
C H A P T E R 1
A First Program
Using C#

In this chapter you will:

�� Learn about programming

�� Learn about procedural and object-oriented programming

�� Learn about the features of object-oriented programming
languages

�� Learn about the C# programming language

�� Write a C# program that produces output

�� Learn how to select identifiers to use within your programs

�� Improve programs by adding comments and using the
System namespace

�� Compile and execute a C# program using the command
prompt and using Visual Studio

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2

C H A P T E R 1 A First Program Using C#

Programming a computer is an interesting, challenging, fun, and sometimes frustrating task.
As you learn a programming language, you must be precise and careful as well as creative.
Computer programmers can choose from a variety of programming languages, such as Visual
Basic, Java, and C++. C# (pronounced “C Sharp”) is a newer programming language that offers
a wide range of options and features. As you work through this book, you will master many of
them, one step at a time. If this is your first programming experience, you will learn new ways
to approach and solve problems and to think logically. If you know how to program but are new
to C#, you will be impressed by its capabilities.
In this chapter, you will learn about the background of programming that led to the
development of C#, and you will write and execute your first C# programs.

Programming
A computer program is a set of instructions that tells a computer what to do. Programs are also
called software; software comes in two broad categories:
 System software describes the programs that operate the computer. Examples include

operating systems such as Microsoft Windows, Mac OSX, and Linux.
 Application software describes the programs that allow users to complete tasks such as

creating documents, calculating paychecks, and playing games.
The physical devices that make up a computer system are called hardware. Internally,
computer hardware is constructed from circuitry that consists of small on/off switches; the
most basic circuitry-level language that computers use to control the operation of those
switches is called machine language. Machine language is expressed as a series of 1s and
0s—1s represent switches that are on, and 0s represent switches that are off. If programmers
had to write computer programs using machine language, they would have to keep track
of the hundreds of thousands of 1s and 0s involved in programming any worthwhile task.
Not only would writing a program be a time-consuming and difficult task, but modifying
programs, understanding others’ programs, and locating errors within programs all would
be cumbersome. Additionally, the number and location of switches vary from computer to
computer, which means you would need to customize a machine-language program for every
type of machine on which the program had to run.
Fortunately, programming has become easier because of the development of high-level
programming languages. A high-level programming language allows you to use a limited
vocabulary of reasonable keywords. Keywords are predefined and reserved identifiers that have
special meaning in a language. In other words, high-level language programs contain words
such as read, write, or add instead of the sequence of on/off switches that perform these tasks.
High-level languages also allow you to assign reasonable names to areas of computer memory;
you can use names such as hoursWorked or payRate, rather than having to remember the
memory locations (switch numbers) of those values.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3

Programming

 Camel casing, or lower camel casing, describes the style of identifiers like hoursWorked and payRate
that appear to have a hump in the middle because they start with a lowercase letter but contain uppercase
letters to identify new words. By convention, C# programmers use camel casing when creating variable
names. Also, the C# programming language is case sensitive. Therefore, if you create an identifier named
payRate, you cannot refer to it later using identifiers such as PayRate or payrate.

Each high-level language has its own syntax, or rules of the language. For example, to
produce output, you might use the verb print in one language and write in another. All
languages have a specific, limited vocabulary, along with a set of rules for using that
vocabulary. Programmers use a computer program called a compiler to translate their
high-level language statements into machine code. The compiler issues an error message
each time a programmer commits a syntax error—that is, each time the programmer uses
the language incorrectly. Subsequently, the programmer can correct the error and attempt
another translation by compiling the program again. The program can be completely
translated to machine language only when all syntax errors have been corrected. When you
learn a computer programming language such as C#, C++, Visual Basic, or Java, you must
learn the vocabulary and syntax rules for that language.

 In some languages, such as BASIC, the language translator is called an interpreter. In others, such as
assembly language, it is called an assembler. The various language translators operate differently, but the
ultimate goal of each is to translate the higher-level language into machine language.

 In addition to learning the correct syntax for a particular language, a programmer must understand

computer programming logic.

The logic behind any program involves executing the various statements and procedures in
the correct order to produce the desired results. For example, you might be able to execute
perfect individual notes on a musical instrument, but if you do not execute them in the proper
order (or execute a B-flat when an F-sharp was expected), no one will enjoy your performance.
Similarly, you might be able to use a computer language’s syntax correctly but be unable to
obtain correct results because the program is not constructed logically. Examples of logical
errors include multiplying two values when you should divide them, or attempting to calculate
a paycheck before obtaining the appropriate payroll data. The logic used to solve a problem
might be identical in two programs, but the programs can be written in different languages,
each using different syntax.

