
C H A P T E R 10
Introduction to
Inheritance

In this chapter you will:

 � Learn about inheritance

 � Extend classes

 � Use the protected access specifier

 � Override base class members

 � Understand how a derived class object “is an” instance of the
base class

 � Learn about the Object class

 � Work with base class constructors

 � Create and use abstract classes

 � Create and use interfaces

 � Use extension methods

 � Recognize inheritance in GUI applications and understand
the benefits of inheritance

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

424

C H A P T E R 1 0 Introduction to Inheritance

Understanding classes helps you organize objects. Understanding inheritance helps you
organize them more precisely. If you have never heard of a Braford, for example, you would
have a hard time forming a picture of one in your mind. When you learn that a Braford is an
animal, you gain some understanding of what it must be like. That understanding grows when
you learn it is a mammal, and the understanding is almost complete when you learn it is a cow.
When you learn that a Braford is a cow, you understand it has many characteristics that are
common to all cows. To identify a Braford, you must learn only relatively minor details—its
color or markings, for example. Most of a Braford’s characteristics, however, derive from its
membership in a particular hierarchy of classes: animal, mammal, and cow.
All object-oriented programming languages make use of inheritance for the same reasons—to
organize the objects used by programs, and to make new objects easier to understand based
on your knowledge of their inherited traits. In this chapter, you will learn to make use of
inheritance with your C# objects.

Understanding Inheritance
Inheritance is the principle that you can apply your knowledge of a general category to more
specific objects. You are familiar with the concept of inheritance from all sorts of situations.
When you use the term inheritance, you might think of genetic inheritance. You know from
biology that your blood type and eye color are the products of inherited genes. You can say that
many other facts about you (your attributes) are inherited. Similarly, you often can attribute
your behaviors to inheritance; for example, the way you handle money might be similar to the
way your grandmother handles it, and your gait might be the same as your father’s—so your
methods are inherited, too.
You also might choose to own plants and animals based on their inherited attributes. You plant
impatiens next to your house because they thrive in the shade; you adopt a poodle because you
know poodles don’t shed. Every plant and pet has slightly different characteristics, but within a
species, you can count on many consistent inherited attributes and behaviors. In other words,
you can reuse the knowledge you gain about general categories and apply it to more specific
categories. Similarly, the classes you create in object-oriented programming languages can
inherit data and methods from existing classes. When you create a class by making it inherit
from another class, you are provided with data fields and methods automatically; you can reuse
fields and methods that are already written and tested.
You already know how to create classes and how to instantiate objects from those classes.
For example, consider the Employee class in Figure 10-1. The class contains two data fields,
idNum and salary, as well as properties that contain accessors for each field and a method that
creates an Employee greeting.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

425

Understanding Inheritance

class Employee
{
 private int idNum;
 private double salary;
 public int IdNum
 {
 get
 {
 return idNum;
 }
 set
 {
 idNum = value;
 }
 }
 public double Salary
 {
 get
 {
 return salary;
 }
 set
 {
 salary = value;
 }
 }
 public string GetGreeting()
 {
 string greeting = "Hello. I am employee #" + IdNum;
 return greeting;
 }
}

Figure 10-1 The Employee class

After you create the Employee class, you can create specific Employee objects, as in
the following:

Employee receptionist = new Employee();
Employee deliveryPerson = new Employee();

These Employee objects can eventually possess different numbers and salaries, but because
they are Employee objects, you know that each possesses some ID number and salary.
Suppose that you hire a new type of Employee who earns a commission as well as a salary.
You can create a class with a name such as CommissionEmployee, and provide this class
with three fields (idNum, salary, and commissionRate), three properties (with accessors

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

426

C H A P T E R 1 0 Introduction to Inheritance

to get and set each of the three fields), and a greeting method. However, this work would
duplicate much of the work that you already have done for the Employee class. The wise and
efficient alternative is to create the class CommissionEmployee so it inherits all the attributes
and methods of Employee. Then, you can add just the single field and property with two
accessors that are additions within CommissionEmployee objects. Figure 10-2 depicts
these relationships.

In class diagrams, the convention is to provide three sections
for the class name, its data, and its methods, respectively. The
upward-pointing arrow between the classes in Figure 10-2 indicates
that the class on the bottom inherits from the one on the top.
Using an arrow in this way is conventional in Unified Modeling
Language (UML) diagrams, which are graphical tools that
programmers and analysts use to describe systems.

When you use inheritance to create the CommissionEmployee
class, you acquire the following benefits:
 You save time, because you need not re-create the Employee
fields, properties, and methods.

 You reduce the chance of errors, because the Employee
properties and methods have already been used and tested.

 You make it easier for anyone who has used the Employee
class to understand the CommissionEmployee class because
such users can concentrate on the new features only.

The ability to use inheritance makes programs easier to write,
easier to understand, and less prone to errors. Imagine that
besides CommissionEmployee, you want to create several
other specific Employee classes (perhaps PartTimeEmployee,
including a field for hours worked, or DismissedEmployee,
including a reason for dismissal). By using inheritance, you can
develop each new class correctly and more quickly.

In part, the concept of class inheritance is useful because it makes class code reusable and development
faster. However, you do not use inheritance simply to save work. When properly used, inheritance always
involves a general-to-specific relationship.

(PSOR\HH

LG1XP
VDODU\

,G1XP
���JHW
���VHW
6DODU\
���JHW
���VHW
*HW*UHHWLQJ��

&RPPLVVLRQ(PSOR\HH

FRPPLVVLRQ5DWH

&RPPLVVLRQ5DWH
���JHW
���VHW

Figure 10-2
CommissionEmployee
inherits from Employee

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

427

Understanding Inheritance

Understanding Inheritance Terminology
A class that is used as a basis for inheritance, like Employee, is called a base class. When you
create a class that inherits from a base class (such as CommissionEmployee), it is a derived
class or extended class. When presented with two classes that have a parent-child relationship,
you can tell which class is the base class and which is the derived class by using the two classes
in a sentence with the phrase “is a.” A derived class always “is a” case or instance of the more
general base class. For example, a Tree class may be a base class to an Evergreen class.
Every Evergreen “is a” Tree; however, it is not true that every Tree is an Evergreen. Thus,
Tree is the base class, and Evergreen is the derived class. Similarly, a CommissionEmployee
“is an” Employee—not always the other way around—so Employee is the base class and
CommissionEmployee is derived.
You can use the terms superclass and subclass as synonyms for base class and derived class.
Thus, Evergreen can be called a subclass of the Tree superclass. You also can use the terms
parent class and child class. A CommissionEmployee is a child to the Employee parent.
Use the pair of terms with which you are most comfortable; all of these terms will be used
interchangeably in this book.
As an alternative way to discover which of two classes is the base class and which is the
derived class, you can try saying the two class names together (although this technique might
not work with every superclass-subclass pair). When people say their names together in
the English language, they state the more specific name before the all-encompassing family
name, such as Ginny Kroening. Similarly, with classes, the order that “makes more sense” is
the child-parent order. Thus, because Evergreen Tree makes more sense than Tree Evergreen,
you can deduce that Evergreen is the child class. It also is convenient to think of a derived
class as building upon its base class by providing the “adjectives” or additional descriptive
terms for the “noun.” Frequently, the names of derived classes are formed in this way, as in
CommissionEmployee.
Finally, you usually can distinguish base classes from their derived classes by size. A derived
class is larger than a base class, in the sense that it usually has additional fields and methods.
A derived class description may look small, but any subclass contains all the fields and
methods of its superclass as well as its own more specific fields and methods. Do not think
of a subclass as a “subset” of another class—in other words, possessing only parts of its
superclass. In fact, a derived class contains everything in the superclass, plus any new
attributes and methods.
A derived class can be further extended. In other words, a subclass can have a child of its
own. For example, after you create a Tree class and derive Evergreen, you might derive a
Spruce class from Evergreen. Similarly, a Poodle class might derive from Dog, Dog from

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

428

C H A P T E R 1 0 Introduction to Inheritance

The false statement is #1. When you use inheritance to create a class, you save
time because you need not re-create fields, properties, and methods that have
already been created for the original class. You do not copy these class members;
you inherit them.

DomesticPet, and DomesticPet from Animal. The entire list of parent classes from which a
child class is derived constitutes the ancestors of the subclass.
After you create the Spruce class, you might be ready to create Spruce objects. For example,
you might create theTreeInMyBackYard, or you might create an array of 1000 Spruce objects
for a tree farm. Similarly, one Poodle object might be myPetDogFifi.
Inheritance is transitive, which means a child inherits all the members of all its ancestors. In
other words, when you declare a Spruce object, it contains all the attributes and methods of
both an Evergreen and a Tree. As you work with C#, you will encounter many examples of
such transitive chains of inheritance.

When you create your own transitive inheritance chains, you want to place fields and methods at their
most general level. In other words, a method named Grow() rightfully belongs in a Tree class, whereas
LeavesTurnColor() does not, because the method applies to only some of the Tree child classes.
Similarly, a LeavesTurnColor() method would be better located in a Deciduous class than separately
within the Oak or Maple child class.

TWO TRUTHS & A LIE

Understanding Inheritance
1. When you use inheritance to create a class, you save time because you can copy

and paste fields, properties, and methods that have already been created for the
original class.

2. When you use inheritance to create a class, you reduce the chance of errors
because the original class’s properties and methods have already been used
and tested.

3. When you use inheritance to create a class, you make it easier for anyone who
has used the original class to understand the new class because such users can
concentrate on the new features.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

429

Extending Classes

Extending Classes
When you create a class that is an extension or child of another class, you use a single colon
between the derived class name and its base class name. For example, the following class
header creates a subclass-superclass relationship between CommissionEmployee
and Employee.
class CommissionEmployee : Employee

Each CommissionEmployee object automatically contains the fields and methods of the base
class; you then can add new fields and methods to the new derived class. Figure 10-3 shows a
CommissionEmployee class.

class CommissionEmployee : Employee
{
 private double commissionRate;
 public double CommissionRate
 {
 get
 {
 return commissionRate;
 }
 set
 {
 commissionRate = value;
 }
 }
}

Figure 10-3 The CommissionEmployee class

Although you see only one field defined in the CommissionEmployee class in Figure 10-3, it
contains three fields: idNum and salary, inherited from Employee, and commissionRate,
which is defined within the CommissionEmployee class. Similarly, the CommissionEmployee
class contains three properties and a method—two properties and the method are inherited
from Employee, and one property is defined within CommissionEmployee itself. When you
write a program that instantiates an object using the following statement, then you can use any
of the next statements to set field values for the salesperson:
CommissionEmployee salesperson = new CommissionEmployee();
salesperson.IdNum = 234;
salesperson.Salary = Convert.ToDouble(ReadLine());
salesperson.CommissionRate = 0.07;

The salesperson object has access to all three set accessors (two from its parent and one
from its own class) because it is both a CommissionEmployee and an Employee. Similarly, the
object has access to three get accessors and the GetGreeting() method. Figure 10-4 shows a

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

430

C H A P T E R 1 0 Introduction to Inheritance

Main() method that declares Employee and CommissionEmployee objects and shows all the
properties and methods that can be used with each. Figure 10-5 shows the program output.

using static System.Console;
class DemoEmployees
{
 static void Main()
 {
 Employee clerk = new Employee();
 CommissionEmployee salesperson = new CommissionEmployee();
 clerk.IdNum = 123;
 clerk.Salary = 30000.00;
 salesperson.IdNum = 234;
 salesperson.Salary = 20000.00;
 salesperson.CommissionRate = 0.07;
 WriteLine("\n" + clerk.GetGreeting());
 WriteLine("Clerk #{0} salary: {1} per
 year", clerk.IdNum,
 clerk.Salary.ToString("C"));
 WriteLine("\n" + salesperson.GetGreeting());
 WriteLine("Salesperson #{0} salary: {1} per year",
 salesperson.IdNum, salesperson.Salary.ToString("C"));
 WriteLine("...plus {0} commission on all sales",
 salesperson.CommissionRate.ToString("P"));
 }
}

Figure 10-4 The DemoEmployees class that declares Employee and
CommissionEmployee objects

Figure 10-5 Output of the DemoEmployees program

Inheritance works only in one direction: A child inherits from a parent—not the other
way around. If a program instantiates an Employee object as in the following statement, the
Employee object does not have access to the CommissionEmployee properties or methods.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

431

Extending Classes

Employee clerk = new Employee();
clerk.CommissionRate = 0.1;

Employee is the parent class, and clerk is an
object of the parent class. It makes sense that a
parent class object does not have access to its child’s data and methods. When you create
the parent class, you do not know how many future child classes might be created, or
what their data or methods might look like. In addition, child classes are more specific.
A HeartSurgeon class and an Obstetrician class are children of a Doctor class. You do
not expect all members of the general parent class Doctor to have the HeartSurgeon’s
RepairValve() method or the Obstetrician’s DeliverBaby() method. However,
HeartSurgeon and Obstetrician objects have access to the more general Doctor
methods TakeBloodPressure() and BillPatients(). As with doctors, it is convenient
to think of derived classes as specialists. That is, their fields and methods are more
specialized than those of the base class.

