment lines, seven statements set properties
of the Label as follows:

this.label1.AutoSize = true;
this.label1.Font = new System.Drawing.Font("Georgia",
 15.75F, System.Drawing.FontStyle.Bold,
 System.Drawing.GraphicsUnit.Point, ((byte)(0)));
this.label1.Location = new System.Drawing.Point(47, 60);
this.label1.Name = "label1";
this.label1.Size = new System.Drawing.Size(182, 25);
this.label1.TabIndex = 0;
this.label1.Text = "Click the button";

You can see that the Font, Location, Name, Size, and Text have been assigned values
based on the programmer’s choices in the IDE. The TabIndex for label1 is 0 by default;
TabIndex values determine the order in which Controls receive focus when the user
presses the Tab key. This property is typically more useful for selectable items like Buttons.

 If you return to the visual designer and make changes to the form or its components, for example
by relocating the label, when you next view the code, it will have been updated accordingly.

 Although not completely visible in Figure 12-3, the next set of statements defines the properties
of the Button on the Form. The TabIndex for the Button is set to 1 because it was dragged onto
the Form after the Label. Additional Controls would receive consecutive TabIndex values.

this.okButton.Location = new System.Drawing.Point(98, 117);
this.okButton.Name = "okButton";
this.okButton.Size = new System.Drawing.Size(75, 23);
this.okButton.TabIndex = 1;
this.okButton.Text = "OK";
this.okButton.UseVisualStyleBackColor = true;

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

550

C H A P T E R 1 2 Using Controls

 The InitializeComponent() method ends with statements that set the properties of the
Form, such as its drawing size and text, and that add the Label and Button to the Form:

// Form1
//
this.AutoScaleDimensions = new System.Drawing.SizeF(6F, 13F);
this.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font;
this.ClientSize = new System.Drawing.Size(284, 262);
this.Controls.Add(this.okButton);
this.Controls.Add(this.label1);
this.Name = "Form1";
this.Text = "Form1";
this.ResumeLayout(false);
this.PerformLayout();

Although the property settings for the Label and Button include identifiers for the Controls (for example,
this.label1.Name or this.okButton.Text), the property settings for the Form itself use only the
reference this. That’s because the statements are part of the Form1 class.

In this chapter, you will learn about several additional Controls. When designing a Form,
you should use the drag-and-drop design features in the IDE to place components and use
the Properties window in the IDE to set properties instead of typing statements in the code
editor. However, this chapter also teaches you about the code behind these actions so you can
troubleshoot problems in projects and write usable statements when necessary.

Watch the video Examining the IDE Code.

TWO TRUTHS & A LIE

Examining the IDE’s Automatically Generated Code
1. By using the Form Designer and the Properties window, you save time and eliminate

many chances for error.

2. When you use the Form Designer to drag a Label onto a Form, no constructor call
is needed for the Label.

3. You can use the Properties Window to set properties for a Label such as Font,
Location, Size, and Text.

The false statement is #2. When you use the Form Designer to drag a Label onto
a Form, you do not have to write a constructor call, but one is generated for you.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

551

Setting a Control’s Font

Setting a Control’s Font
You use the Font class to change the appearance of printed text on your Forms. When
designing a Label, Button, or other Control on a Form, it is easiest to select a Font
from the Properties list. After you place a Control on a Form in the IDE, you can select
the ellipsis (three dots) that follows the current Font property name in the Properties
list. (See Figure 12-4.) This selection displays a Font window in which you can choose a
Font name, size, style, and other effects. (See Figure 12-5.)

Figure 12-4 Clicking the ellipsis following the Font property

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

552

C H A P T E R 1 2 Using Controls

Figure 12-5 The Font window

However, if you wanted to change a Font later in a program—for example, after a user
clicks a button—you might want to create your own instance of the Font class. As another
example, suppose you want to create multiple controls that use the same Font. In that case, it
makes sense to declare a named instance of the Font class. For example, you can declare the
following Font:
System.Drawing.Font bigFont = new
 System.Drawing.Font("Courier New", 16.5f);

This version of the Font constructor requires two arguments—a string and a float.
The string you pass to the Font constructor is the name of the font. If you use a font name
that does not exist in your system, the font defaults to Microsoft Sans Serif. The second value
is a float that represents the font size. Notice that you must use an F (or an f) following the
Font size value constant when it contains a decimal point to ensure that the constant will be
recognized as a float and not a double. (If you use an int as the font size, you do not
need the f because the int will automatically be cast to a float.) An alternative would be
to instantiate a float constant or variable and use its name as an argument to the
Font constructor.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

553

In Chapter 2, you learned to use an f following a floating-point constant to indicate the float type.
Recall that a numeric constant with a decimal point is a double by default.

After a Font object named bigFont is instantiated, you can code statements similar to
the following:
this.label1.Font = bigFont;
this.okButton.Font = bigFont;

If you want to change the properties of several objects at once in the IDE, you can drag your mouse around
them to create a temporary group and then change the property for all of them with one entry in the
Properties list.

The Font class includes a number of overloaded constructors. For example, you also can create
a Font using three arguments, adding a FontStyle, as in the following declaration:
Font aFancyFont = new Font("Arial", 24, FontStyle.Italic);

Table 12-3 lists the available FontStyles. You can combine multiple styles using the pipe (|),
which is also called the logical OR operator or the bitwise OR operator. (You first learned about
this operator in Chapter 4.) The word or indicates that bits are turned on in the result when
either of the operands contains an on-bit in a given position. For example, the following code
creates a Font that is bold and underlined because the bits that indicate bold and underlined
are both turned on in the result:
Font boldAndUnderlined = new Font("Helvetica",
 10, FontStyle.Bold | FontStyle.Underline);

Member Name Description
Bold Bold text

Italic Italic text

Regular Normal text

Strikeout Text with a line through the middle

Underline Underlined text

 Table 12-3 FontStyle enumeration

Setting a Control’s Font

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

554

C H A P T E R 1 2 Using Controls

Instead of instantiating a named Font object, you can create and assign an anonymous Font in
one step. In other words, an identifier is not provided for the Font, as in this example:
this.label1.Font = new
 System.Drawing.Font("Courier New", 12.5F);

If you don’t provide an identifier for a Font, you can’t reuse it. You will have to create it again to
use it with additional Controls.

TWO TRUTHS & A LIE

Setting a Control’s Font
1. You use the Font class to change the appearance of printed text on Controls in

your Forms.

2. When designing a Control on a Form, you must select a Font from the Properties
list in the IDE.

3. The Font class includes several overloaded constructors.
The false statement is #2. When designing a Control on a Form, a default font
is selected. If you want to change the font, it is easiest to select a font from the
Properties list, but you also can create your own instance of the Font class.

Using a LinkLabel
A link label is a control with a label that provides the user a way to link to other sources, such
as Web pages or files. The C# class that creates a link label is LinkLabel; it is a child of Label.
Table 12-4 summarizes the properties and lists the default event method for a LinkLabel. The
default event for a Control is:
 The method whose shell is automatically created when you double-click the Control while

designing a project in the IDE
 The method that you are most likely to alter when you use the Control
 The event that users most likely expect to generate when they encounter the Control in a

working application
With many Controls, including a LinkLabel, a mouse click by the user triggers the default
event. When designing a program, you can double-click a Control in the IDE to generate the
default method shell, and then write any necessary statements within the shell.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

555

Using a LinkLabel

Property or Method Description
ActiveLinkColor The color of the link when it is clicked

LinkColor The original color of links before they have been visited; usually blue
by default

LinkVisited If true, the link’s color is changed to the VisitedLinkColor

VisitedLinkColor The color of a link after it has been visited; usually purple by default

LinkClicked() Default event that is generated when the link is clicked by the user

 Table 12-4 Commonly used LinkLabel properties and default event

The default event for many Controls, such as Buttons and LinkLabels, occurs when the user clicks the
Control. However, the default event for a Form is the Load() method. In other words, if you double-click
a Form in the IDE, you generate this method. In it, you can place statements that execute as soon as a
Form is loaded.

When you create a LinkLabel, it appears as underlined text. The text is blue by default,
but you can change the color in the LinkLabel Properties list in the IDE. When you pass
the mouse pointer over a LinkLabel, the pointer changes to a hand; you have seen similar
behavior while using hyperlinks in Web pages. When a user clicks a LinkLabel, it generates
a click event, just as clicking a Button does. When a click event is fired from a LinkLabel,
a LinkClicked() method is executed, similar to how clicking a Button can execute a
Click() method.

You can create a program so that a user generates an event by clicking many types of objects. For example,
for a Label named label1, you could write statements in a label1_Click() method. However, users do
not usually expect to click Labels; they do expect to click LinkLabels.

When you double-click a Label (as well as most other controls), the automatically generated method
name ends with Click(), but when you double-click a LinkLabel, the corresponding method ends
with Clicked().