Watch the video Inheritance.

Don’t Do It
This statement is invalid—Employee
objects don’t have a CommissionRate.

TWO TRUTHS & A LIE

Extending Classes
1. The following class header indicates that Dog is a subclass of Pet:

public class Pet : Dog

2. If class X has four fields and class Y derives from it, then class Y also contains at
least four fields.

3. Inheritance works only in one direction: A child inherits from a parent—not the other
way around.

The false statement is #1. The following class header indicates that Dog is a
subclass of Pet:
public class Dog : Pet

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

432

C H A P T E R 1 0 Introduction to Inheritance

In this section, you create a working example of inheritance. You create this example
in four parts:

1. You create a general Loan class that holds data pertaining to a bank loan—a
loan number, a customer name, and the amount borrowed.

2. After you create the general Loan class, you write a program to instantiate
and use a Loan object.

3. You create a more specific CarLoan derived class that inherits the attributes
of the Loan class but adds information about the automobile that serves as
collateral for the loan.

4. You modify the Loan demonstration program to add a CarLoan object and
demonstrate its use.

Creating the Loan Class and a Program That Uses It

1. Open a new project named DemoLoan, and then enter the following first few
lines for a Loan class. The class contains three auto-implemented properties
for the loan number, the last name of the customer, and the value of the loan.
class Loan
{
 public int LoanNumber {get; set;}
 public string LastName {get; set;}
 public double LoanAmount {get; set;}
}

2. At the top of the file, enter the following code to add a DemoLoan class that
contains a Main() method. The class declares a Loan object and shows how
to set each field and display the results.
using static System.Console;
class DemoLoan
{
 static void Main()
 {
 Loan aLoan = new Loan();
 aLoan.LoanNumber = 2239;
 aLoan.LastName = "Mitchell";
 aLoan.LoanAmount = 1000.00;
 WriteLine("Loan #{0} for {1} is for {2}",
 aLoan.LoanNumber, aLoan.LastName,

You Do It

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

433

Extending Classes

 aLoan.LoanAmount.ToString("C2"));
 }
}

3. Save the file, and then compile and execute the program. The output looks
like Figure 10-6. There is nothing unusual about this class or how it operates;
it is similar to many you saw in the last chapter before you learned about
inheritance.

Figure 10-6 Output of the DemoLoan program

Extending a Class
Next, you create a class named CarLoan. A CarLoan “is a” type of Loan. As such,
it has all the attributes of a Loan, but it also has the year and make of the car that
the customer is using as collateral for the loan. Therefore, CarLoan is a subclass
of Loan.

1. Save the DemoLoan file as DemoCarLoan. Change the DemoLoan class
name to DemoCarLoan. Begin the definition of the CarLoan class after the
closing curly brace for the Loan class. CarLoan extends Loan and contains
two properties that hold the year and make of the car.
class CarLoan : Loan
{
 public int Year {get; set;}
 public string Make {get; set;}
}

2. Within the Main() method of the DemoCarLoan class, just after the
declaration of the Loan object, declare a CarLoan as follows:
CarLoan aCarLoan = new CarLoan();

3. After the three property assignments for the Loan object, insert five
assignment statements for the CarLoan object.
aCarLoan.LoanNumber = 3358;
aCarLoan.LastName = "Jansen";
aCarLoan.LoanAmount = 20000.00;

(continued)

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

434

C H A P T E R 1 0 Introduction to Inheritance

aCarLoan.Make = "Ford";
aCarLoan.Year = 2005;

4. Following the WriteLine() statement that displays the Loan object data,
insert two WriteLine() statements that display the CarLoan object’s data.
WriteLine("Loan #{0} for {1} is for {2}",
 aCarLoan.LoanNumber, aCarLoan.LastName,
 aCarLoan.LoanAmount.ToString("C2"));
WriteLine(" Loan #{0} is for a {1} {2}",
 aCarLoan.LoanNumber, aCarLoan.Year,
 aCarLoan.Make);

5. Save the program, and then compile and execute it. The output looks like
Figure 10-7. The CarLoan object correctly uses its own fields and properties
as well as those of the parent Loan class.

Figure 10-7 Output of the DemoCarLoan program

(continued)

Using the protected Access Specifier
The Employee class in Figure 10-1 is a typical C# class in that its data fields are private
and its properties and methods are public. In the chapter “Using Classes and Objects,” you
learned that this scheme provides for information hiding—protecting your private data
from alteration by methods outside the data’s own class. When a program is a client of the
Employee class (that is, it instantiates an Employee object), the client cannot alter the data
in any private field directly. For example, when you write a Main() method that creates an
Employee named clerk, you cannot change the Employee’s idNum or salary directly using
a statement such as clerk.idNum = 2222;. Instead, you must use the public IdNum property
to set the idNum field of the clerk object.
When you use information hiding, you are assured that your data will be altered only by the
properties and methods you choose and only in ways that you can control. If outside classes
could alter an Employee’s private fields, then the fields could be assigned values that the
Employee class couldn’t control. In such a case, the principle of information hiding would be
destroyed, causing the behavior of the object to be unpredictable.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

435

Using the protected Access Specifier

Any derived class you create, such as CommissionEmployee, inherits all the data and methods
of its base class. However, even though a child of Employee has idNum and salary fields, the
CommissionEmployee methods cannot alter or use those private fields directly. If a new class
could simply extend your Employee class and “get to” its data fields without “going through the
proper channels,” then information hiding would not be operating.
On some occasions, you do want to access parent class data from a child class. For example,
suppose that the Employee class Salary property set accessor has been written so that no
Employee’s salary is ever set to less than 15000, as follows:

set
{
 double MINIMUM = 15000;
 if(value < MINIMUM)
 salary = MINIMUM;
 else
 salary = value;
}

Also assume that a CommissionEmployee draws commission only and no regular salary;
that is, when you set a CommissionEmployee’s commissionRate field, the salary should
become 0. You would write the CommissionEmployee class CommissionRate property set
accessor as follows:
set
{
 commissionRate = value;
 Salary = 0;
}

Using this implementation, when you create a CommissionEmployee object and set its
CommissionRate, 0 is sent to the set accessor for the Employee class Salary property.
Because the value of the salary is less than 15000, the salary is forced to 15000 in the Employee
class set accessor, even though you want it to be 0.
A possible alternative would be to rewrite the set accessor for the CommissionRate property
in the CommissionEmployee class using the field salary instead of the property Salary, as
follows:
set
{
 commissionRate = value;
 salary = 0;
}

In this set accessor, you bypass the parent class’s Salary set accessor and directly use the
salary field. However, when you include this accessor in a program and compile it, you receive
an error message: Employee.salary is inaccessible due to its protection level. In other words,
Employee.salary is private, and no other class can access it, even a child class of Employee.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

436

C H A P T E R 1 0 Introduction to Inheritance

So, in summary:
 Using the public set accessor in the parent class does not work because of the minimum

salary requirement.
 Using the private field in the parent class does not work because it is inaccessible.
 Making the parent class field public would work, but doing so would violate the principle

of information hiding.
Fortunately, there is a fourth option. The solution is to create the salary field with protected
access, which provides you with an intermediate level of security between public and
private access. A protected data field or method can be used within its own class or in any
classes extended from that class, but it cannot be used by “outside” classes. In other words,
protected members can be used “within the family”—by a class and its descendents.

Some sources say that private, public, and protected are access specifiers, while other class
designations, such as static, are access modifiers. However, Microsoft developers, who created C#, use
the terms interchangeably in their documentation.

Figure 10-8 shows how you can declare salary as protected within the Employee class
so that it becomes legal to access it directly within the CommissionRate set accessor of
the CommissionEmployee derived class. Figure 10-9 shows a program that instantiates
a CommissionEmployee object, and Figure 10-10 shows the output. Notice that the
CommissionEmployee’s salary initially is set to 20000 in the program, but the salary
becomes 0 when the CommissionRate is set later.

class Employee
{
 private int idNum;
 protected double salary;
 public int IdNum
 {
 get
 {
 return idNum;
 }
 set
 {
 idNum = value;
 }
 }

Figure 10-8 The Employee class with a protected field and the
CommissionEmployee class (continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

437

 public double Salary
 {
 get
 {
 return salary;
 }
 set
 {
 double MINIMUM = 15000;
 if(value < MINIMUM)
 salary = MINIMUM;
 else
 salary = value;
 }
 }
 public string GetGreeting()
 {
 string greeting = "Hello. I am employee #" + IdNum;
 return greeting;
 }
}
class CommissionEmployee : Employee
{
 private double commissionRate;
 public double CommissionRate
 {
 get
 {
 return commissionRate;
 }
 set
 {
 commissionRate = value;
 salary = 0;
 }
 }
}

Figure 10-8 The Employee class with a protected field and the
CommissionEmployee class

(continued)

Using the protected Access Specifier

The protected salary field is
accessible in the child class.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

438

C H A P T E R 1 0 Introduction to Inheritance

using static System.Console;
class DemoSalesperson
{
 static void Main()
 {
 CommissionEmployee salesperson = new CommissionEmployee();
 salesperson.IdNum = 345;
 salesperson.Salary = 20000;
 salesperson.CommissionRate = 0.07;
 WriteLine("Salesperson #{0} makes {1} per year",
 salesperson.IdNum, salesperson.Salary.ToString("C"));
 WriteLine("...plus {0} commission on all sales",
 salesperson.CommissionRate.ToString("P"));
 }
}

Figure 10-9 The DemoSalesperson program

Figure 10-10 Output of the DemoSalesperson program

If you set the salesperson’s CommissionRate first in the DemoSalesperson program, then set Salary to a
nonzero value, salary will not be reduced to 0. If your intention is to always create CommissionEmployees
with salaries of 0, then the Salary property should also be overridden in the derived class.

Using the protected access specifier for a field can be convenient, and it also slightly improves
program performance by using a field directly instead of “going through” property accessors.
Also, using the protected access specifier is occasionally necessary. However, protected data
members should be used sparingly. Whenever possible, the principle of information hiding
should be observed, and even child classes should have to go through accessors to “get to”
their parent’s private data. When child classes are allowed direct access to a parent’s fields, the
likelihood of future errors increases. Classes that depend on field names from parent classes are
said to be fragile because they are prone to errors—that is, they are easy to “break.”

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

439

Overriding Base Class Members

Overriding Base Class Members
When you create a derived class by extending an existing class, the new derived class contains
properties and methods that were defined in the original base class. Sometimes, the superclass
features are not entirely appropriate for the subclass objects. Using the same method or
property name to indicate different implementations is called polymorphism. The word
polymorphism means “many forms”—in programming, it means that many forms of action take
place, even though you use the same method name. The specific method executed depends on
the object.

You first learned the term polymorphism in Chapter 1.

Everyday cases provide many examples of polymorphism:
 Although both are musical instruments and have a Play() method, a guitar is played

differently than a drum.
 Although both are vehicles and have an Operate() method, a bicycle is operated differently

than a truck.
 Although both are schools and have a SatisfyGraduationRequirements() method, a

preschool’s requirements are different from those of a college.
You understand each of these methods based on the context in which it is used. In a similar way,
C# understands your use of the same method name based on the type of object associated with it.
For example, suppose that you have created a Student class as shown in Figure 10-11.
Students have names, credits for which they are enrolled, and tuition amounts. You can

TWO TRUTHS & A LIE

Using the protected Access Specifier
1. A child class does not contain the private members of its parent.

2. A child class cannot use the private members of its parent.

3. A child class can use the protected members of its parent, but outside
classes cannot.

The false statement is #1. A child class contains the private members of its
parent, but cannot use them directly.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

440

C H A P T E R 1 0 Introduction to Inheritance

set a Student’s name and credits by using the set accessors in the Name and Credits
properties, but you cannot set a Student’s tuition directly because there is no set accessor
for the Tuition property. Instead, tuition is calculated based on a standard RATE (of $55.75)
for each credit that the Student takes.

In Figure 10-11, the Student fields that hold credits and tuition are declared as protected because a
child class will use them.

class Student
{
 private const double RATE = 55.75;
 private string name;
 protected int credits;
 protected double tuition;
 public string Name
 {
 get
 {
 return name;
 }
 set
 {
 name = value;
 }
 }
 public virtual int Credits
 {
 get
 {
 return credits;
 }
 set
 {
 credits = value;
 tuition = credits * RATE;
 }
 }
 public double Tuition
 {
 get
 {
 return tuition;
 }
 }
}

Figure 10-11 The Student class

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

441

Overriding Base Class Members

In Figure 10-11, Credits is declared to be virtual (see shading). A virtual method (or property)
is one that can be overridden by a method with the same signature in a child class. In Chapter 9,
you learned that when a method overrides another, it takes precedence over the method.
Suppose that you derive a subclass from Student called ScholarshipStudent, as shown
in Figure 10-12. A ScholarshipStudent has a name, credits, and tuition, but the
tuition is not calculated in the same way as it is for a Student; instead, tuition for a
ScholarshipStudent should be set to 0. You want to use the Credits property to set a
ScholarshipStudent’s credits, but you want the property to behave differently than the
parent class Student’s Credits property. As a child of Student, a ScholarshipStudent
possesses all the attributes, properties, and methods of a Student, but its Credits property
behaves differently.

class ScholarshipStudent : Student
{
 public override int Credits
 {
 set
 {
 credits = value;
 tuition = 0;
 }
 }
}

Figure 10-12 The ScholarshipStudent class

In C#, you can use either new or override when defining a derived class member that has the same
name as a base class member, but you cannot use both together. When you write a statement such as
ScholarshipStudent s1 = new ScholarshipStudent();, you won’t notice the difference. However, if you
use new when defining the derived class Credits property and write a statement such as Student s2 = new
ScholarshipStudent(); (using Student as the type), then s2.Credits accesses the base class property.
On the other hand, if you use override when defining Credits in the derived class, then s2.Credits uses
the derived class property.

In the child ScholarshipStudent class in Figure 10-12, the Credits property is declared
with the override modifier (see shading) because it has the same header (that is, the same
signature—the same name and parameter list) as a property in its parent class. The Credits
property overrides and hides its counterpart in the parent class. (You could do the same thing
with methods.) If you omit override, the program will still operate correctly, but you will
receive a warning that you are hiding an inherited member with the same name in the base
class. Using the keyword override eliminates the warning and makes your intentions clear.
When you use the Name property with a ScholarshipStudent object, a program uses the
parent class property Name; it is not hidden. However, when you use Credits to set a value for a
ScholarshipStudent object, the program uses the new, overriding property from its own class.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

442

C H A P T E R 1 0 Introduction to Inheritance

If credits and tuition had been declared as private within the Student class, then
ScholarshipStudent would not be able to use them.

You are not required to override a virtual method or property in a derived class; a derived class
can simply use the base class version. A base class member that is not hidden by the derived
class is visible in the derived class.
Figure 10-13 shows a program that uses Student and ScholarshipStudent objects. Even
though each object assigns the Credits property with the same number of credit hours (in the
two shaded statements), the calculated tuition values are different because each object uses a
different version of the Credits property. Figure 10-14 shows the execution of the program.

using static System.Console;
class DemoStudents
{
 static void Main()
 {
 Student payingStudent = new Student();
 ScholarshipStudent freeStudent = new ScholarshipStudent();
 payingStudent.Name = "Megan";
 payingStudent.Credits = 15;
 freeStudent.Name = "Luke";
 freeStudent.Credits = 15;
 WriteLine("{0}'s tuition is {1}",
 payingStudent.Name, payingStudent.Tuition.ToString("C"));
 WriteLine("{0}'s tuition is {1}",
 freeStudent.Name, freeStudent.Tuition.ToString("C"));
 }
}

Figure 10-13 The DemoStudents program

Figure 10-14 Output of the DemoStudents program

If a base class and a derived class have methods with the same names but different parameter
lists, then the derived class method does not override the base class method; instead,

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

443

Overriding Base Class Members

it overloads the base class method. For example, if a base class contains a method with the
header public void Display(), and its child contains a method with the header public void
Display(string s), then the child class would have access to both methods. (You learned
about overloading methods in the chapter “Advanced Method Concepts.”)

Accessing Base Class Methods and Properties from a Derived Class
When a derived class contains a method or property that overrides a parent class method or
property, you might have occasion to use the parent class version within the subclass. If so, you
can use the keyword base to access the parent class method or property.
For example, recall the GetGreeting() method that appears in the Employee class in
Figure 10-8. If its child, CommissionEmployee, also contains a GetGreeting() method, as shown
in Figure 10-15, then within the CommissionEmployee class you can call base.GetGreeting()
to access the base class version of the method. Figure 10-16 shows an application that uses the
method with a CommissionEmployee object. Figure 10-17 shows the output.

class CommissionEmployee : Employee
{
 private double commissionRate;
 public double CommissionRate
 {
 get
 {
 return commissionRate;
 }
 set
 {
 commissionRate = value;
 salary = 0;
 }
 }
 new public string GetGreeting()
 {
 string greeting = base.GetGreeting();
 greeting += "\nI work on commission.";
 return greeting;
 }
}

Figure 10-15 The CommissionEmployee class with a GetGreeting() method

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

444

C H A P T E R 1 0 Introduction to Inheritance

using static System.Console;
class DemoSalesperson2
{
 static void Main()
 {
 CommissionEmployee salesperson = new CommissionEmployee();
 salesperson.IdNum = 345;
 WriteLine(salesperson.GetGreeting());
 }
}

Figure 10-16 The DemoSalesperson2 program

Figure 10-17 Output of the DemoSalesperson2 program

In Figure 10-15, the child class, the GetGreeting() method uses the keyword new in its
header to eliminate a compiler warning. Then, within the method, the parent’s version
of the GetGreeting() method is called. The returned string is stored in the greeting
variable, and then an “I work on commission.” statement is added to it before the complete
message is returned to the calling program. By overriding the base class method in the
child class, the duplicate typing to create the first part of the message is eliminated.
Additionally, if the first part of the message is altered in the future, it will be altered in only
one place—in the base class.

Watch the video Handling Methods and Inheritance.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

445

Overriding Base Class Members

The false statement is #3. When you override a parent class method in a child
class and then use the child class method, the child class method executes
instead of the parent class version.

TWO TRUTHS & A LIE

Overriding Base Class Members
1. When you override a parent class method in a child class, the methods have the

same name.

2. When you override a parent class method in a child class, the methods have the
same parameter list.

3. When you override a parent class method in a child class and then use the child
class method, the parent class method executes first, followed by the child
class method.

In the previous sections, you created Loan and CarLoan classes and objects.
Suppose that the bank adopts new rules as follows:

 No regular loan will be made for less than $5000.

 No car loan will be made for any car older than model year 2006.

 Although Loans might have larger loan numbers, CarLoans will have loan numbers
that are no more than three digits. If a larger loan number is provided, the program
will use only the last three digits for the loan number.

Using Base Class Members in a Derived Class

1. Open the DemoCarLoan file, and immediately save it as DemoCarLoan2.
Also change the class name from DemoCarLoan to DemoCarLoan2.

2. Within the Loan class, add a new constant that represents the minimum
loan value:
public const double MINIMUM_LOAN = 5000;

You Do It

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

446

C H A P T E R 1 0 Introduction to Inheritance

3. Add a field for the loanAmount because the LoanAmount property, which was
previously an auto-implemented property, will need to use it:
protected double loanAmount;

The field is protected so that CarLoan objects will be able to access it as
well as Loan objects.

4. Replace the auto-implemented property for LoanAmount in the Loan class
with get and set accessors as follows. This change ensures that no loan is
made for less than the minimum allowed value.
public double LoanAmount
{
 set
 {
 if(value < MINIMUM_LOAN)
 loanAmount = MINIMUM_LOAN;
 else
 loanAmount = value;
 }
 get
 {
 return loanAmount;
 }
}

5. Within the CarLoan class, add two new constants to hold the earliest year for
which car loans will be given and the lowest allowed loan number:
private const int EARLIEST_YEAR = 2006;
private const int LOWEST_INVALID_NUM = 1000;

6. Also within the CarLoan class, add a field for the year of the car, and replace
the existing auto-implemented Year property with one that contains coded
get and set accessors. The Year property set accessor not only sets the
year field, it sets loanAmount to 0 when a car’s year is less than 2006.
private int year;
public int Year
{
 set
 {
 if(value < EARLIEST_YEAR)
 {
 year = value;
 loanAmount = 0;
 }

(continued)

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

447

Overriding Base Class Members

 else
 year = value;
 }
 get
 {
 return year;
 }
}

If loanAmount were private in the parent Loan class, you would not be able
to set its value in the child CarLoan class, as you do here. You could use
the public property LoanAmount to set the value, but the parent class set
accessor would force the value to 5000.

7. Suppose that unique rules apply for issuing loan numbers for cars. Within
the CarLoan class, just before the closing curly brace, change the inherited
LoanNumber property to accommodate the new rules. If a car loan number is
three digits or fewer, pass it on to the base class property. If not, obtain the
last three digits by calculating the remainder when the loan number is divided
by 1000, and pass the new number to the base class property. Add the
following property after the definition of the Make property.
public new int LoanNumber
{
 get
 {
 return base.LoanNumber;
 }
 set
 {
 if(value < LOWEST_INVALID_NUM)
 base.LoanNumber = value;
 else
 base.LoanNumber = value % LOWEST_INVALID_NUM;
 }
}

If you did not use the keyword base to access the LoanNumber property within
the CarLoan class, you would be telling this version of the LoanNumber property
to call itself. Although the program would compile, it would run continuously in
an infinite loop until it ran out of memory and issued an error message.