Figure 12-6 shows a Form onto which two LinkLabels have been dragged from the Toolbox in
the IDE. The default Frame size has been reduced, and the Text properties of the LinkLabels
have been changed to Course Technology Website and Read Our Policy.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

556

C H A P T E R 1 2 Using Controls

If you double-click a LinkLabel
in the IDE, a method shell is
created for you in the format
xxx_LinkClicked(), where xxx
is the value of the Name property
assigned to the LinkLabel. (This
corresponds to what happens when
you double-click a Button in the
IDE.) For example, Figure 12-7
shows the two generated methods
for the Form in Figure 12-6 when
the default LinkLabel identifiers
linkLabel1 and linkLabel2

are used. In Figure 12-7, all the code was automatically generated except for the two shaded
statements. The programmer added those lines to indicate which actions should occur when a
user clicks the corresponding LinkLabel in a running application.

public partial class Form1 : Form
{
 public Form1()
 {
 InitializeComponent();
 }
 private void linkLabel1_LinkClicked(object sender,
 LinkLabelLinkClickedEventArgs e)
 {
 System.Diagnostics.Process.Start("IExplore",
 "http://www.course.com");
 }
 private void linkLabel2_LinkClicked(object sender,
 LinkLabelLinkClickedEventArgs e)
 {
 System.Diagnostics.Process.Start
 (@"C:\C#\Chapter.12\Policy.txt");
 }
}

Figure 12-7 Two LinkClicked() methods

If you add using System.Diagnostics; at the top of your file, you can eliminate the references in
Figure 12-7 and refer to the process simply as Process.Start.

Figure 12-6 A Form with two LinkLabels

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

557

In each of the LinkClicked() methods in Figure 12-7, the programmer has added a call to
System.Diagnostics.Process.Start(). This method allows you to run other programs
within an application. The Start() method has two overloaded versions:
 When you use one string argument, you provide the name of the file to be opened.
 When you use two arguments, you provide the name of an application and its

needed arguments.
In the linkLabel1_LinkClicked() method, the two arguments open Internet Explorer
(“IExplore”) and pass it the address of the Course Technology Web site. If an Internet
connection is active, control transfers to the Web site.
In the linkLabel2_LinkClicked() method, only one argument is provided. It opens a file
stored on the local disk. The default application opens based on the file’s application type,
which is determined by its file extension. For example, Notepad is the default application for
a file with a .txt extension. Alternatively, you could code the following, which explicitly names
Notepad as the application:
System.Diagnostics.Process.Start("Notepad",
 @"C:\C#\Chapter.12\Policy.txt");

In the linkLabel2_LinkClicked() method, an at sign (@) appears in front of the filename to be opened.
This symbol indicates that all characters in the string should be interpreted literally. Therefore, the
backslashes in the path are not interpreted as escape sequence characters.

The LinkVisited property can be set to true when you determine that a user has clicked
a link, as shown in the shaded statement in Figure 12-8. This setting indicates that the link
should be displayed in a different color so the user can see the link has been visited. By default,
the visited link color is purple, but you can change this setting in the Properties list for
the LinkLabel.

private void linkLabel1_LinkClicked(object sender,
 LinkLabelLinkClickedEventArgs e)
{
 System.Diagnostics.Process.Start("IExplore",
 "http://www.course.com");
 linkLabel1.LinkVisited = true;
}

Figure 12-8 Setting the LinkVisited property

Using a LinkLabel

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

558

C H A P T E R 1 2 Using Controls

Adding Color to a Form
The Color class contains a wide variety of predefined Colors that you can use with your
Controls (see Table 12-5).

C# also allows you to create custom colors. If no color in Table 12-5 suits your needs, search for custom
color in Visual Studio Help to obtain more information.

AliceBlue DeepPink Lime RosyBrown

AntiqueWhite DeepSkyBlue LimeGreen RoyalBlue

Aqua DimGray Linen SaddleBrown

Aquamarine DodgerBlue Magenta Salmon

Azure Firebrick Maroon SandyBrown

Beige FloralWhite MediumAquamarine SeaGreen

Bisque ForestGreen MediumBlue SeaShell

Black Fuchsia MediumOrchid Sienna

 Table 12-5 Color properties (continues)

TWO TRUTHS & A LIE

Using a LinkLabel
1. A LinkLabel is a child class of Label, and it provides the additional capability to

link the user to other sources.

2. The default event for a Control is the method whose shell is automatically
created when you double-click the Control while designing a project in the IDE.
Users most likely expect to generate this event when they encounter the Control
in a working application.

3. When you create a LinkLabel, it appears as italicized underlined text, and when you
pass the mouse pointer over a LinkLabel, the pointer changes to an hourglass.

The false statement is #3. When you create a LinkLabel, it appears as
underlined text, and when you pass the mouse pointer over a LinkLabel, the
pointer changes to a hand.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

559

Adding Color to a Form

BlanchedAlmond Gainsboro MediumPurple Silver

Blue GhostWhite MediumSeaGreen SkyBlue

BlueViolet Gold MediumSlateBlue SlateBlue

Brown Goldenrod MediumSpringGreen SlateGray

BurlyWood Gray MediumTurquoise Snow

CadetBlue Green MediumVioletRed SpringGreen

Chartreuse GreenYellow MidnightBlue SteelBlue

Chocolate Honeydew MintCream Tan

Coral HotPink MistyRose Teal

CornflowerBlue IndianRed Moccasin Thistle

Cornsilk Indigo NavajoWhite Tomato

Crimson Ivory Navy Transparent

Cyan Khaki OldLace Turquoise

DarkBlue Lavender Olive Violet

DarkCyan LavenderBlush OliveDrab Wheat

DarkGoldenrod LawnGreen Orange White

DarkGray LemonChiffon OrangeRed WhiteSmoke

DarkGreen LightBlue Orchid Yellow

DarkKhaki LightCoral PaleGoldenrod YellowGreen

DarkMagenta LightCyan PaleGreen

DarkOliveGreen LightGoldenrodYellow PaleTurquoise

DarkOrange LightGray PaleVioletRed

DarkOrchid LightGreen PapayaWhip

DarkRed LightPink PeachPuff

DarkSalmon LightSalmon Peru

DarkSeaGreen LightSeaGreen Pink

DarkSlateBlue LightSkyBlue Plum

DarkSlateGray LightSlateGray PowderBlue

DarkTurquoise LightSteelBlue Purple

DarkViolet LightYellow Red

(continued)

 Table 12-5 Color properties

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

560

C H A P T E R 1 2 Using Controls

The false statement is #1. The Color class contains a wide variety of predefined
Colors that you can use with your Controls.

When you are designing a Form, you can choose colors from a list next to the BackColor and
ForeColor properties in the IDE’s Properties list. The statements created will be similar to
the following:
this.label1.BackColor = System.Drawing.Color.Blue;
this.label1.ForeColor = System.Drawing.Color.Gold;

If you add using System.Drawing; at the top of your file, you can eliminate the references in the preceding
lines and refer to the colors simply as Color.Blue and Color.Gold.

For professional-looking results when you prepare a resume or most other business documents, experts
recommend that you use only one or two fonts and colors, even though your word-processing program
allows many such selections. The same is true when you design GUI applications. Although many fonts and
colors are available, you probably should stick with just a few choices in a single project.

TWO TRUTHS & A LIE

Adding Color to a Form
1. Because the choice of colors in C# is limited, you are required to create custom

colors for many GUI applications.

2. When you are designing a Form, color choices appear in a list next to the
BackColor and ForeColor properties in the IDE’s Properties list.

3. The complete name of the color pink in C# is System.Drawing.Color.Pink.

Adding Labels to a Form and Changing Their Properties
In the next steps, you begin to create an application for Bailey’s Bed and Breakfast.
The main Form allows the user to select one of two suites and discover the amenities
and price associated with each choice. You will start by placing two Labels on a
Form and setting several of their properties.

You Do It

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

561

The screen images in the next steps represent a typical Visual Studio environment. Based on the
version of Visual Studio you are using and the options selected during your installation, your screen
might look different.

1. Open Microsoft Visual Studio. Select New Project and Windows Forms
Application. Near the bottom of the New Project window, click in the Name
text box, and replace the default name with BedAndBreakfast. Make
sure that the Location field contains the folder where you want to store the
project. See Figure 12-9.

Figure 12-9 The New Project window for the BedAndBreakfast application

2. Click OK. The design screen opens. The blank Form in the center of the
screen has an empty title bar. Click the Form. The lower-right corner of the
screen contains a Properties window that lists the Form’s properties. (If you
do not see the Properties window, you can click View on the menu bar, and
then click Properties Window.) In the Properties list, click the Name property
and change the Name of the Form to BaileysForm. Click the Text property
and change it to Bailey’s Bed and Breakfast.

(continued)

(continues)

Windows Forms
Application selected

Project Name entered

Adding Color to a Form

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

562

C H A P T E R 1 2 Using Controls

3. From the Toolbox at the left of the screen, drag a Label onto the Form.
Change the Name of label1 to welcomeLabel and change the Text
property to Welcome to Bailey’s. Drag and resize the Label so it is
close to the position of the Label in Figure 12-10. (If you prefer to set the
Label’s Location property manually in the Properties list, the Location
should be 60, 30.)

If you do not see the Toolbox, click the Toolbox tab at the left side of the screen and pin it to the
screen by clicking the pushpin. Alternatively, you can select View from the menu bar, and then
click Toolbox.

Figure 12-10 A Label placed on the Form in the BedAndBreakfast project

(continued)

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

563

4. Locate the Font property in the Properties list. Currently, it lists the default
font: Microsoft Sans Serif, 8.25 pt. Notice the ellipsis (three dots) at the right
of the Font property name. (You might have to click in the Property to see
the button.) Click the ellipsis to display the Font dialog box. Make selections
to change the font to Microsoft Sans Serif, 18 point, and Bold. Click OK.
When you enlarge the Font for the Label, it is too close to the right edge of
the Form. Drag the Label to change its Location property to approximately
20, 30, or type the new Location value in the Properties window.

5. Drag a second Label onto the Form beneath the first one, and then set its Name
property to rateLabel and its Text property to Check our rates. Change
its Location to approximately 80, 80 and its Font to Microsoft Sans Serif,
12 point, Regular.

6. Save the project, click Debug on the menu bar, and click Start Without
Debugging, or use the shortcut keys listed in the menu. The Form appears,
as shown in Figure 12-11.

Figure 12-11 The BedAndBreakfast Form with two Labels

7. Dismiss the Form by clicking the Close button in its upper-right corner.

(continued)

(continues)

Adding Color to a Form

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

564

C H A P T E R 1 2 Using Controls

Examining the Code Generated by the IDE
In the next steps, you examine the code generated by the IDE for the following reasons:

To gain an understanding of the types of statements created by the IDE.

To lose any intimidation you might have about the code that is generated.
You will recognize many of the C# statements from what you have already
learned in this book.

1. In the Solution Explorer at the right side of the screen, double-click
Form1.Designer.cs. Scroll down until you can view the statements similar
to those shown in Figure 12-12. (You can drag the bottom and side borders
of the code window to expose more of the code, or you can scroll to see
all of it.) You should be able to view statements that assign values to the
properties of the components that you dragged into the Form.

Figure 12-12 Part of the Form1.Designer.cs code

(continued)

(continues)

You can scroll to the
side to see the ends
of these statements.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

565

Using CheckBox and RadioButton Objects

2. Next, change the BackColor property of the Bailey’s Bed and Breakfast
Form. Click the Form1.cs[Design] tab and click the Form, or click the
list box of components at the top of the Properties window and select
BaileysForm. In the Properties list, click the BackColor property and
click its down arrow to see its list of choices. Choose the Custom tab and
select Yellow in the third row of available colors. Click the Form, notice the
color change, and then view the code in the Form1.Designer.cs file. Locate
the statement that changes the BackColor of the Form to Yellow. As you
continue to design Forms, periodically check the code to confirm your
changes and better learn C#.

3. Save the project.

4. If you want to take a break at this point, close Visual Studio. You return to
this project in the “You Do It” section at the end of this chapter.

(continued)

Using CheckBox and RadioButton Objects
A checkbox is a control that is a small rectangle that indicates whether a user has chosen an
option. The C# class that allows you to create a checkbox is CheckBox. When a form contains
multiple checkboxes, the user can select any number of them. When options are grouped so
that only one can be checked at a time and selecting one deselects the others, they are called
radio buttons. (You might also hear the term option buttons.) The C# class that creates a
radio button is RadioButton. Like Button, both CheckBox and RadioButton descend from
ButtonBase.
Table 12-6 contains commonly used CheckBox and RadioButton properties and the
default event for which a method shell is generated when you double-click a CheckBox or
RadioButton in the IDE.

Property or Method Description

Checked Indicates whether the CheckBox or RadioButton is checked

Text The text displayed to the right of the CheckBox or RadioButton

CheckedChanged() Default event that is generated when the Checked property changes

 Table 12-6 Commonly used CheckBox and RadioButton properties and default event

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

566

C H A P T E R 1 2 Using Controls

If you precede a letter with an ampersand (&) in the Text property value of a ButtonBase object, that letter
acts as an access key. An access key provides a shortcut way to make a selection using the keyboard.
For example, if a Button’s text is defined as &Press, then typing Alt+P has the same effect as clicking the
Button. Access keys are also called hot keys.

You can place multiple groups of RadioButtons on a Form by using a GroupBox or Panel. You will learn
more about GroupBoxes and Panels later in this chapter.

Figure 12-13 shows an example of a Form with which a user can select pizza otions. It contains
several Labels, four CheckBox objects, and three RadioButton objects. It makes sense for the
pizza topping choices to be displayed using CheckBoxes because a user might select multiple
toppings. However, options for delivery, pick-up, and dining in the restaurant are mutually
exclusive, so they are presented using RadioButton objects.

Figure 12-13 A Form with Labels, CheckBoxes,
and RadioButtons

When you add CheckBox and
RadioButton objects to a form,
they automatically are named using
the same conventions you have
seen with Buttons and Labels.
That is, the first CheckBox without
an explicitly assigned name is
checkBox1 by default, the second
is named checkBox2, and so on.
Using the Properties list, you can
assign more meaningful names
such as sausageCheckBox and
pepperoniCheckBox. Naming objects
appropriately makes your code more
understandable to others, and makes
your programming job easier.
Both CheckBox and RadioButton
objects have a Checked property whose
value is true or false. For example,
if you create a CheckBox named
sausageCheckBox and you want to

add $1.00 to a pizzaPrice value when the user checks the box, you can write the following:
if(sausageCheckBox.Checked)
 pizzaPrice = pizzaPrice + 1.00;

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

567

Using CheckBox and RadioButton Objects

The Checked property is a read/write property. That is, you can assign a value to it as well as access
its value.

The default method that executes when a user clicks either a CheckBox or RadioButton is
xxx_CheckedChanged(), where xxx represents the name of the invoking object. For example,
suppose that the total price of a pizza should be altered based on a user’s CheckBox selections.
In this example, the base price for a pizza is $12.00, and $1.25 is added for each selected
topping. You can declare constants for the BASE_PRICE and TOPPING_PRICE of a pizza and
declare a variable that is initialized to the pizza base price as follows:
private const double BASE_PRICE = 12.00;
private const double TOPPING_PRICE = 1.25;
private double price = BASE_PRICE;

These declarations typically are placed in a Form’s .cs file in the Form1 class, above both the
constructor and other methods. Figure 12-14 shows the code you would add to the Form.cs
file for the application. The sausageCheckBox_CheckedChanged() method changes the pizza
price. The method shell was created by double-clicking the sausageCheckBox on the form; the
statements within the method were written by a programmer. If a change occurs because the
sausageCheckBox was checked, then the TOPPING_PRICE is added to the price. If the change
to the checkBox was to uncheck it, the TOPPING_PRICE is subtracted from the price. Either
way, the Text property of a Label named outputLabel is changed to reflect the new price.

private void sausageCheckBox_CheckedChanged(object sender, EventArgs e)
{
 if (sausageCheckBox.Checked)
 price += TOPPING_PRICE;
 else
 price –= TOPPING_PRICE;
 outputLabel.Text = "Total is " + price.ToString("C");
}

Figure 12-14 The sausageCheckBox_CheckedChanged() method

In a similar fashion, you can add appropriate code for RadioButton objects. For example,
assume that a $2.00 delivery charge is in effect, but there is no extra charge for customers who
pick up a pizza or dine in. The code for deliverRadioButton_CheckedChanged() appears
in Figure 12-15. When the user selects the deliverRadioButton, $2.00 is added to the total.
When the user selects either of the other RadioButtons, the deliverRadioButton becomes
unchecked and the $2.00 charge is removed from the total. Figure 12-16 shows a typical
execution of the PizzaOrder program after it is complete.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

568

C H A P T E R 1 2 Using Controls

private void deliverRadioButton_CheckedChanged(object sender, EventArgs e)
{
 const double DELIVERY_CHARGE = 2.00;
 if (deliverRadioButton.Checked)
 price += DELIVERY_CHARGE;
 else
 price –= DELIVERY_CHARGE;
 outputLabel.Text = "Total is " + price.ToString("C");
}

Figure 12-15 The deliverRadioButton_CheckedChanged() method

The entire pizza-order application can be found in the downloadable student files.

Figure 12-16 Typical execution of the PizzaOrder program

When an application starts,
sometimes you want a specific
CheckBox or RadioButton to be
selected by default. If so, you can set
the Control’s Checked property to
true in the Properties list in the IDE.

Watch the video CheckBoxes and
RadioButtons.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

569

Adding a PictureBox to a Form

Adding a PictureBox to a Form
A picture box is a GUI element you use to display graphics. In C#, a PictureBox object can
display graphics from a bitmap, icon, JPEG, GIF, or other image file type. Just as with a Button
or a Label, you can easily drag a PictureBox Control onto a Form in the Visual Studio IDE.
Table 12-7 shows the common properties and default event for a PictureBox.

Property or Method Description

Image Sets the image that appears in the PictureBox

SizeMode Controls the size and position of the image in the PictureBox; values
are Normal, StretchImage (which resizes the image to fit the
PictureBox), AutoSize (which resizes the PictureBox to fit the
image), and CenterImage (which centers the image in the PictureBox)

Click() Default event that is generated when the user clicks the PictureBox

 Table 12-7 Commonly used PictureBox properties and default event

Figure 12-17 shows a new project in the IDE. The following tasks have been completed:
 A project was started.
 The Form Text property was changed to Save Money.