(continued)

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

448

C H A P T E R 1 0 Introduction to Inheritance

Understanding Implicit Reference Conversions
Every derived object “is a” specific instance of both the derived class and the base class. In other
words, myCar “is a” Car as well as a Vehicle, and myDog “is a” Dog as well as a Mammal. You can
assign a derived class object to an object of any of its superclass types. When you do, C# makes
an implicit conversion from derived class to base class.
You have already learned that C# also makes implicit conversions when casting one data type
to another. For example, in the statement double money = 10;, the integer value 10 is implicitly
converted (or cast) to a double. When a derived class object is assigned to its ancestor’s data
type, the conversion can more specifically be called an implicit reference conversion. This
term is more accurate because it emphasizes the difference between numerical conversions
and reference objects. When you assign a derived class object to a base class type, the object is
treated as though it had only the characteristics defined in the base class and not those added
in the child class definition.

A method that calls itself is a recursive method. Recursive methods are sometimes useful, but
they require specialized code to avoid infinite loops and are not appropriate in this case.

8. Save the file. Compile it, and correct any errors. When you execute the
program, the output looks like Figure 10-18. Compare the output to
Figure 10-7. Notice that the $1000 bank loan has been forced to $5000.
Also notice that the car loan number has been shortened to three digits and
the value of the loan is $0 because of the age of the car.

Figure 10-18 Output of the DemoCarLoan2 program

9. Change the assigned values within the DemoCarLoan2 class to combinations
of early and late years and valid and invalid loan numbers. After each change,
save the program, compile and execute it, and confirm that the program
operates as expected.

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

449

Understanding Implicit Reference Conversions

For example, when a CommissionEmployee class inherits from Employee, an object of
either type can be passed to a method that accepts an Employee parameter. In Figure 10-19,
an Employee is passed to DisplayGreeting() in the first shaded statement, and a
CommissionEmployee is passed in the second shaded statement. Each is referred to as emp
within the method, and each is used correctly, as shown in Figure 10-20.

using static System.Console;
class DemoSalesperson3
{
 static void Main()
 {
 Employee clerk = new Employee();
 CommissionEmployee salesperson = new CommissionEmployee();
 clerk.IdNum = 234;
 salesperson.IdNum = 345;
 DisplayGreeting(clerk);

 DisplayGreeting(salesperson);
 }
 public static void DisplayGreeting(Employee emp)
 {
 WriteLine("Hi there from #" + emp.IdNum);
 WriteLine(emp.GetGreeting());
 }
}

Figure 10-19 The DemoSalesperson3 program

Figure 10-20 Output of the DemoSalesperson3 program

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

450

C H A P T E R 1 0 Introduction to Inheritance

Using the Object Class
Every class you create in C# derives from a single class named System.Object. In other words,
the object (or Object) class type in the System namespace is the ultimate base class, or
root class, for all other types. When you create a class such as Employee, you usually use the
header class Employee, which implicitly, or automatically, descends from the Object class.
Alternatively, you could use the header class Employee : Object to explicitly show the name
of the base class, but it would be extremely unusual to see such a format in a C# program.
The keyword object is an alias for the System.Object class. You can use the lowercase
and uppercase versions of the class interchangeably. The fact that object is an alias for
System.Object should not surprise you. You already know, for example, that int is an
alias for Int32 and that double is an alias for Double.
Because every class descends from Object, every object “is an” Object. As proof, you can
write a method that accepts an argument of type Object, and it will accept arguments of any
type. Figure 10-21 shows a program that declares three objects using classes created earlier in
this chapter—a Student, a ScholarshipStudent, and an Employee. Even though these types
possess different attributes and methods (and one type, Employee, has nothing in common
with the other two), each type can serve as an argument to the DisplayObjectMessage()
because each type “is an” Object. Figure 10-22 shows the execution of the program.

using System;
using static System.Console;
class DiverseObjects
{
 static void Main()
 {
 Student payingStudent = new Student();

Figure 10-21 The DiverseObjects program (continues)

TWO TRUTHS & A LIE

Understanding Implicit Reference Conversions
1. You can assign a derived class object to an object of any of its superclass types.

2. You can assign a base class object to an object of any of its derived types.

3. An implicit conversion from one type to another is an automatic conversion.

The false statement is #2. You can assign a derived class object to an object of
any of its superclass types but not the other way around.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

451

Using the Object Class

 ScholarshipStudent freeStudent = new ScholarshipStudent();
 Employee clerk = new Employee();
 Write("Using Student: ");
 DisplayObjectMessage(payingStudent);
 Write("Using ScholarshipStudent: ");
 DisplayObjectMessage(freeStudent);
 Write("Using Employee: ");
 DisplayObjectMessage(clerk);
 }
 public static void DisplayObjectMessage(Object o)
 {
 WriteLine("Method successfully called");
 }
}

Figure 10-21 The DiverseObjects program

Figure 10-22 Output of the DiverseObjects program

When you create any child class, it inherits all the methods of all of its ancestors. Because all
classes inherit from the Object class, all classes inherit the Object class methods. The Object
class contains a constructor, a destructor, and four public instance methods, as summarized
in Table 10-1.

Method Explanation
Equals() Determines whether two Object instances are equal

GetHashCode() Gets a unique code for each object; useful in certain sorting and data
management tasks

GetType() Returns the type, or class, of an object

ToString() Returns a String that represents the object

 Table 10-1 The four public instance methods of the Object class

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

452

C H A P T E R 1 0 Introduction to Inheritance

The Object class contains other nonpublic and noninstance (static) methods in addition to the four methods
listed in Table 10-1. The C# documentation provides more details on these methods.

Using the Object Class’s GetType() Method
The GetType() method returns an object’s type, or class. For example, if you have created an
Employee object named someWorker, then the following statement displays Employee:
WriteLine(someWorker.GetType());

If an object’s class is defined in a namespace, then GetType() returns a string composed of the
namespace, a dot, and the class name.

Using the Object Class’s ToString() Method
The Object class methods are not very useful as they stand. For example, when you use the
Object class’s ToString() method with an object you create, it simply returns a string that
holds the name of the class, just as GetType() does. That is, if someWorker is an Employee,
then the following statement displays Employee:
WriteLine(someWorker.ToString());

When you create a class such as Employee, you often want to override the Object class’s
ToString() method with your own, more useful version—perhaps one that returns an
Employee’s ID number, name, or combination of the two. Of course, you could create a
differently named method to do the same thing—perhaps GetEmployeeIdentification()
or ConvertEmployeeToString(). However, by naming your class method ToString(), you
make the class easier for others to understand and use. Programmers know the ToString()
method works with every object; when they use it with your objects, you can provide a useful
set of information. A class’s ToString() method is often a useful debugging aid.
For example, you might create an Employee class ToString() method, as shown in
Figure 10-23. This method assumes that IdNum and Name are Employee properties with get
accessors. The returned string will have a value such as Employee: 234 Johnson.

public override string ToString()
{
 return(getType() + ": " + IdNum + " " + Name);
}

Figure 10-23 An Employee class ToString() method

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

453

Using the Object Class

You have been using an overloaded version of the ToString() method since Chapter 2. There, you learned
that you can format numeric output when you pass a string such as “F3” or “C2” to the ToString() method.

Using the Object Class’s Equals() Method
The Equals() method compares objects for reference equality. Reference equality occurs
when two reference type objects refer to the same object. The Equals() method returns true
if two Objects have the same memory address—that is, if one object is a reference to the other
and both are literally the same object. For example, you might write the following:
if(oneObject.Equals(anotherObject))...

Like the ToString() method, this method might not be useful to you in its original form.
For example, you might prefer to think of two Employee objects at unique memory addresses
as equal if their ID numbers or first and last names are equal. You might want to override
the Equals() method for any class you create if you anticipate that class clients will want to
compare objects based on any of their field values.
If you overload the Equals() method, it should meet the following requirements by convention:
 Its header should be as follows (you can use any identifier for the Object parameter):
public override bool Equals(Object o)

 It should return false if the argument is null.
 It should return true if an object is compared to itself.
 It should return true only if both of the following are true:
oneObject.Equals(anotherObject)
anotherObject.Equals(oneObject)

 If oneObject.Equals(anotherObject) returns true and oneObject.
Equals(aThirdObject) returns true, then anotherObject.Equals(aThirdObject)
should also be true.

You first used the Equals() method to compare String objects in Chapter 2. When you use Equals()
with Strings, you use the String class’s Equals() method that compares String contents as opposed
to String addresses. In other words, the Object class’s Equals() method has already been overridden in
the String class.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

454

C H A P T E R 1 0 Introduction to Inheritance

When you create an Equals() method to override the one in the Object class, the parameter
must be an Object. For example, if you consider Employee objects equal when their IdNum
properties are equal, then an Employee class Equals() method might be created as follows:
public override bool Equals(Object e)
{
 bool isEqual;
 Employee temp = (Employee)e;
 if(IdNum == temp.IdNum)
 isEqual = true;
 else
 isEqual = false;
 return isEqual;
}

In the shaded statement in the method, the Object parameter is cast to an Employee so the
Employee’s IdNum can be compared. If you did not perform the cast and tried to make the
comparison with e.IdNum, the method would not compile because an Object does not have
an IdNum property.
An even better alternative is to ensure that compared objects are the same type before making
any other decisions. For example, the Equals() method in Figure 10-24 uses the GetType()
method with both the this object and the parameter before proceeding. If compared objects
are not the same type, then the Equals() method should return false.

public override bool Equals(Object e)
{
 bool isEqual = true;
 if(this.GetType() != e.GetType()
 isEqual = false;
 else
 {
 Employee temp = (Employee)e;
 if(IdNum == temp.IdNum)
 isEqual = true;
 else
 isEqual = false;
 }
 return isEqual;
}

Figure 10-24 An Equals() method for the Employee class

Using the Object Class’s GetHashCode() Method
When you override the Equals() method, you should also override the GetHashCode()
method, because Equals() uses GetHashCode(), and two objects considered equal should

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

455

Using the Object Class

have the same hash code. A hash code is a number that should uniquely identify an object; you
might use hash codes in some advanced C# applications. For example, Figure 10-25 shows an
application that declares two Employees from a class in which the GetHashCode() method
has not been overridden. The output in Figure 10-26 shows a unique number for each object.
(The number, however, is meaningless to you.) If you choose to override the GetHashCode()
method, you should write this method so it returns a unique integer for every object—an
Employee ID number, for example.

A hash code is sometimes called a fingerprint for an object because it uniquely identifies the object. In C#,
the default implementation of the GetHashCode() method does not guarantee unique return values for
different objects. However, if GetHashCode() is explicitly implemented in a derived class, it must return a
unique hash code.

In cooking, hash is a dish that is created by combining ingredients. The term hash code derives
from the fact that the code is sometimes created by mixing some of an object’s data.

using static System.Console;
class TestHashCode
{
 static void Main()
 {
 Employee first = new Employee();
 Employee second = new Employee();
 WriteLine(first.GetHashCode());
 WriteLine(second.GetHashCode());
 }
}

Figure 10-25 The TestHashCode program

Figure 10-26 Output of the TestHashCode program

Although you can write an Equals() method for a class without overriding GetHashCode(),
you receive a warning message. Additionally, if you overload == or != for a class, you will receive
warning messages if you do not also override both the Equals() and GetHashCode() methods.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

456

C H A P T E R 1 0 Introduction to Inheritance

Working with Base Class Constructors
When you create any object, you call a constructor that has the same name as the class itself.
Consider the following example:
SomeClass anObject = new SomeClass();

When you instantiate an object that is a member of a derived class, the constructor for the
base class executes first, and then the derived class constructor executes. In other words, when
you create any object, you always implicitly call the Object constructor because all classes are
derived from Object. So, when you create a base class and a derived class, and instantiate a
derived class object, you call three constructors: one from the Object class, one from the base
class, and one from the derived class.
In the examples of inheritance you have seen so far in this chapter, each class contained default
constructors, so their execution was transparent. However, you should realize that when
you create a subclass instance, both the base and derived constructors execute. For example,
consider the abbreviated Employee and CommissionEmployee classes in Figure 10-27.
Employee contains just two fields and a constructor; CommissionEmployee descends from
Employee and contains a constructor as well. The DemoSalesperson4 program in Figure 10-28
contains just one statement; it instantiates a CommissionEmployee. The output in Figure 10-29
shows that this one statement causes both constructors to execute.