TWO TRUTHS & A LIE

Using CheckBox and RadioButton Objects
1. CheckBox objects are GUI widgets that the user can click to select or deselect an

option; when a Form contains multiple CheckBoxes, any number of them can be
checked or unchecked at the same time.

2. RadioButtons are similar to CheckBoxes, except that when they are placed
on a Form, only one RadioButton can be selected at a time—selecting any
RadioButton automatically deselects the others.

3. The default event for a CheckBox is CheckBoxChanged(), and the default event
for a RadioButton is RadioButtonChanged().

The false statement is #3. The default event for both CheckBox and
RadioButton objects is CheckedChanged().

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

570

C H A P T E R 1 2 Using Controls

 The Form BackColor property was changed to White.
 A Label was dragged onto the Form, and its Text and Font were changed.
 A PictureBox was dragged onto the Form.

Figure 12-17 The IDE with a Form that contains a PictureBox

In Figure 12-17, in the Properties list at the right of the screen, the Image property is set to
(none). If you click the value, a button with an ellipsis appears. If you click it, a Select Resource
window appears, as shown on the left in Figure 12-18. When you click the Import button, you
can browse for stored images. When you select one, you see a preview in the Select Resource
window, as shown on the right in Figure 12-18.

Image property

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

571

Figure 12-18 The Select Resource window before and after an image is selected

After you click OK, the image appears in the PictureBox, as in Figure 12-19. (You can resize
the PictureBox in the IDE so the image displays completely.)

Figure 12-19 The SaveMoney Frame with an inserted image

Adding a PictureBox to a Form

If you examine the generated code,
you can find the statements that
instantiate a PictureBox (named
pictureBox1 by default) and
statements that set its properties,
such as Size and Location.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

572

C H A P T E R 1 2 Using Controls

Adding ListBox, CheckedListBox, and ComboBox
Controls to a Form
ListBox, CheckedListBox, and ComboBox objects all allow users to select choices from a list.
The three classes descend from ListControl. Of course, they are also Controls and so inherit
properties such as Text and BackColor from the Control class. Other properties are more
specific to list-type objects. Table 12-8 describes some commonly used ListBox properties.

Property or Method Description

Items The collection of items in the ListBox; frequently, these are
strings, but they can also be other types of objects

MultiColumn Indicates whether display can be in multiple columns

SelectedIndex Returns the index of the selected item. If no item has been selected,
the value is –1. Otherwise, it is a value from 0 through n – 1, where
n is the number of items in the ListBox.

SelectedIndices Returns a collection of all the selected indices (when
SelectionMode is more than One)

SelectedItem Returns a reference to the selected item

SelectedItems Returns a collection of the selected items (when SelectionMode
is more than One)

SelectionMode Determines how many items can be selected (see Table 12-9)

Sorted Sorts the items when set to true

SelectedIndexChanged() Default event that is generated when the selected index changes

TWO TRUTHS & A LIE

Adding a PictureBox to a Form
1. A PictureBox is a Control in which you can display graphics from a bitmap, icon,

JPEG, GIF, or other image file type.

2. The default event for a PictureBox is LoadImage().

3. The Image property of a PictureBox holds the name of a file where a picture
is stored.

The false statement is #2. The default event for a PictureBox is Click().

 Table 12-8 Commonly used ListBox properties and default event

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

573

Adding ListBox, CheckedListBox, and ComboBox Controls to a Form

A list box displays a list of items from which the user can select by clicking. Figure 12-20 shows
a typical ListBox on a Form. After you drag a ListBox onto a Form, you can select its Items
property and type a list into a String Collection Editor, as shown on the left in Figure 12-20.

Figure 12-20 The String Collection Editor while filling a ListBox and the completed ListBox
on a Form

Assuming the Name property of the ListBox is majorListBox, the following code is generated
in the InitializeComponent() method when you fill the String Collection Editor with the
strings in Figure 12-20:
this.majorListBox.Items.AddRange(new object[] {
 "Accounting",
 "Biology",
 "English",
 "Psychology",
 "Sociology" });

Objects added to a ListBox are not required to be strings. For example, you could add a collection
of Employee or Student objects. The value returned by each added object’s ToString() method is
displayed in the ListBox. After the user selects an object, you can cast the ListBox’s SelectedItem to
the appropriate type and access the object’s other properties. The Chapter.12 folder of your student files
contains a project named AddRangeObjectsDemo that illustrates this technique.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

574

C H A P T E R 1 2 Using Controls

With a ListBox, you allow the user to make a single selection or multiple selections by
setting the SelectionMode property appropriately. For example, when the SelectionMode
property is set to One, the user can make only a single selection from the ListBox. When the
SelectionMode is set to MultiExtended, pressing Shift and clicking the mouse or pressing
Shift and one of the arrow keys (up, down, left, or right) extends the selection to span from the
previously selected item to the current item. Pressing Ctrl and clicking the mouse selects or
deselects an item in the list. Table 12-9 lists the possible SelectionMode values.

When the SelectionMode property is set to SelectionMode.MultiSimple, click the mouse or press the
spacebar to select or deselect an item in the list.

Member Name Description

MultiExtended Multiple items can be selected, and the user can press the Shift, Ctrl, and
arrow keys to make selections.

MultiSimple Multiple items can be selected.

None No items can be selected.

One Only one item can be selected.

 Table 12-9 SelectionMode enumeration list

For example, within a Form’s Load() method (the one that executes when a Form is first
loaded), you could add the following:
this.majorListBox.SelectionMode =
 System.Windows.Forms.SelectionMode.MultiExtended;

As the example in Figure 12-21 shows, when you size a ListBox so that all the items cannot be
displayed at the same time, a scroll bar is provided automatically on the side. The ListBox also
provides the Boolean MultiColumn property, which you can set to display items in columns
instead of a straight vertical list. This approach allows the control to display more items and
can eliminate the need for the user to scroll down to an item. See Figure 12-22 which shows a
multi-column list box to which eight strings have been added.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

575

Figure 12-21 A ListBox with a scroll bar

The SelectedItem property of a ListBox contains a reference to the item a user
has selected. For example, you can modify a Label’s Text property in the
majorListBox_SelectedIndexChanged() method with a statement such as the following,
which appends the SelectedItem value to a label. Figure 12-23 shows a tyical result.
private void majorListBox_SelectedIndexChanged
 (object sender, EventArgs e)
{
 majorLabel.Text = "You selected " + majorListBox.SelectedItem;
}

Figure 12-23 The ListBoxDemo application after
a user has chosen Business

Figure 12-22 A multicolumn ListBox

The Items.Count property of a
ListBox object holds the number
of items in the ListBox. The
GetSelected() method accepts
an integer argument representing
the position of an item in the list.
The method returns true if an item
is selected and false if it is not.
Therefore, code like the following
could be used to count the number
of selections a user makes from
majorListBox:

int count = 0;
for(int x = 0; x < majorListBox.Items.Count; ++x)
 if(majorListBox.GetSelected(x))
 ++count;

Adding ListBox, CheckedListBox, and ComboBox Controls to a Form

Scroll bar

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

576

C H A P T E R 1 2 Using Controls

Recall that the first position in an array is
position 0. The same is true in a ListBox.

Alternatively, you can use a ListBox’s
SelectedItems property; it contains the
items selected in a list. The following code
assigns the number of selections a user
makes from the majorListBox to count:
count = majorListBox.SelectedItems.
Count;

The SetSelected() method can be used
to set a ListBox item to be automatically
selected. For example, the following
statement causes the first item in
majorListBox to be selected:
majorListBox.SetSelected(0, true);

Figure 12-24 The FlightSelector application
after the user has made some selections

TWO TRUTHS & A LIE

Adding ListBox, CheckedListBox,
and ComboBox Controls to a Form

1. With a ListBox Control, the user can select only one option at a time.

2. A ComboBox is similar to a ListBox, except that it displays an additional editing
control that allows users to select from the list or to enter new text.

3. A CheckedListBox is similar to a ListBox, with check boxes appearing to the left
of each desired item.

The false statement is #1. With a ListBox, you allow the user to make a
single selection or multiple selections by setting the SelectionMode property
appropriately.

A combo box is a combination of a list box and and an editing control that allows a user to
select from the list or to enter new text. The C# class is ComboBox, and the default ComboBox
displays an editing area with a hidden list box. The application in Figure 12-24 contains a
ComboBox for selecting an airline. A CheckedListBox is also similar to a ListBox, with
check boxes appearing to the left of each desired item. The application in Figure 12-24 uses
a CheckedListBox for flight options.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

577

Adding MonthCalendar and DateTimePicker Controls to a Form

Adding MonthCalendar and DateTimePicker
Controls to a Form

The MonthCalendar and
DateTimePicker Controls allow you
to retrieve date and time information.
Figure 12-25 shows a MonthCalendar
that has been placed on a Form. The
current date is contained in a rectangle
by default. When the user clicks a
different date, it is shaded. Controls at
the top of the calendar allow the user to
go forward or back one month at a time,
or the user can also move to a specific
month or year by clicking the month
and year title at the top of the calendar
and then making a new month and
year selection. Table 12-10 describes
common MonthCalendar properties
and the default event.

Property or Method Description

MaxDate Sets the last day that can be selected (the default is 12/31/9998)

MaxSelectionCount Sets the maximum number of dates that can be selected at once (the
default is 7)

MinDate Sets the first day that can be selected (the default is 1/1/1753)

MonthlyBoldedDates An array of dates that appear in boldface in the calendar (for example,
holidays)

SelectionEnd The last of a range of dates selected by the user

SelectionRange The dates selected by the user

SelectionStart The first of a range of dates selected by the user

ShowToday If true, the date is displayed in text at the bottom of the calendar

ShowTodayCircle If true, today’s date is circled (the “circle” appears as a square)

DateChanged() Default event that is generated when the user selects a date

 Table 12-10 Commonly used MonthCalendar properties and default event

Figure 12-25 Typical execution of the
MonthCalendarDemo application at startup

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

578

C H A P T E R 1 2 Using Controls

Several useful methods can be applied to the SelectionStart and SelectionEnd properties
of MonthCalendar, including the following:
 ToShortDateString(), which displays the date in the format of 2/16/2016
 ToLongDateString(), which displays the date in the format of Sunday, February 16, 2016
 AddDays(), which takes a double argument and adds a specified number of days to the date
 AddMonths(), which takes an int argument and adds a specified number of months to

the date
 AddYears(), which takes an int argument and adds a specified number of years to the date

The format in which dates are displayed depends on the operating system’s regional settings. For example,
using United Kingdom settings, the short string format would use the day first, followed by the month, as in
16/02/2016. The examples in the list above assume United States settings. To change your regional setting
in Windows, you can go to Control Panel, click Region, and choose a region from the drop down list.

The AddDays() method accepts a double argument because you can add fractional days to
SelectionStart and SelectionEnd.

SelectionStart and SelectionEnd are structures of the DateTime type. The chapter “Files and Streams”
contains additional information about using DateTime objects to determine when files were created,
modified, or accessed.

Many business and financial applications use AddDays(), AddMonths(), and AddYears() to
calculate dates for events, such as payment for a bill (perhaps due in 10 days from an order) or
scheduling a salesperson’s callback to a customer (perhaps two months after initial contact).
The default event for MonthCalendar is DateChanged(). For example, Figure 12-26 shows
a method that executes when the user clicks a MonthCalendar named calendar. Ten days
are added to a selected date and the result is displayed on a Label that has been named
messageLabel. Figure 12-27 shows the output when the user selects May 29, 2018. The date
that is 10 days in the future is correctly calculated as June 8.

private void calendar_DateChanged(object sender, DateRangeEventArgs e)
{
 const int DAYS_TO_ADD = 10;
 messageLabel.Text = "Date " + DAYS_TO_ADD +
 " days after selection is " +
 calendar.SelectionStart.AddDays(DAYS_TO_ADD).ToShortDateString();
}

Figure 12-26 The calendar_DateChanged() method

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

579

In Chapter 14, you will learn to use
DateTime objects to hold data about dates
and times.

If you set the MinDate value to the
MonthCalendar’s TodayDate property, the
user cannot select a date before the date
you select. For example, you cannot make
appointments or schedule deliveries in the
past, so you might code the following in a
form’s Load() method:
calendar1.MinDate =
calendar1.TodayDate;

Conversely, you might want to prevent
users from selecting a date in the future—
for example, if the user is entering his birth
date, it cannot be in the future. In that
case, you could code a statement similar

to the following:

Figure 12-27 Typical execution of the
MonthCalendarDemo program

Adding MonthCalendar and DateTimePicker Controls to a Form

calendar1.MaxDate = calendar1.TodayDate;

The DateTimePicker Control displays a month calendar when the down arrow is selected.
This feature can be especially useful if you do not have much space available on a Form.
Figure 12-28 shows a DateTimePicker before and after the user clicks the down arrow.

Figure 12-28 The DateTimePicker Control

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

580

C H A P T E R 1 2 Using Controls

When you use the CustomFormat property, the date displayed in a DateTimePicker Control
is more customizable than the one in a MonthCalendar. Table 12-11 describes some commonly
used DateTimePicker properties and the default event.

Property or Method Description
CalendarForeColor Sets the calendar text color

CalendarMonthBackground Sets the calendar background color

CustomFormat A string value that uses codes to set a custom date and time
format. For example, to display the date and time as 02/16/2011
12:00 PM - Wednesday, set this property to "MM'/'dd'/
'yyyy hh':'mm tt - dddd". See the C# documentation for a
complete set of format string characters.

Format Sets the format for the date or time. Options are Long (for example,
Wednesday, February 16, 2011), Short (2/16/2011), and Time
(for example, 3:15:01 PM). You can also create a CustomFormat.

Value The data selected by the user

ValueChanged() Default event that is generated when the Value property changes

 Table 12-11 Commonly used DateTimePicker properties and default event

TWO TRUTHS & A LIE

Adding MonthCalendar and DateTimePicker Controls to a Form
1. The MonthCalendar and DateTimePicker Controls allow you to retrieve date

and time information.

2. The default event for MonthCalendar is DateChanged().

3. The DateTimePicker Control displays a small clock when you click it.

The false statement is #3. The DateTimePicker Control displays a month
calendar when the down arrow is selected.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

581

Working with a Form's Layout

Working with a Form's Layout
When you place Controls on a Form in the IDE, you can drag them to any location to achieve
the effect you want.
When you drag multiple Controls onto a Form, blue snap lines appear and help you align new
Controls with others already in place. Figure 12-29 shows two snap lines that you can use to
align a second label below the first one. Snap lines also appear when you place a control closer
to the edge of a container than is recommended.

Figure 12-29 Snap lines in the Visual Studio Designer

You also can use the Location property in a Control’s Properties list to specify a location.
With either technique, code like the following is generated:
this.label1.Location = new System.Drawing.Point(23, 19);

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

582

C H A P T E R 1 2 Using Controls

Several other properties can help you to manage the appearance of a Form (or other
ContainerControl). For example, setting the Anchor property causes a Control to remain
at a fixed distance from the side of a container when the user resizes it. Figure 12-30 shows
the Properties window for a Label that has been placed on a Form. The Anchor property has
a drop-down window that lets you select or deselect the sides to which the label should be
anchored. For most Controls, the default setting for Anchor is Top, Left.

Figure 12-31 shows a Form with two Labels.
On the Form, label1 has been anchored to the
top left, and label2 has been anchored to the
bottom right. The left side of the figure shows the
Form as it first appears to the user, and the right
side shows the Form after the user has resized it.
Notice that in the resized Form, label1 is still
the same distance from the top left as it originally
was, and label2 is still the same distance from
the bottom right as it originally was. Anchoring
is useful when users expect a specific control
to always be in the same general location in a
container.

Figure 12-31 A Form with two Labels anchored to opposite corners

Setting the Dock property attaches a Control to the side of a container so that the Control
stretches when the container’s size is adjusted. Figure 12-32 shows the drop-down Dock
Properties window for a Button. You can select any region in the window. Figure 12-33 shows
a Button docked to the bottom of a Form before and after the Form has been resized.

Figure 12-30 Selecting an Anchor property

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

583

Figure 12-32 The Dock Properties window

Figure 12-33 A Form with a docked Button before and after resizing

A Form also has a MinimumSize property and a MaximumSize property. Each has two
values—Width and Height. If you set these properties, the user cannot make the Form
smaller or larger than you have specified. If you do not want the user to be able to adjust a
Form’s size at all, set the MinimumSize and MaximumSize properties to be equal.

Understanding GroupBoxes and Panels
Many types of ContainerControls are available to hold Controls. For example, a group
box or panel can be used to contain a group of other controls and to move them as a group.

Working with a Form's Layout

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

584

C H A P T E R 1 2 Using Controls

To create either of these Controls, you drag it from the Toolbox in the IDE and then drag the
Controls you want on top of it. In C#, a group box and a panel differ in the following ways:
 A group box is created from the GroupBox class, and a panel is created from the Panel class.
 GroupBoxes can display a caption, but Panels cannot.
 Panels can include a scroll bar that the user can manipulate to view Controls; GroupBoxes

do not have scroll bars.
You can anchor or dock Controls inside a GroupBox or Panel, and you can anchor or
dock a GroupBox or Panel inside a Form. Doing this provides Control groups that can be
arranged easily.
If you place several GroupBox Controls on a Form and several RadioButtons in each
GroupBox, then a user can select one RadioButton from each GroupBox instead of being
able to select just one RadioButton on a Form. In other words, each GroupBox operates
independently.

When an application contains multiple GroupBox or Panel Controls on a Form, pressing Tab moves the
focus to the next GroupBox or Panel. Then, within the GroupBox or Panel, you use arrow keys to progress
to successive RadioButtons.

TWO TRUTHS & A LIE

Working with a Form’s Layout
1. Setting the Anchor property causes a Control to remain at a fixed distance from

the side of a container when the user resizes it.