TWO TRUTHS & A LIE

Using the Object Class
1. The Object class contains a method named GetType() that returns an object’s

type, or class.

2. If you do not override the ToString() method for a class, it returns the value of
the first string declared within the class, if any.

3. The Object class’s Equals() method returns true if two Objects have the same
memory address—that is, if one object is a reference to the other and both are
literally the same object.

The false statement is #2. If you do not override the ToString() method for a
class, it returns a string that holds the name of the class.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

457

Working with Base Class Constructors

class Employee
{
 private int idNum;
 protected double salary;
 public Employee()
 {
 WriteLine("Employee constructed");
 }
}
class CommissionEmployee : Employee
{
 private double commissionRate;
 public CommissionEmployee()
 {
 WriteLine("CommissionEmployee constructed");
 }
}

Figure 10-27 The Employee and CommissionEmployee classes with
parameterless constructors

using static System.Console;
class DemoSalesperson4
{
 static void Main()
 {
 CommissionEmployee salesperson = new CommissionEmployee();
 }
}

Figure 10-28 The DemoSalesperson4 program

Figure 10-29 Output of the DemoSalesperson4 program

Of course, most constructors perform many more tasks than displaying a message to inform
you that they exist. When constructors initialize variables, you usually want the base class
constructor to initialize the data fields that originate in the base class. The derived class
constructor needs to initialize only the data fields that are specific to the derived class.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

458

C H A P T E R 1 0 Introduction to Inheritance

Using Base Class Constructors That Require Arguments
When you create a class and do not provide a constructor, C# automatically supplies one that
never requires arguments. When you write your own constructor for a class, you replace the
automatically supplied version. Depending on your needs, the constructor you create for a
class might require arguments. When you use a class as a base class and the class only has
constructors that require arguments, you must make sure that any derived classes provide
arguments so that one of the base class constructors can execute.
When all base class constructors require arguments, you must include a constructor for each
derived class you create. Your derived class constructor can contain any number of statements;
however, within the header of the constructor, you must provide values for any arguments
required by the base class constructor that you use. Even if you have no other reason for
creating a derived class constructor, you must write the derived class constructor so it can call
its parent’s constructor.
The header for a derived class constructor that calls a base class constructor includes a colon,
the keyword base, and a list of arguments within parentheses. The keyword base always refers
to the superclass of the class in which you use it. Although it seems that you should be able to
use the base class constructor name to call the base class constructor, C# does not allow you to
do so—you must use the keyword base.
For example, if you create an Employee class with a constructor that requires two arguments—
an integer and a string—and you create a CommissionEmployee class that is a subclass of
Employee, then the following code shows a valid constructor for CommissionEmployee:
public CommissionEmployee() : base(1234, "XXXX")
{
 // Other statements can go here
}

In this example, the CommissionEmployee constructor requires no arguments for
its own execution, but it passes two arguments to its base class constructor. Every
CommissionEmployee instantiation passes 1234 and XXXX to the Employee constructor.
A different CommissionEmployee constructor might accept arguments; then it could pass the
appropriate arguments on to the base class constructor, as in the following example:
public CommissionEmployee(int id, string name) : base(id, name)
{
 // Other statements can go here
}

Yet another CommissionEmployee constructor might require that some arguments be passed
to the base class constructor and that some be used within CommissionEmployee. Consider
the following example:

public CommissionEmployee(int id, string name, double rate) :
 base(id, name) // two parameters passed to base constructor
{

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

459

Working with Base Class Constructors

 CommissionRate = rate;
 // rate is used within child constructor
 // Other statements can go here
}

Watch the video Constructors and Inheritance.

TWO TRUTHS & A LIE

Working with Base Class Constructors
1. When you create any derived class object, the base class constructor executes

first, followed by the derived class constructor.

2. When a base class constructor requires arguments, you must include a constructor
for each derived class you create.

3. When a derived class’s constructor requires arguments, all of the arguments must
be passed to the base class constructor.

The false statement is #3. When a derived class’s constructor requires arguments,
all of the arguments might be needed in the derived class, or perhaps all must
be passed to the base class constructor. It also might be possible that some
arguments are passed to the base class constructor and others are used within
the derived class constructor.

Adding Constructors to Base and Derived Classes
When a base class contains only constructors that require parameters, then any
derived classes must provide for the base class constructor. In the next steps, you
add constructors to the Loan and CarLoan classes and demonstrate that they work
as expected.

1. Open the DemoCarLoan2 program, and change the class name to
DemoCarLoan3. Save the file as DemoCarLoan3.

You Do It

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

460

C H A P T E R 1 0 Introduction to Inheritance

2. In the Loan class, just after the declaration of the loanAmount field, add a
constructor that requires values for all the Loan’s properties:
public Loan(int num, string name, double amount)
{
 LoanNumber = num;
 LastName = name;
 LoanAmount = amount;
}

3. In the CarLoan class, just after the declaration of the year field, add a
constructor that takes five parameters. It passes three of the parameters to
the base class constructor and uses the other two to assign values to the
properties that are unique to the child class.
public CarLoan(int num, string name, double amount,
 int year, string make) : base(num, name, amount)
{
 Year = year;
 Make = make;
}

4. In the Main() method of the DemoCarLoan3 class, remove the existing
declarations for aLoan and aCarLoan, and replace them with two
declarations that use the arguments passed to the constructors.
Loan aLoan = new Loan(333, "Hanson", 7000.00);
CarLoan aCarLoan = new CarLoan(444, "Carlisle",
 30000.00, 2011, "BMW");

5. Remove the eight statements that assigned values to Loan and CarLoan, but
retain the WriteLine() statements that display the values.

6. Save the program, and then compile and execute it. The output looks like
Figure 10-30. Both constructors work as expected. The CarLoan constructor
has called its parent’s constructor to set the necessary fields before executing
its own unique statements.

Figure 10-30 Output of the DemoCarLoan3 program

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

461

Creating and Using Abstract Classes

Creating and Using Abstract Classes
Creating classes can become easier after you understand the concept of inheritance. When you
create a child class, it inherits all the general attributes you need; you must create only the new,
more specific attributes required by the child class. For example, a Painter and a Sculptor
are more specific than an Artist. They inherit all the general attributes of Artists, but you
must add the attributes and methods that are specific to Painter and Sculptor.
Another way to think about a superclass is to notice that it contains the features shared by
its subclasses. The derived classes are more specific examples of the base class type; they add
features to the shared, general features. Conversely, when you examine a derived class, you
notice that its parent is more general.
Sometimes you create a parent class to be so general that you never intend to create any
specific instances of the class. For example, you might never create “just” an Artist; each
Artist is more specifically a Painter, Sculptor, Illustrator, and so on. A class that is used
to instantiate objects is a concrete class. A class that you create only to extend from, but not
to instantiate from, is an abstract class. An abstract class is one from which you cannot create
concrete objects but from which you can inherit. You use the keyword abstract when you
declare an abstract class. If you attempt to instantiate an object from an abstract class, you will
receive a compiler error message.
Abstract classes are like regular classes in that they can contain data fields and methods. The
difference is that you cannot create instances of abstract classes by using the new operator.
Rather, you create abstract classes simply to provide a base class from which other objects may
be derived.
Abstract classes usually contain abstract methods, and they also can contain nonabstract
methods. However, they are not required to contain any methods. Recall from Chapter 9 that
an abstract method has no statements. Any class derived from a class that contains an abstract
method must override the abstract method by providing a body (an implementation) for it.
(Alternatively, the derived class can declare the method to be abstract; in that case, the derived
class’s children must implement the method.) You can create an abstract class with no
abstract methods, but you cannot create an abstract method outside of an abstract class.

A method that is declared virtual is not required to be overridden in a child class, but a method declared
abstract must be overridden.

When you create an abstract method, you provide the keyword abstract and the intended
method type, name, and parameters, but you do not provide statements within the method;
you do not even supply curly braces. When you create a derived class that inherits an abstract
method from a parent, you must use the keyword override in the method header and provide

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

462

C H A P T E R 1 0 Introduction to Inheritance

the actions, or implementation, for the inherited method within the derived class. In other
words, you are required to code a derived class method to override any empty base class
methods that are inherited.
For example, suppose that you want to create classes to represent different animals. You can
create a generic, abstract class named Animal so you can provide generic data fields, such as
the animal’s name, only once. An Animal is generic, but each specific Animal, such as Dog or
Cat, makes a unique sound. If you code an abstract Speak() method in the abstract Animal
class, then you require all future Animal derived classes to override the Speak() method and
provide an implementation that is specific to the derived class. Figure 10-31 shows an abstract
Animal class that contains a data field for the name, a constructor that assigns a name, a Name
property, and an abstract Speak() method.

 abstract class Animal
{
 private string name;
 public Animal(string name)
 {
 this.name = name;
 }
 public string Name
 {
 get
 {
 return name;
 }
 }
 public abstract string Speak();
}

Figure 10-31 The Animal class

The Animal class in Figure 10-31 is declared to be abstract. (The keyword is shaded.) You
cannot place a statement such as Animal myPet = new Animal("Murphy"); within a program,
because the program will not compile. Because Animal is an abstract class, no Animal
objects can exist.
You create an abstract class like Animal so that you can extend it. For example, you can create
Dog and Cat classes as shown in Figure 10-32. Because the Animal class contains a constructor
that requires a string argument, both Dog and Cat must contain constructors that provide
string arguments for their base class.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

463

Creating and Using Abstract Classes

class Dog : Animal
{
 public Dog(string name) : base(name)
 {
 }
 public override string Speak()
 {
 return "woof";
 }
}
class Cat : Animal
{
 public Cat(string name) : base(name)
 {
 }
 public override string Speak()
 {
 return "meow";
 }
}

Figure 10-32 The Dog and Cat classes

If a method that should be overridden in a child class has its own implementation, you declare the base
class method to be virtual. If it does not have its own implementation, you declare the base class and the
method to be abstract.