2. Setting the Dock property attaches a Control to the side of a container so that the
Control’s size does not change when the container’s size is adjusted.

3. The GroupBox and Panel controls are ContainerControls.

The false statement is #2. Setting the Dock property attaches a Control to
the side of a container so that the Control stretches when the container’s size
is adjusted.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

585

Adding a MenuStrip to a Form

Adding a MenuStrip to a Form
Many programs you use in a Windows environment contain a menu strip, which is a
horizontal list of general options that appears under the title bar of a Form or Window. When
you click an item in a menu strip, you might initiate an action. More frequently, you see a
list box that contains more specific options. Each of these might initiate an action or lead to
another menu. For example, the Visual Studio IDE contains a horizontal menu strip that begins
with the options File, Edit, and View. You have used word-processing, spreadsheet, and game
programs with similar menus.
You can add a MenuStrip Control object to any Form you create. Using the Visual Studio
IDE, you can add a MenuStrip to a Form by dragging it from the Toolbox onto the Form. This
creates a menu bar horizontally across the top of the Form, just below the title bar. The strip
extends across the width of the Form and contains a Type Here text box. When you click the
text box, you can enter a menu item. Each time you add a menu item, new boxes are created so
you can see where your next options will go, as shown in Figure 12-34.

Figure 12-34 Creating a Form with a MenuStrip

If you do not see MenuStrip in your Toolbox, click the Menus & Toolbars group to expose it. You can
click the MenuStrip icon at the bottom of the design screen to view and change the properties for the
MenuStrip. For example, you might want to change the Font or BackColor for the MenuStrip.

If you create each menu item with an ampersand (&) in front of a unique letter, then the letter becomes
an access key, and the user can press Alt and the letter to activate the menu choice. For example, if two
choices were Green and Gray, you might want to type &Green and G&ray so the user could type Alt+G to
select Green and Alt+R to select Gray.

When you double-click an entry in the MenuStrip, a Click() method is generated. For example,
if you double-click Blue under Color in the menu being created in Figure 12-34, the method
generated is blueToolStripMenuItem_Click(). As with all the other controls you have learned

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

586

C H A P T E R 1 2 Using Controls

about, you can write any code statements within the method. For example, suppose that a Label
named helloLabel has been dragged onto the Form. If choosing the Blue menu option should
result in a blue forecolor for the label, you might code the method as follows:
private void blueToolStripMenuItem_Click(object sender, EventArgs e)
{
 helloLabel.ForeColor = Color.Blue;
}

You can work with the other menu items in this program in an exercise at the end of this chapter.

If possible, your main horizontal menu selections should be single words. That way, a user
will not mistakenly think that a single menu item represents multiple items. Most applications
do not follow this single-word convention for submenus. Also, users expect menu options to
appear in conventional order. For example, users expect the far-left option on the main menu
bar to be File, and they expect the Exit option to appear under File. Similarly, if an application
contains a Help option, users expect to find it at the right side of the main menu bar. You
should follow these conventions when designing your own menus.

Watch the video Using a MenuStrip.

TWO TRUTHS & A LIE

Adding a MenuStrip to a Form
1. When you click an item in a menu strip, the most common result is to initiate an action.

2. When you drag a MenuStrip Control object onto a Form using the Visual Studio
IDE, the MenuStrip is added horizontally across the top of the Form, just below the
title bar.

3. The default event for MenuStrip is Click().

The false statement is #1. When you click an item in a menu strip, you might
initiate an action. More frequently, you see a list box that contains more
specific options.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

587

Using Other Controls

Using Other Controls
If you examine the Visual Studio IDE or search through the Visual Studio documentation,
you will find many other Controls that are not covered in this chapter. If you click Project on
the menu bar and click Add New Item, you can add extra Forms, Files, Controls, and other
elements to your project. (In the next “You Do It” section, you create a project that adds new
Forms that appear after selections are made from a primary Form.) New controls and containers
will be developed in the future, and you might even design new controls of your own. Still, all
controls will contain properties and methods, and your solid foundation in C# will prepare you
to use new controls effectively.

Adding CheckBoxes to a Form
In the next steps, you add two CheckBoxes to the BedAndBreakfast Form.
These controls allow the user to select an available room and view information
about it.

1. Open the BedAndBreakfast project in Visual Studio, if it is not still open on
your screen.

2. In the Design view of the BedAndBreakfast project in the Visual Studio
IDE, drag a CheckBox onto the Form below the Check our rates Label.
(See Figure 12-35 for its approximate placement.) Change the Text property
of the CheckBox to BelleAire Suite. Change the Name of the property to
belleAireCheckBox. Drag a second CheckBox onto the Form beneath
the first one. Change its Text property to Lincoln Room and its Name
to lincolnCheckBox.

You Do It

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

588

C H A P T E R 1 2 Using Controls

Figure 12-35 The BedAndBreakfast Form with two CheckBoxes

3. Next, you will create two new Forms: one that appears when the user selects
the BelleAire CheckBox and one that appears when the user selects the
Lincoln CheckBox. Click Project on the menu bar, and then click Add New
Item. In the Add New Item window, click Windows Form. In the Name text
box at the bottom of the window, type BelleAireForm. See Figure 12-36.

(continued)

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

589

Figure 12-36 The Add New Item window

4. Click the Add button. A new Form is added to the project, and its Name
and Text (title bar) properties contain BelleAireForm. Save the project (and
continue to do so periodically).

5. Change the BackColor property of the Form to Yellow to match the color
of BaileysForm.

6. Drag a Label onto the Form. Change the Name of the Label to
belleAireDescriptionLabel. Change the Text property of the Label
to contain the following: The BelleAire suite has two bedrooms, two
baths, and a private balcony. Click the arrow on the text property to
type the long label message on two lines. Adjust the size and position of
the Label to resemble Figure 12-37. Drag a second Label onto the Form,
name it belleAirePriceLabel, and type the price as the Text property:
$199.95 per night.

(continued)

(continues)

Add button

Add New Item window

Name of Form

Using Other Controls

Select Windows Form

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

590

C H A P T E R 1 2 Using Controls

Figure 12-37 The BelleAireForm with two Labels

7. Select the Pointer tool from the Toolbox at the left of the screen. Drag it to
encompass both Labels. In the Properties list, select the Font property to
change the Font for both Controls at once. Choose a suitable Font. Figure
12-38 shows 10-point Regular Papyrus; you might choose a different font.
Adjust the positions of the Labels if necessary to achieve a pleasing effect.

Figure 12-38 Font changed for the Labels on the BellAire Form

(continued)

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

591

8. Click the Form1.cs[Design] tab at the top of the Designer screen to view
the Bailey’s Bed and Breakfast Form. Double-click the BelleAire Suite
CheckBox. The program code (the method shell for the default event of a
CheckBox) appears in the IDE main window. Within the belleAireCheckBox_
CheckedChanged() method, add an if statement that determines whether
the BelleAire CheckBox is checked. If it is checked, create a new instance
of BelleAireForm and display it.
private void belleAireCheckBox_CheckedChanged(object sender,
 EventArgs e)
{
 if (belleAireCheckBox.Checked)
 {
 BelleAireForm belleAireForm = new BelleAireForm();
 belleAireForm.ShowDialog();
 }
}

 When a new Form (or other Windows class) is instantiated, it is not visible by
default. ShowDialog() shows the window and disables all other windows
in the application. The user must dismiss the new Form before proceeding.
A secondary window that takes control of a program is a modal window; the
user must deal with this window before proceeding.

9. Save and then execute the program by selecting Debug from the menu bar,
and then select Start Without Debugging. The main BedAndBreakfast Form
appears. Click the BelleAire Suite CheckBox. The BelleAire Form appears.
Dismiss the Form. Click the Lincoln Room CheckBox. Nothing happens
because you have not yet written event code for this CheckBox. When you
uncheck and then check the BelleAire Suite CheckBox again, the BelleAire
form reappears. Dismiss the BelleAire Form.

10. When you dismiss the BelleAire Form, the BelleAire CheckBox remains checked.
To see it appear as unchecked after its Form is dismissed, dismiss the program’s
main form (Bailey’s Bed and Breakfast) to end the program. Then, add a third
statement within the if block in the CheckedChanged() message as follows:

belleAireCheckBox.Checked = false;

 That way, whenever the CheckedChanged() method executes because the
belleAireCheckBox was checked, it will become unchecked. Save the
project, and then execute it again. When you select the BelleAire CheckBox,
view the Form, and dismiss it, the CheckBox appears unchecked and is ready
to check again. Dismiss the BedAndBreakfast Form.

(continued)

(continues)

Using Other Controls

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

592

C H A P T E R 1 2 Using Controls

11. Click Project on the menu bar, and then click Add New Item. Click
Windows Form and enter its Name: LincolnForm. When the new Form
appears, its Name and Text properties will have been set to LincolnForm.
Change the Text property to Lincoln Room. Then add two Labels to the
Form, and provide appropriate Name properties for them. Change the Text on
the first Label to Return to the 1850s in this lovely room with private
bath. The second should be $110 per night. Change the Form’s BackColor
property to White. Change the Font to match the Font you chose for the
BelleAire Form. See Figure 12-39.

Figure 12-39 The LincolnForm

12. From the Toolbox, drag a PictureBox onto the Form. Select its Image property.
A dialog box allows you to select a resource. Click Local resource, and then
click the Import button to browse for an image. Find the AbeLincoln file in
the Chapter.12 folder of your downloadable student files, and double-click it.
(Alternately, you can import another image you prefer.) After the image appears
in the Select Resource dialog box, click OK. The selected image appears in
the PictureBox. Adjust the size of the Form and the sizes and positions of the
labels and picture box so that the picture is fully visible and everything looks
attractive on the Form. See Figure 12-40.

(continued)

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

593

Figure 12-40 The LincolnForm with an Image in a PictureBox

The AbeLincoln file was obtained at www.free-graphics.com. You can visit the site and download
other images to use in your own applications. You should also search the Web for “free clip art” and
similar phrases.

13. In the Solution Explorer, double-click Form1.cs or click the Form1.cs[Design]
tab at the top of the design screen. On the BedAndBreakfast Form,
double-click the Lincoln Room CheckBox, and add the following if statement
to the lincolnCheckBox_CheckedChanged() method:
private void lincolnCheckBox_CheckedChanged(object sender,
 EventArgs e)
{
 if (lincolnCheckBox.Checked)
 {
 LincolnForm lincolnForm = new LincolnForm();
 lincolnForm.ShowDialog();
 lincolnCheckBox.Checked = false;
 }
}

(continued)

(continues)

Using Other Controls

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

594

C H A P T E R 1 2 Using Controls

14. Save the project and then execute it. When the BedAndBreakfast Form
appears, click either CheckBox—the appropriate informational Form appears.
Close it and then click the other CheckBox. Again, the appropriate Form
appears.

15. Close all forms.

Adding RadioButtons to a Form
Next you add more Controls to the BedAndBreakfast Form. You generally use
RadioButtons when a user must select from mutually exclusive options.

1. In the Design view of the main Form in the BedAndBreakfast project, add a
Button near the bottom of the Form. Change the Button’s Name property to
mealButton and the Button’s Text to Click for meal options. Adjust the
size of the Button so that its text is fully visible.

2. From the menu bar, select Project, click Add New Item, and click Windows
Form. Name the Form BreakfastOptionForm, and click Add. On the new
Form, make the following changes:

Set the Form’s BackColor to Yellow.

Drag a Label onto the Form. Name it appropriately, and set its Text to
Select your breakfast option.

Drag three RadioButtons onto the Form. Set their respective Text
properties to Continental, Full, and Deluxe. Set their respective
Names to contBreakfastButton, fullBreakfastButton, and
deluxeBreakfastButton.

Select an appropriate font for the Label and RadioButtons.

Drag a Label onto the Form, and then set its Text to Price: and its Name
to priceLabel. Make the Font property a little larger than for the other
Form components.

See Figure 12-41 for approximate placement of all these Controls.

(continued)

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

595

Figure 12-41 Developing the BreakfastOptionForm

3. Double-click the title bar of the BreakfastOptionForm to generate a
method named BreakfastOptionForm_Load(). Within this method, you
can type statements that execute each time the Form is created. Add the
following statements within the BreakfastOptionForm class, which declare
three constants representing prices for different breakfast options. Within
the BreakfastOptionForm_Load() method, set the priceLabel Text
property to the lowest price by default when the Form loads.
public partial class BreakfastOptionForm : Form
{
 private const double CONT_BREAKFAST_PRICE = 6.00;
 private const double FULL_BREAKFAST_PRICE = 9.95;
 private const double DELUXE_BREAKFAST_PRICE = 16.50;
 public BreakfastOptionForm()
 {
 InitializeComponent();
 }
 private void BreakfastOptionForm_Load
 (object sender, EventArgs e)
 {
 priceLabel.Text = "Price: " +
 CONT_BREAKFAST_PRICE.ToString("C");
 }
}

(continued)

(continues)

Using Other Controls

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

596

C H A P T E R 1 2 Using Controls

4. Return to the Design view for the BreakfastOptionForm, and double-click
the contBreakfastButton RadioButton. When you see the generated
CheckedChanged() method, add a statement that sets priceLabel to the
continental breakfast price when the user makes that selection:
private void contBreakfastButton_CheckedChanged
 (object sender, EventArgs e)
{
 priceLabel.Text = "Price: " +
 CONT_BREAKFAST_PRICE .ToString("C");
}

5. Return to the Design view for the BreakfastOptionForm, double-click the
fullBreakfastButton RadioButton, and add a statement to the generated
method that sets the priceLabel to the full breakfast price when the user
makes that selection:
private void fullBreakfastButton_CheckedChanged
 (object sender, EventArgs e)
{
 priceLabel.Text = "Price: " +
 FULL_BREAKFAST_PRICE.ToString("C");
}

6. Return to the Design view for the BreakfastOptionForm, double-click
the deluxeBreakfastButton RadioButton, and add a statement to the
generated method that sets the priceLabel to the deluxe breakfast price
when the user makes that selection:
private void deluxeBreakfastButton_CheckedChanged
 (object sender, EventArgs e)
{
 priceLabel.Text = "Price: " +
 DELUXE_BREAKFAST_PRICE.ToString("C");
}

7. In the Solution Explorer, double-click the Form1.cs file to view the original
Form. Double-click the mealButton Button. When the Click() method is
generated, add the following code so that the BreakfastOptionForm is
loaded when a user clicks the Button:
private void mealButton_Click(object sender,
 EventArgs e)
{
 BreakfastOptionForm breakfastForm = new
 BreakfastOptionForm();
 breakfastForm.ShowDialog();
}

(continued)

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

597

8. Save the project and execute it. When the BedAndBreakfast Form appears,
confirm that the BelleAire Suite and Lincoln Room CheckBoxes still work
correctly, displaying their information Forms when they are clicked. Then click
the Click for meal options Button. By default, the Continental breakfast
option is chosen, as shown in Figure 12-42, so the price is $6.00. Click
the other RadioButton options to confirm that each correctly changes the
breakfast price.

Figure 12-42 The BreakfastOptionForm with Continental breakfast
RadioButton selected

9. Dismiss all the Forms, and close Visual Studio.

(continued)

Using Other Controls

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 2 Using Controls

598

Chapter Summary
 The Control class provides definitions for GUI objects such as Forms and Buttons.

There are 26 direct descendents of Control and additional descendents of those classes.
Each Control has more than 80 public properties and 20 protected ones.

 When you design GUI applications using the Visual Studio IDE, much of the code is
automatically generated.

 You use the Font class to change the appearance of printed text on your Forms.
 A LinkLabel is similar to a Label; it is a child of Label, but it provides the additional

capability to link the user to other sources, such as Web pages or files.
 The Color class contains a wide variety of predefined Colors that you can use with

your Controls.
 CheckBox objects are GUI widgets the user can click to select or deselect an option. When

a Form contains multiple CheckBoxes, any number of them can be checked or unchecked
at the same time. RadioButtons are similar to CheckBoxes, except that when they are
placed on a Form, only one RadioButton can be selected at a time.

 A PictureBox is a Control in which you can display graphics from a bitmap, icon, JPEG,
GIF, or other image file type.

 ListBox, ComboBox, and CheckedListBox objects descend from ListControl and
enable you to display lists of items that the user can select by clicking. The MonthCalendar
and DateTimePicker Controls allow you to retrieve date and time information.

 When you place Controls on a Form in the IDE, you can drag them to any location to
achieve the effect you want. Blue snap lines help you align new Controls with others
already in place. You also can use the Location, Anchor, Dock, MinimumSize, and
MaximumSize properties to customize a Form’s appearance. You can use a GroupBox or
Panel to group related Controls on a Form.

 Many programs you use in a Windows environment contain a menu strip, which is a
horizontal list of general options that appears under the title bar of a Form or Window.
When a user clicks an item in a MenuStrip Control, a list box that contains more
specific options is displayed frequently.

 If you examine the Visual Studio IDE or search through the Visual Studio documentation,
you will find many Controls. If you click Project on the menu bar and click Add New Item,
you can add extra Forms, Files, Controls, and other elements to a project.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

599

Key Terms
Graphical control elements, or, more simply, controls, are the components through which a
user interacts with a GUI program.
Widgets are GUI controls.
A link label is a control with text that links a user to other resources such as Web pages or files.
The default event for a Control is the one generated when you double-click the Control
while designing it in the IDE and is the method you are most likely to alter when you use the
Control, as well as the event that users most likely expect to generate when they encounter
the Control in a working application.
A check box is a GUI widget the user can click to select or deselect an option.
A radio button is an option in a group in which only one can be selected at a time—selecting
any radio button automatically deselects the others.
An access key provides a shortcut way to make a selection using the keyboard.
A picture box is a GUI element that can display graphics.
A list box is a GUI element that displays a list of items that the user can select by clicking.
A combo box is a GUI element that is a combination of a list box and an editing control that
allows a user to select from the list or enter new text.
Snap lines appear in a design environment to help you align new Controls with others
already in place.
A group box is a GUI element that contains other GUI elements; it is similar to a panel but
does not have a scroll bar and can contain a caption.
A panel is a GUI element that contains other GUI elements; it is similar to a group box but
does not have a caption and can contain a scroll bar.
 A menu strip is a horizontal list of general options that appears under the title bar of a Form
or Window.
A modal window is a secondary window that takes control from a primary window and that a
user must deal with before proceeding.