The Dog and Cat constructors perform no tasks other than passing out the name to the
Animal constructor. The overriding Speak() methods within Dog and Cat are required
because the abstract parent Animal class contains an abstract Speak() method.
The keyword override (shaded) is required in each Speak() method header. You can
code any statements you want within the Dog and Cat class Speak() methods, but the
methods must exist.
Figure 10-33 shows a program that implements Dog and Cat objects. Figure 10-34 shows the
output, in which Speak() operates correctly for each animal type.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

464

C H A P T E R 1 0 Introduction to Inheritance

using static System.Console;
class DemoAnimals
{
 static void Main()
 {
 Dog spot = new Dog("Spot");
 Cat puff = new Cat("Puff");
 WriteLine(spot.Name + " says " + spot.Speak());
 WriteLine(puff.Name + " says " + puff.Speak());
 }
}

Figure 10-33 The DemoAnimals program

Figure 10-34 Output of the DemoAnimals program

Figure 10-35 shows an alternate way to create the DemoAnimals program. In this version the
Dog and Cat objects are passed to a method that accepts an Animal parameter. The output is
the same as in Figure 10-34. The Name property and Speak() method operate polymorphically,
acting appropriately for each object type.

using static System.Console;
class DemoAnimals2
{
 static void Main()
 {
 Dog spot = new Dog("Spot");
 Cat puff = new Cat("Puff");
 DisplayAnimal(spot);
 DisplayAnimal(puff);
 }
 public static void DisplayAnimal(Animal creature)
 {
 WriteLine(creature.Name + " says " + creature.Speak());
 }
}

Figure 10-35 The DemoAnimals2 program

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

465

Creating and Using Interfaces

Creating and Using Interfaces
Some object-oriented programming languages, notably C++, allow a subclass to inherit from
more than one parent class. For example, you might create an Employee class that contains
data fields pertaining to each employee in your organization. You also might create a Product
class that holds information about each product your organization manufactures. When you
create a Patent class for each product for which your company holds a patent, you might want
to include product information as well as information about the employee who was responsible
for the invention. In this situation, it would be convenient to inherit fields and methods from
both the Product and Employee classes. The ability to inherit from more than one class is
called multiple inheritance.
Multiple inheritance is a difficult concept, and programmers encounter many problems when
they use it. For example, variables and methods in the parent classes may have identical names,
creating a conflict when the child class uses one of the names. Additionally, as you already have
learned, a child class constructor must call its parent class constructor. When two or more
parents exist, this becomes a more complicated task: To which class should base refer when a
child class has multiple parents?
For all of these reasons, multiple inheritance is prohibited in C#. However, C# does provide
an alternative to multiple inheritance, known as an interface. Much like an abstract class,

TWO TRUTHS & A LIE

Creating and Using Abstract Classes
1. An abstract class is one from which you cannot create concrete objects.

2. Unlike regular classes, abstract classes cannot contain methods.

3. When a base class contains an abstract method, the descendents of the base class
must override the abstract method or declare the overriding method to be abstract.

The false statement is #2. Abstract classes are like regular classes in that they
can contain data fields and methods. The difference is that you cannot create
instances of abstract classes by using the new operator. Rather, you create
abstract classes simply to provide a base class from which other objects may be
derived.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

466

C H A P T E R 1 0 Introduction to Inheritance

an interface is a collection of methods (and perhaps other members) that can be used by any
class as long as the class provides a definition to override the interface’s abstract definitions.
Within an abstract class, some methods can be abstract, while others need not be. Within an
interface, all methods are abstract.

You first learned about interfaces in the chapter “Using Classes and Objects” when you used the
IComparable interface.

You create an interface much as you create an abstract class definition, except that you use
the keyword interface instead of abstract class. For example, suppose that you create
an IWorkable interface as shown in Figure 10-36. For simplicity, the IWorkable interface
contains a single method named Work().

Although not required, in C# it is customary to start interface names with an uppercase I. Other languages
follow different conventions. Interface names frequently end with able.

public interface IWorkable
{
 string Work();
}

Figure 10-36 The IWorkable interface

When any class implements IWorkable, it must also include a Work() method that returns a
string. Figure 10-37 shows two classes that implement IWorkable: the Employee class and
the Animal class. Because each implements IWorkable, each must declare a Work() method.
The Employee class implements Work() to return the I do my job string. The abstract
Animal class defines Work() as an abstract method, meaning that descendents of Animal must
implement Work(). Figure 10-37 also shows two child classes of Animal: Dog and Cat. Note
how Work() is defined differently for each.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

467

Creating and Using Interfaces

class Employee : IWorkable
{
 public Employee(string name)
 {
 Name = name;
 }
 public string Name {get; set;}
 public string Work()
 {
 return "I do my job";
 }
}
abstract class Animal : IWorkable
{
 public Animal(string name)
 {
 Name = name;
 }
 public string Name {get; set;}
 public abstract string Work();
}
class Dog : Animal
{
 public Dog(string name) : base(name)
 {
 }
 public override string Work()
 {
 return "I watch the house";
 }
}
class Cat : Animal
{
 public Cat(string name) : base(name)
 {
 }
 public override string Work()
 {
 return "I catch mice";
 }
}

Figure 10-37 The Employee, Animal, Cat, and Dog classes with the IWorkable interface

When you create a program that instantiates an Employee, a Dog, or a Cat, as in the
DemoWorking program in Figure 10-38, each object type knows how to “Work()” appropriately.
Figure 10-39 shows the output.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

468

C H A P T E R 1 0 Introduction to Inheritance

Abstract classes and interfaces are similar in that you cannot instantiate concrete objects
from either one. Abstract classes differ from interfaces in that abstract classes can contain
nonabstract methods, but all methods within an interface must be abstract. A class can inherit
from only one base class (whether abstract or not), but it can implement any number of
interfaces. For example, if you want to create a Child that inherits from a Parent class and
implements two interfaces, IWorkable and IPlayable, you would define the class name and
list the base class and interfaces separated by commas:
class Child : Parent, IWorkable, IPlayable

You implement an existing interface because you want a class to be able to use a method that
already exists in other applications. For example, suppose that you have created a Payroll
application that uses the Work() method in the interface class. Also suppose that you create a new
class named BusDriver. If BusDriver implements the IWorkable interface, then BusDriver
objects can be used by the existing Payroll program. As another example, suppose that you have
written a game program that uses an IAttackable interface with methods that determine how

Figure 10-39 Output of the DemoWorking program

using static System.Console;
class DemoWorking
{
 static void Main()
 {
 Employee bob = new Employee("Bob");
 Dog spot = new Dog("Spot");
 Cat puff = new Cat("Puff");
 WriteLine(bob.Name + " says " + bob.Work());
 WriteLine(spot.Name + " says " + spot.Work());
 WriteLine(puff.Name + " says " + puff.Work());
 }
}

Figure 10-38 The DemoWorking program

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

469

Creating and Using Interfaces

and when an object can attack. When you create new classes such as MarsAlien, Vampire, and
CivilWarSoldier, and each implements the IAttackable interface, you must define how each
one attacks and how each type of object can be added to the game. If you use these IAttackable
classes, you are guaranteed that they can all determine how and when to attack.

You can think of an interface as a contract. A class that implements an interface must abide by the rules of
the contract.

Beginning programmers sometimes find it difficult to decide when to create an abstract base
class and when to create an interface. You can follow these guidelines:
 Typically, you create an abstract class when you want to provide some data or methods that

derived classes can inherit, but you want the subclasses to override some specific methods
that you declare to be abstract.

 You create an interface when you want derived classes to override every method.
In other words, you inherit from an abstract base class when the class you want to create “is a”
subtype, and you use an interface when the class you want to create will act like the interface.
Interfaces provide you with a way to exhibit polymorphic behavior. If diverse classes
implement the same interface in unique ways, then you can treat each class type in the same
way using the same language. When various classes use the same interface, you know the
names of the methods that are available with those classes, and C# classes adopt a more
uniform functionality; this consistency helps you to understand new classes you encounter
more easily. If you know, for example, the method names contained in the IWorkable
interface, and you see that a class implements IWorkable, you have a head start in
understanding how the class functions.

Now that you understand how to construct your own interfaces, you will benefit from rereading the section
describing the IComparable interface in the chapter “Using Classes and Objects.”

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

470

C H A P T E R 1 0 Introduction to Inheritance

Using Extension Methods
When you write a C# program, sometimes you might wish a class had an additional method
that would be useful to you. If you created the original class, you have two options:
 You could revise the existing class, including the new useful method.
 You could derive a child class from the existing class and provide it with a new method.

Sometimes, however, classes you use were created by others, and you might not be allowed to
either revise or extend them. Of course, you could create an entirely new class that includes
your new method, but that would duplicate a lot of the work already done when the first class
was created. In these cases, the best option is to write an extension method. Extension methods
are methods you can write to add to any type. Extension methods were introduced in C# 3.0.

Programmers sometimes define classes as sealed within the class header, as in sealed class
InventoryItem. A sealed class cannot be extended. For example, the built-in String class is a sealed class.

For example, you have used the prewritten Int32 class throughout this book to declare integers.
Suppose that you work for a company that frequently uses customer account numbers, and that
the company has decided to add an extra digit to each account number. For simplicity, assume
that all account numbers are two digits and that the new, third digit should be the rightmost
digit in the sum of the first two digits. You could handle this problem by creating a class named

TWO TRUTHS & A LIE

Creating and Using Interfaces
1. An interface is a collection of methods (and perhaps other members) that can

be used by any class as long as the class provides a definition to override the
interface’s abstract definitions.

2. Abstract classes and interfaces differ in that all methods in abstract classes must
be abstract, but interfaces can contain nonabstract methods.

3. A class can inherit from only one base class, but it can implement any number
of interfaces.

The false statement is #2. Abstract classes and interfaces are similar in that you
cannot instantiate concrete objects from either one. However, they differ in that
abstract classes can contain nonabstract methods, but all methods within an
interface must be abstract.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

471

Using Extension Methods

AccountNumber, including a method to produce the extra digit, and redefining every instance
of a customer’s account number in your applications as an AccountNumber object. However,
if you already have many applications that define the account number as an integer, you might
prefer to create an extension method that extends the Int32 class.

In Chapter 2 you learned that each C# intrinsic type, such as int, is an alias for a class in the System
namespace, such as Int32.

When organizations append extra digits to account numbers, the extra digits are called check digits. Check
digits help assure that all the digits in account numbers and other numbers are entered correctly. Check
digits are calculated using different formulas. If a digit used to calculate the check digit is incorrect, then the
resulting check digit is probably incorrect as well.

Figure 10-40 contains a method that extends the Int32 class. The first parameter in an extension
method specifies the type extended and must begin with the keyword this. For example, the first
(and in this case, only) parameter in the AddCheckDigit() method is this int num, as shown in
the shaded portion of the figure. Within the AddCheckDigit() method in Figure 10-40, the first
digit is extracted from the two-digit account number by dividing by 10 and taking the resulting
whole number, and the second digit is extracted by taking the remainder. Those two digits are
added, and the last digit of that sum is returned from the method. For example, if 49 is passed into
the method, first becomes 4, second becomes 9, and third becomes the last digit of 13, or 3.
Then the original number (49) is multiplied by 10 and added to the third digit, resulting in 493.

public static int AddCheckDigit(this int num)
{
 int first = num / 10;
 int second = num % 10;
 int third = (first + second) % 10;
 int result = num * 10 + third;
 return result;
}

Figure 10-40 The AddCheckDigit() extension method

An extension method must be static and must be stored in a static class. For example, the
DemoExtensionMethod program in Figure 10-41 shows an application that is declared static
in the shaded portion of the class header and uses the extension method in the second shaded
statement. The static method AddCheckDigit() is used as if it were an instance method of the
Int32 class; in other words, it is attached to an Int32 object with a dot, just as instance methods are
when used with objects. No arguments are passed to the AddCheckDigit() method explicitly from
the DemoExtensionMethod class. The parameter in the method is implied, just as these references
are always implied in instance methods. Figure 10-42 shows the execution of the program.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

472

C H A P T E R 1 0 Introduction to Inheritance

using static System.Console;
 static class DemoExtensionMethod
{
 static void Main()
 {
 int acctNum = 49;
 int revisedAcctNum = acctNum.AddCheckDigit();
 WriteLine("Original account number was {0}", acctNum);
 WriteLine("Revised account number is {0}", revisedAcctNum);
 }
 public static int AddCheckDigit(this int num)
 {
 int first = num / 10;
 int second = num % 10;
 int third = (first + second) % 10;
 int result = num * 10 + third;
 return result;
 }
}

Figure 10-41 The DemoExtensionMethod application

Figure 10-42 Execution of the DemoExtensionMethod application

You can create extension methods for your own classes in the same way one was created for the
Int32 class in this example. Just like other outside methods, and unlike ordinary class instance
methods, extension methods cannot access any private members of classes they extend.
Furthermore, if a class contains an instance method with the same signature as an extension
method, the instance method takes priority and will be the one that executes.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

473

Recognizing Inheritance in GUI Applications

TWO TRUTHS & A LIE

Using Extension Methods
1. The first parameter in an extension method specifies the type extended and must

be preceded by the keyword this.

2. Extension methods must be static methods.

3. When you write an extension method, it must be stored within the class to which it
refers, along with the class’s other instance methods.

The false statement is #3. Although you use an extension method like an instance
method, any extension method you write must be stored in a static class.

Recognizing Inheritance in GUI Applications and
Recapping the Benefits of Inheritance
When you create a Windows Forms application using Visual Studio’s IDE, you automatically use
inheritance. Every Form you create is a descendent of the Form class. Figure 10-43 shows a just-
started project in which the programmer has double-clicked the automatically generated Form
to expose the code. You can see that the automatically generated Form1 class extends Form.

Figure 10-43 Automatically generated Form code in the IDE

Form1 descends
from Form

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

474

C H A P T E R 1 0 Introduction to Inheritance

The Form class descends from the Object class like all other C# classes but not directly. It is six
generations removed from the Object class in the following line of descent:
 Object

 MarshalByRefObject

 Component

 Control

 ScrollableControl

 ContainerControl

 Form

Other GUI objects such as Labels and Buttons follow similar lengthy ancestry lines. You
might guess that certain universal properties of GUI controls such as Text and Visible
are inherited from ancestors. You will learn more about these hierarchies in the chapter
“Using Controls,” but even though you have worked with only a few controls so far, you can
understand the benefits inheritance provides.
When an automobile company designs a new car model, it does not build every component
from scratch. The car might include a new feature—for example, some model contained the
first air bag—but many of a new car’s features are simply modifications of existing features.
The manufacturer might create a larger gas tank or a more comfortable seat, but these new
features still possess many of the properties of their predecessors from older models. Most
features of new car models are not even modified; instead, existing components, such as air
filters and windshield wipers, are included on the new model without any changes.
Similarly, you can create many computer programs more easily if many of their components
are used either “as is” or with slight modifications. Inheritance does not enable you to write
any programs that you could not write if inheritance did not exist; you could create every
part of a program from scratch, but reusing existing classes and interfaces makes your
job easier.
You already have used many “as is” classes, such as Console, Int32, and String. Using these
classes made it easier to write programs than if you had to invent the classes yourself. Now
that you have learned about inheritance, you can extend existing classes as well as just use
them. When you create a useful, extendable base class, you and other future programmers gain
several advantages:
 Derived class creators save development time because much of the code that is needed for

the class already has been written.
 Derived class creators save testing time because the base class code already has been

tested and probably used in a variety of situations. In other words, the base class code
is reliable.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

475

TWO TRUTHS & A LIE

Recognizing Inheritance in GUI Applications and Recapping
the Benefits of Inheritance

1. Inheritance enables you to create powerful computer programs more easily.

2. Without inheritance, you could create every part of a program from scratch, but
reusing existing classes and interfaces makes your job easier.

3. Inheritance is frequently inefficient because base class code is seldom reliable when
extended to a derived class.

The false statement is #3. Derived class creators save testing time because
the base class code already has been tested and probably used in a variety of
situations. In other words, the base class code is reliable.

 Programmers who create or use new derived classes already understand how the base class
works, so the time it takes to learn the new class features is reduced.

 When you create a derived class in C#, the base class source code is not changed. Thus, the
base class maintains its integrity.

Classes that are not intended to be instantiated and that contain only static members are declared as
static classes. You cannot extend static classes. For example, System.Console is a static class.

When you think about classes, you need to think about the commonalities between them,
and then you can create base classes from which to inherit. You might even be rewarded
professionally when you see your own superclasses extended by others in the future.

Recognizing Inheritance in GUI Applications

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

 C H A P T E R 1 0 Introduction to Inheritance

476

Chapter Summary
 The classes you create in object-oriented programming languages can inherit data and

methods from existing classes. The ability to use inheritance makes programs easier to write,
easier to understand, and less prone to errors. A class that is used as a basis for inheritance
is called a base class, superclass, or parent class. When you create a class that inherits from a
base class, it is called a derived class, extended class, subclass, or child class.

 When you create a class that is an extension or child of another class, you use a single colon
between the derived class name and its base class name. The child class inherits all the
methods, properties, and fields of its parent. Inheritance works only in one direction—a
child inherits from a parent, but not the other way around.

 If you could use private data outside of its class, the principle of information hiding would
be destroyed. However, when you must access parent class data from a derived class, you
declare parent class fields using the keyword protected, which provides you with an
intermediate level of security between public and private access.

 When you declare a child class method with the same name and parameter list as a method
within its parent class, you override the parent class method and allow your class objects to
exhibit polymorphic behavior. You can use the keyword new or override with the derived
class method. When a derived class overrides a parent class member but you want to access
the parent class version, you can use the keyword base.

 Every derived class object “is a” specific instance of both the derived class and the base class.
Therefore, you can assign a derived class object to an object of any of its base class types.
When you do so, C# makes an implicit conversion from derived class to base class.

 Every class you create in C# derives from a single class named System.Object. Because
all classes inherit from the Object class, all classes inherit the four Object class public
instance methods: Equals(), GetHashCode(), GetType(), and ToString().

 When you instantiate an object that is a member of a subclass, the base class constructor
executes first, and then the derived class constructor executes.

 An abstract class is one from which you cannot create concrete objects but from which you
can inherit. Usually, abstract classes contain abstract methods; an abstract method has no
method statements. Any class derived from a class that contains an abstract method must
override the abstract method by providing a body (an implementation) for it.

 An interface provides an alternative to multiple inheritance. Much like an abstract class, an
interface is a collection of methods (and perhaps other members) that can be used by any
class as long as the class provides a definition to override the interface’s abstract definitions.
Within an abstract class, some methods can be abstract, while others need not be. Within an
interface, all methods are abstract. A class can inherit from only one abstract base class, but
it can implement any number of interfaces.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Key Terms

477

 Extension methods are methods you can write to add to any type. They are static methods,
but they operate like instance methods. Their parameter lists begin with the keyword this
and the data type being extended.

 GUI objects such as buttons and forms descend from several ancestors. You can create
many computer programs more easily using inheritance because it saves development and
testing time.

Key Terms
Inheritance is the application of your knowledge of a general category to more specific objects.
Unified Modeling Language (UML) diagrams are graphical tools that programmers and
analysts use to describe systems.
A base class is a class that is used as a basis for inheritance.
A derived class or extended class is one that has inherited from a base class.
A superclass is a base class.
A subclass is a derived class.
A parent class is a base class.
A child class is a derived class.
The ancestors of a derived class are all the superclasses from which the subclass is derived.
Transitive describes the feature of inheritance in which a child inherits all the members of all
its ancestors.
Protected access provides an intermediate level of security between public and private
access; a protected data field or method can be used within its own class or in any classes
extended from that class, but it cannot be used by “outside” classes.
Fragile describes classes that depend on field names from parent classes because they are
prone to errors—that is, they are easy to “break.”
A virtual method is one whose behavior is determined by the implementation in a child class.
To hide a parent class member is to override it in a derived class.
Visible describes a base class member that is not hidden by a derived class.
Recursive describes a method that calls itself.
An implicit conversion occurs when a type is automatically converted to another
upon assignment.
An implicit reference conversion occurs when a derived class object is assigned to its
ancestor’s data type.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

 C H A P T E R 1 0 Introduction to Inheritance

478

The object (or Object) class type in the System namespace is the root base class for all
other types.
A root class is the first base class in a hierarchal ancestry tree.
Reference equality occurs when two reference type objects refer to the same object.
A hash code is a number that should uniquely identify an object.
A concrete class is a nonabstract class from which objects can be instantiated.
An abstract class is one from which you cannot create concrete objects but from which you
can inherit.
The keyword override is used in method headers when you create a derived class that
inherits an abstract method from a parent.
Multiple inheritance is the ability to inherit from more than one class.
An interface is a collection of abstract methods (and perhaps other members) that can be
used by any class as long as the class provides a definition to override the interface’s abstract
definitions.
Extension methods are static methods that act like instance methods. You can write extension
methods to add to any type.
A sealed class cannot be extended.

Review Questions
1. Specific types of objects assume features of more general classes

through .
a. polymorphism
b. encapsulation

c. inheritance
d. structure

2. Which of the following is not a benefit of using inheritance when creating a new class?
a. You save time, because you need not create fields and methods that already exist

in a parent class.
b. You reduce the chance of errors, because the parent class methods have already

been used and tested.
c. You make it easier for anyone who has used the parent class to understand the

new class because the programmer can concentrate on the new features.
d. You save computer memory because when you create objects of the new class,

storage is not required for parent class fields.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Review Questions

479

3. A child class is also called a(n) .
a. extended class
b. base class

c. superclass
d. delineated class

4. Assuming that the following classes are well named, which of the following is a parent
class of House?
a. Apartment

b. Building

c. Victorian

d. myHouse

5. A derived class usually contains than its parent.
a. more fields and methods
b. the same number of fields but fewer methods
c. fewer fields but more methods
d. fewer fields and methods

6. When you create a class that is an extension or child of another class, you use
a(n) between the derived class name and its base class name.
a. ampersand
b. colon

c. dot
d. hyphen

7. A base class named Garden contains a private field width and a property
public int Width that contains get and set accessors. A child class named
VegetableGarden does not contain a Width property. When you write a class
in which you declare an object as follows, what statement can you use to access the
VegetableGarden’s width?
VegetableGarden myGarden = new VegetableGarden();

a. myGarden.Width

b. myGarden.base.Width

c. VegetableGarden.Width

d. You cannot use Width with a VegetableGarden object.

8. When a parent class contains a private data field, the field is
the child class.
a. hidden in
b. not a member of

c. directly accessible in
d. public in

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

 C H A P T E R 1 0 Introduction to Inheritance

480

9. When a base class and a derived class contain a method with the same name and
parameter list, and you call the method using a derived class
object, .
a. you receive an error message
b. the base class version overrides the derived class version
c. the derived class version overrides the base class version
d. both method versions execute

10. Which of the following is an English-language form of polymorphism?
a. seeing a therapist and seeing the point
b. moving friends with a compelling story and moving friends to a new apartment
c. both of these
d. neither of these

11. When base and derived classes contain a method with the same name and
parameter list, you can use the base class method within the derived class by using
the keyword before the method name.
a. new

b. override

c. base

d. super

12. In a program that declares a derived class object, you assign it
to an object of its base class type.
a. can
b. cannot

c. must
d. should not

13. The root base class for all other class types is .
a. Base

b. Super

c. Parent

d. Object

14. All of the following are Object class methods except .
a. ToString()

b. Equals()

c. Print()

d. GetHashCode()

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Review Questions

481

15. When you create any derived class object, .
a. the base class and derived class constructors execute simultaneously
b. the base class constructor must execute first, and then the derived class

constructor executes
c. the derived class constructor must execute first, and then the base class

constructor executes
d. neither the base class constructor nor the derived class constructor executes

16. When a base class constructor requires arguments, then each derived
class .
a. must include a constructor
b. must include a constructor that requires arguments
c. must include two or more constructors
d. must not include a constructor

17. When you create an abstract class, .
a. you can inherit from it
b. you can create concrete objects from it
c. Both of these are true.
d. None of these is true.