Review Questions
1. Labels, Buttons, and CheckBoxes are all .

a. GUI objects
b. Controls

c. widgets
d. all of these

Review Questions

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 2 Using Controls

600

2. All Control objects descend from .
a. Form

b. Component

c. ButtonBase

d. all of these

3. Which of the following is most like a RadioButton?
a. ListControl

b. CheckedListBox

c. PictureBox

d. Button

4. Which of the following is not a commonly used Control property?
a. BackColor

b. Language

c. Location

d. Size

5. The Control you frequently use to provide descriptive text for another Control
object is a .
a. Form

b. Label

c. CheckBox

d. MessageBox

6. Which of the following creates a Label named firstLabel?
a. firstLabel = new firstLabel();

b. Label = new firstLabel();

c. Label firstLabel = new Label();

d. Label firstLabel = Label();

7. The property that determines what the user reads on a Label is
the property.
a. Text

b. Label

c. Phrase

d. Setting

8. Which of the following correctly creates a Font?
a. Font myFont = new Font("Arial", 14F, FontStyle.Bold);

b. Font myFont = new Font("Courier", 13.6);

c. myFont = Font new Font("TimesRoman", FontStyle.Italic);

d. Font myFont = Font(20, "Helvetica", Underlined);

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

601

Review Questions

9. The default event for a Control is the one that .
a. occurs automatically whether or not a user manipulates the Control
b. is generated when you double-click the Control while designing it in the IDE
c. requires no parameters
d. occurs when a user clicks the Control with a mouse

10. Assume that you have created a Label named myLabel. Which of the following sets
myLabel’s background color to green?
a. myLabel = BackColor.System.Drawing.Color.Green;

b. myLabel.BackColor = System.Drawing.Color.Green;

c. myLabel.Green = System.DrawingColor;

d. myLabel.Background = new Color.Green;

11. What is one difference between CheckBox and RadioButton objects?
a. RadioButtons descend from ButtonBase; CheckBoxes do not.
b. Only one RadioButton can be selected at a time.
c. Only one CheckBox can appear on a Form at a time.
d. RadioButtons cannot be placed in a GroupBox; CheckBoxes can.

12. The Checked property of a RadioButton can hold the
values .
a. true and false
b. Checked and Unchecked
c. 0 and 1
d. Yes, No, and Undetermined

13. The Control in which you can display a bitmap or JPEG image
is a(n) .
a. DisplayModule

b. ImageHolder

c. BitmapControl

d. PictureBox

14. ListBox, ComboBox, and CheckedListBox objects all descend from which family?
a. ListControl

b. List

c. ButtonBase

d. ListBase

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 2 Using Controls

602

15. Which of the following properties is associated with a ListBox but not a Button?
a. BackColor

b. SelectedItem

c. Location

d. IsSelected

16. With a ListBox you can allow the user to choose .
a. only a single option
b. multiple selections

c. either of these
d. none of these

17. You can add items to a ListBox by using the method.
a. AddList()

b. Append()

c. List()

d. AddRange()

18. A ListBox’s SelectedItem property contains .
a. the position of the currently selected item
b. the value of the currently selected item
c. a Boolean value indicating whether an item is currently selected
d. a count of the number of currently selected items

19. When you create a ListBox, by default its SelectionMode
is .
a. Simple

b. MultiExtended

c. One

d. false

20. A horizontal list of general options that appears under the title bar of a Form or
Window is a .
a. task bar
b. subtitle bar

c. menu strip
d. list box

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exercises

603

Exercises

Programming Exercises

1. Create a project named DayNight. Include a Form that contains two Buttons, one
labeled Day and one labeled Night. Add a Label telling the user to click a button.
When the user clicks Day, change the BackColor of the Form to Yellow; when the
user clicks Night, change the BackColor of the Form to DarkBlue.

2. Create a project named FiveColors. Its Form contains at least five Button objects,
each labeled with a color. When the user clicks a Button, change the BackColor of
the Form appropriately.

3. Create a project named FiveColors2. Its Form contains at least five RadioButton
objects, each labeled with a color. When the user clicks a RadioButton, change the
BackColor of the Form appropriately.

4. Create a project named MyFlix. Its Form contains a ListBox with the titles of at
least six movies or TV shows available to purchase. Provide directions that tell users
they can choose as many downloads as they want by holding down the Ctrl key while
making selections. When the user clicks a Button to indicate the choices are final,
display the total price, which is $1.99 per download. If the user selects or deselects
items and clicks the button again, make sure the total is updated correctly.

5. Create a project named FontSelector. Its Form contains two ListBoxes—one
contains at least four Font names, and the other contains at least four Font sizes. Let
the first item in each list be the default selection if the user fails to make a selection.
Allow only one selection per ListBox. After the user clicks a Button, display Hello
in the selected Font and size.

6. Create a project named DavesDriveways that contains a Form for a driveway
installation company. Allow the user to choose a material (gravel, asphalt, cement, or
brick) and a number of square feet. After the user makes selections, display the total
price, which is $10 per square foot for gravel, $12 for asphalt, $14 for cement, and $17
for brick. Use the Controls that you think are best for each function. Label items
appropriately, and use fonts and colors to achieve an attractive design.

7. Create a project named VacationPlanner for a tropical resort that offers all-inclusive
vacation packages. The project contains a Form that allows the user to choose one
option from at least three in each of the following categories—departure city, room
type, and meal plan. Assign a different price to each selection, and display the total when
the user clicks a Button. Use the Controls that you think are best for each function.
Label items appropriately, and use fonts and colors to achieve an attractive design.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 2 Using Controls

604

8. Create a project named CarDealer that contains a Form for an automobile dealer.
Include options for at least three car models. After users make a selection, proceed to
a new Form that contains information about the selected model. Use the Controls
that you decide are best for each function. Label items on the Form appropriately, and
use fonts and colors to achieve an attractive design.

9. Create a project named AnnualBudget that includes a Form with two LinkLabels.
One opens a spreadsheet for viewing, and the other visits your favorite Web site.
Include Labels on the Form to explain each link. You can create a spreadsheet with
a few numbers that represent an annual budget, or you can use the AnnualBudget.xls
file in the Chapter.12 folder of the downloadable student files.

10. Create a project named NinasCookieSource that includes a Form for a company
named The Cookie Source. Allow the user to select from at least three types of
cookies, each with a different price per dozen. Allow the user to select one-half, one,
two, or three dozen cookies. Adjust the final displayed price as the user chooses
cookie types and quantities. Also allow the user to select an order date from a
MonthCalendar. Assuming that shipping takes three days, display the estimated
arrival date for the order. Include as many labels as necessary so the user understands
how to use the Form.

11. Create a project named MenuStripDemo2 that is based on the MenuStripDemo
project in the Chapter.12 folder of your downloadable student files. (See Figure 12-34
earlier in this chapter). Add appropriate functionality to the currently unprogrammed
menu options (the two options in the Font menu and the three options in the Color
menu). Add at least three other menu options to the program, either vertically,
horizontally, or both.

12. Create a project named LetsMakeADeal. In this game, three prizes of varying value
are assigned randomly to be hidden behind three “doors” that you can implement
as Buttons. For example, the prizes might be a new car, a big-screen TV, and a live
goat. The player chooses a Button, and then one of the two other prizes is revealed;
the one revealed is never the most desirable prize. The user then has the option of
changing the original selection to the remaining unseen choice. For example, consider
these two game scenarios:
 Suppose that the most valuable prize is randomly assigned to the first button. If the

user chooses the first button, reveal either of the other two prizes, and ask the user if
he wants to change his selection.

 Suppose that the most valuable prize is assigned to the first button, but the user
chooses the second button. Reveal the third prize so that the most valuable prize’s
location is still hidden, and then ask the user whether he wants to change his
selection.

After the user has chosen to retain his original selection or make a change, reveal what
he has won.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exercises

605

Debugging Exercises

1. Each of the following projects in the Chapter.12 folder of your downloadable student
files has syntax and/or logical errors. Immediately save the four project folders
with their new names before starting to correct their errors. After you correct the
errors, save each project using the same name preceded with Fixed. For example,
DebugTwelve1 will become FixedDebugTwelve1.
a. DebugTwelve1
b. DebugTwelve2
c. DebugTwelve3
d. DebugTwelve4

Case Problems

1. Throughout this book, you have created programs for the Greenville Idol competition.
Now create an interactive advertisement named GreenvilleAdvertisement that can
be used to recruit contestants. Include at least three Controls that you studied in this
chapter, and use at least two different Fonts and two different Colors.

2. Throughout this book, you have created programs for Marshall’s Murals. Now create
an interactive advertisement named MarshallsAdvertisement that can be used to
advertise the available murals. Include at least three Controls that you studied in this
chapter, and use at least two different Fonts and two different Colors.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