18. When you create an abstract method, you provide .
a. the keyword abstract
b. curly braces

c. method statements
d. all of these

19. Within an interface, .
a. no methods can be abstract
b. some methods might be abstract
c. some, but not all, methods must be abstract
d. all methods must be abstract

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

 C H A P T E R 1 0 Introduction to Inheritance

482

20. Abstract classes and interfaces are similar in that .
a. you can instantiate concrete objects from both
b. you cannot instantiate concrete objects from either one
c. all methods in both must be abstract
d. neither can contain nonabstract methods

Exercises

Programming Exercises

1. Create an application class named LetterDemo that instantiates objects of two
classes named Letter and CertifiedLetter and that demonstrates all their
methods. The classes are used by a company to keep track of letters they mail to
clients. The Letter class includes auto-implemented properties for the name of the
recipient and the date mailed. Also, include a ToString() method that overrides
the Object class’s ToString() method and returns a string that contains the name
of the class (using GetType()) and the Letter’s data field values. Create a child
class named CertifiedLetter that includes an auto-implemented property that
holds a tracking number for the letter.

2. Create an application class named PhotoDemo that demonstrates the methods of three
related classes for a company that develops photographs. Create a class named Photo
that includes fields for width and height in inches and properties for each field. Include
a protected price field, and set it to $3.99 for an 8-inch by 10-inch photo, $5.99 for a
10-inch by 12-inch photo, and $9.99 for any other size (because custom cutting is required).
The price field requires a get accessor but no set accessor. Also include a ToString()
method that returns a string constructed from the return value of the object’s GetType()
method and the values of the fields. Derive two subclasses—MattedPhoto and
FramedPhoto. The MattedPhoto class includes a string field to hold a color, and the
FramedPhoto class includes two string fields that hold the frame’s material (such as silver)
and style (such as modern). The price for a MattedPhoto increases by $10 over its base
cost, and the price for a FramedPhoto increases by $25 over its base cost. Each subclass
should include a ToString() method that overrides the parent class version.

3. a. Create an application named OrderDemo that declares and uses Order objects.
The Order class performs order processing of a single item that sells for $19.95
each. The class has four variable fields that hold an order number, customer name,
quantity ordered, and total price. Create a constructor that requires parameters for
all the fields except total price. Include public get and set accessors for each
field except the total price field; that field is calculated as quantity ordered times

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exercises

483

unit price (19.95) whenever the quantity is set, so it needs only a get accessor. Also
create the following for the class:
 An Equals() method that determines two Orders are equal if they have the

same order number
 A GetHashCode() method that returns the order number
 A ToString() method that returns a string containing all order information

The OrderDemo application declares a few Order objects and sets their values.
Make sure to create at least two orders with the same order number. Display the
string from the ToString() method for each order. Write a method that compares
two orders at a time and displays a message if they are equal. Send the Orders you
created to the method two at a time and display the results.

 b. Using the Order class you created in Exercise 3a, write a new application named
OrderDemo2 that creates an array of five Orders. Prompt the user for values for
each Order. Do not allow duplicate order numbers; force the user to reenter the
order when a duplicate order number is entered. When five valid orders have been
entered, display them all, plus a total of all orders.

 c. Create a ShippedOrder class that derives from Order. A ShippedOrder has a
$4.00 shipping fee (no matter how many items are ordered). Override any methods
in the parent class as necessary. Write a new application named OrderDemo3 that
creates an array of five ShippedOrders. Prompt the user for values for each, and
do not allow duplicate order numbers—force the user to reenter the order when
a duplicate order number is entered. When five valid orders have been entered,
display them all, plus a total of all orders.

 d. Make any necessary modifications to the ShippedOrder class so that it can be
sorted by order number. Modify the OrderDemo3 application so the displayed
orders have been sorted. Save the application as OrderDemo4.

4. Create an application named PackageDemo that declares and demonstrates objects of
the Package class and its descendents. The Package class includes auto-implemented
properties for an ID number, recipient’s name, and weight in ounces. The class also
contains a delivery price field that is set when the weight is set as $5 for the first
32 ounces and 12 cents per ounce for every ounce over 32. b. Create a child class named
InsuredPackage, which includes a field for the package’s value. Override the method
that sets a Package’s delivery price to include insurance, which is $1 for packages
valued up to $20 and $2.50 for packages valued $20 or more.

5. a. Create an application named AutomobileDemo that prompts a user for data for
eight Automobile objects. The Automobile class includes auto-implemented
properties for ID number, make, year, and price. Override the ToString()
method to return all the details for a Automobile. During data entry, reprompt
the user if any ID number is a duplicate. Sort the objects in ID number order, and
display all their data as well as a total of all their prices.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

 C H A P T E R 1 0 Introduction to Inheritance

484

 b. Using the Automobile class as a base, derive a FinancedAutomobile class that
contains all the data of an Automobile, plus fields to hold the amount financed
and interest rate. Override the parent class ToString() method to include
the child class’s additional data. Create a program named AutomobileDemo2
that contains an array of four FinancedAutomobile objects. Prompt the user
for all the necessary data, and do not allow duplicate ID numbers and do not
allow the amount financed to be greater than the price of the automobile. Sort
all the records in ID number order and display them with a total price for all
FinancedAutomobiles and a total amount financed.

 c. Write an application named AutomobileDemo3 that uses an extension method
for the FinancedAutomobile class. The method computes and returns a
FinancedAutomobile’s monthly payment due (1/24 of the amount financed).
The application should allow the user to enter data for four objects and then
display all the data for each.

6. Create an application named ShapesDemo that creates several objects that descend
from an abstract class called GeometricFigure. Each GeometricFigure includes a
height, a width, and an area. Provide get and set accessors for each field except area; the
area is computed and is read only. Include an abstract method called ComputeArea()
that computes the area of the GeometricFigure. Create three additional classes:
 A Rectangle is a GeometricFigure whose area is determined by multiplying

width by height.
 A Square is a Rectangle in which the width and height are the same. Provide a

constructor that accepts both height and width, forcing them to be equal if they are
not. Provide a second constructor that accepts just one dimension and uses it for both
height and width. The Square class uses the Rectangle’s ComputeArea() method.

 A Triangle is a GeometricFigure whose area is determined by multiplying the
width by half the height.

In the ShapesDemo class, after each object is created, pass it to a method that accepts
a GeometricFigure argument in which the figure’s data is displayed. Change some
dimensions of some of the figures, and pass each to the display method again.

7. Create an application named RecoveringDemo that declares objects of three types:
Patient, Upholsterer, and FootballPlayer. Create an interface named
IRecoverable that contains a single method named Recover(). Create the classes
named Patient, Upholsterer, and FootballPlayer so that each implements
IRecoverable. Create each class’s Recover() method to display an appropriate
message. For example, the Patient’s Recover() method might display “I am
getting better.”

8. Create an application named TurningDemo that creates instances of four classes:
Page, Corner, Pancake, and Leaf. Create an interface named ITurnable
that contains a single method named Turn(). The classes named Page, Corner,

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exercises

485

Pancake, and Leaf implement ITurnable. Create each class’s Turn() method
to display an appropriate message. For example, the Page’s Turn() method might
display “You turn a page in a book.”

9. Write a program named SalespersonDemo that instantiates objects using classes
named RealEstateSalesperson and GirlScout. Demonstrate that each
object can use a SalesSpeech() method appropriately. Also, use a MakeSale()
method two or three times with each object, and display the final contents of each
object’s data fields. First, create an abstract class named Salesperson. Fields
include first and last names; the Salesperson constructor requires both these
values. Include properties for the fields. Include a method that returns a string that
holds the Salesperson’s full name—the first and last names separated by a space.
Then perform the following tasks:
 Create two child classes of Salesperson: RealEstateSalesperson and
GirlScout. The RealEstateSalesperson class contains fields for total value
sold in dollars and total commission earned (both of which are initialized to 0),and
a commission rate field required by the class constructor. The GirlScout class
includes a field to hold the number of boxes of cookies sold, which is initialized to 0.
Include properties for every field.

 Create an interface named ISellable that contains two methods:
SalesSpeech() and MakeSale(). In each RealEstateSalesperson and
GirlScout class, implement SalesSpeech() to display an appropriate one- or
two-sentence sales speech that the objects of the class could use.

In the RealEstateSalesperson class, implement the MakeSale()
method to accept an integer dollar value for a house, add the value to the
RealEstateSalesperson’s total value sold, and compute the total commission
earned. In the GirlScout class, implement the MakeSale() method to accept an
integer representing the number of boxes of cookies sold and add it to the total field.

Debugging Exercises

1. Each of the following files in the Chapter.10 folder of your downloadable student files
has syntax and/or logical errors. In each case, determine the problem and fix the
program. After you correct the errors, save each file using the same filename preceded
with Fixed. For example, DebugTen01.cs will become FixedDebugTen01.cs.
a. DebugTen01.cs
b. DebugTen02.cs
c. DebugTen03.cs
d. DebugTen04.cs

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

 C H A P T E R 1 0 Introduction to Inheritance

486

Case Problems

1. In Chapter 9, you created a Contestant class for the Greenville Idol competition.
The class includes a contestant’s name, talent code, and talent description.
The competition has become so popular that separate contests with differing
entry fees have been established for children, teenagers, and adults. Modify the
Contestant class to contain a field that holds the entry fee for each category, and
add get and set accessors.
Extend the Contestant class to create three subclasses: ChildContestant,
TeenContestant, and AdultContestant. Child contestants are 12 years old and
younger, and their entry fee is $15. Teen contestants are between 13 and 17 years old,
inclusive, and their entry fee is $20. Adult contestants are 18 years old and older, and
their entry fee is $30. In each subclass, set the entry fee field to the correct value, and
override the ToString() method to return a string that includes all the contestant
data, including the age category and the entry fee.
Modify the GreenvilleRevenue program so that it performs the following tasks:
 The program prompts the user for the number of contestants in this year’s

competition, which must be between 0 and 30. The program continues to prompt
the user until a valid value is entered.

 The program prompts the user for names, ages, and talent codes for the contestants
entered. Along with the prompt for a talent code, display a list of valid categories.
Based on the age entered for each contestant, create an object of the correct type
(adult, teen, or child), and store it in an array of Contestant objects.

 After data entry is complete, display the total expected revenue, which is the sum of
the entry fees for the contestants.

 After data entry is complete, display the valid talent categories and then continuously
prompt the user for talent codes, and display all the data for all the contestants in each
category. Display an appropriate message if the entered code is not a character or a
valid code.

2. In Chapter 9, you created a Mural class for Marshall’s Murals. The class holds a
customer’s name, a mural code, and a description. Now, add a field to the Mural
class that holds a price. Extend the Mural class to create subclasses named
InteriorMural and ExteriorMural, and place statements that determine
a mural’s price within these classes. (A mural’s price depends on the month, as
described in the case problem in Chapter 9.) Also create ToString() methods for
these subclasses that return a string containing all the pertinent data for a mural.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exercises

487

Modify the MarshallsRevenue program so that it performs the following tasks:
 The program prompts the user for the month, the number of interior murals

scheduled, and the number of exterior murals scheduled. In each case, the program
continues to prompt the user until valid entries are made.

 The program prompts the user for customer names and mural codes for interior
and exterior murals. Along with the prompt for a mural code, display a list of
valid categories.

 After data entry is complete, display the total revenue of interior murals, exterior
murals, and all murals.

 After data entry is complete, the program displays the valid mural categories and
then continuously prompts the user for codes and uses the ToString() method
to display all the details for the murals in each category. Appropriate messages are
displayed if the entered code is not a character or a valid code.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