 Since the early days of computer programming, program errors have been called bugs. The term is often
said to have originated from an actual moth that was discovered trapped in the circuitry of a computer
at Harvard University in 1945. Actually, the term bug was in use prior to 1945 to mean trouble with any
electrical apparatus; even during Thomas Edison’s life, it meant an “industrial defect.” In any case, the
process of finding and correcting program errors has come to be known as debugging the program.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4

C H A P T E R 1 A First Program Using C#

TWO TRUTHS & A LIE

Programming
Two of the following statements are true, and one is false. Identify the false statement,
and explain why it is false.

1. A high-level programming language allows you to use a vocabulary of reasonable terms
such as read, write, or add instead of the sequence of on/off switches that perform
these tasks.

2. Each high-level programming language has its own syntax.

3. Programmers use a computer program called a compiler to translate machine code
into a high-level language they can understand.

Procedural and Object-Oriented Programming
Two popular approaches to writing computer programs are procedural programming and
object-oriented programming.
When you write a procedural program, you use your knowledge of a programming language
to create and name computer memory locations that can hold values, and you write a series of
steps or operations to manipulate those values. For example, a simple payroll program might
contain instructions similar to the following:
get hoursWorked
pay = hoursWorked * 10.00
output pay

Named computer memory locations such as hoursWorked and pay are called variables
because they hold values that might vary. In programming languages, a variable is referenced
by using a one-word name (an identifier) with no embedded spaces. For example, the memory
location referenced by the name hoursWorked might contain different values at different times
for different employees. During the execution of the payroll program, each value stored under
the name hoursWorked might have many operations performed on it—for example, reading it
from an input device, multiplying it by a pay rate, and printing it on paper.

 Examples of procedural programming languages include C and Logo.

The false statement is #3. Programmers use a compiler to translate their
high-level language statements into machine code.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5

Procedural and Object-Oriented Programming

For convenience, the individual operations used in a procedural program often are grouped
into logical units called methods. For example, a series of four or five comparisons and
calculations that together determine an employee’s withholding tax value might be grouped as
a method named CalculateWithholdingTax().

 Capitalizing the first letter of all new words in an identifier, even the first one, as in
CalculateWithholdingTax(), is a style called Pascal casing or upper camel casing.
Although it is legal to start a method name with a lowercase letter, the convention used in C# is
for methods to be named using Pascal casing. This helps distinguish them from variables which
conventionally use lower camel casing. Additionally, in C# all method names are followed by a set of
parentheses. When this book refers to a method, the name will be followed with parentheses.

A procedural program divides a problem solution into multiple methods, each with a unique
name. The program then calls or invokes the methods to input, manipulate, and output the
values stored in those locations. A single procedural program often contains hundreds of
variables and thousands of method calls.

 Depending on the programming language, methods are sometimes called procedures, subroutines, or
 functions. In C#, the preferred term is methods.

Object-oriented programming (OOP) is an extension of
procedural programming. OOP uses variables and methods
like procedural programs do, but it focuses on objects. An
object is a concrete entity that has attributes and behaviors.
The attributes of an object are the features it “has”; the values
of an object’s attributes constitute the state of the object.
For example, attributes of a paycheck include its payee and
monetary value, and the state of those attributes might be
Alice Nelson and $400. The behaviors of an object are the
things it “does,” or its methods; for example, a paycheck object
can be written and cashed, and contains a method to calculate
the check amount. Figure 1-1 shows how a programmer
might start to visualize a paycheck—thinking about its name,

attributes, and behaviors. Beyond a paycheck, object-oriented programmers might design a
payroll system by thinking about all the additional objects needed to produce a paycheck, such
as employees, time cards, and bank accounts.

 Programmers use the term OO, pronounced “oh oh,” as an abbreviation for object oriented. When discussing
object-oriented programming, they use OOP, which rhymes with soup.

 Examples of OO languages include C#, Java, Visual Basic, and C++. You can write procedural programs
in OO languages, but you cannot write OO programs in procedural languages.

Figure 1-1 A diagram for
a Paycheck

3D\FKHFN

SD\HH
KRXUV:RUNHG
JURVV3D\

FDOFXODWH$PRXQW��
ZULWH&KHFN��
FDVK&KHFN��

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6

C H A P T E R 1 A First Program Using C#

With either approach, procedural or object-oriented, you can produce a correct paycheck,
and both techniques employ reusable program modules. The major difference lies in the
focus the programmer takes during the earliest planning stages of a project. Taking an
object-oriented approach to a problem means defining the objects needed to accomplish
a task and developing classes that describe the objects so that each object maintains its
own data and carries out tasks when another object requests them. The object-oriented
approach is said to be “natural”—it is more common to think of a world of objects and the
ways they interact than to consider a world of systems, data items, and the logic required to
manipulate them.

 Object-oriented programming employs a large vocabulary; you can learn much of this terminology in the
chapter called “Using Classes and Objects.”

Originally, object-oriented programming was used most frequently for two major types of
applications:
 Computer simulations are programs that attempt to mimic real-world activities so that

their processes can be improved or so that users can better understand how the real-world
processes operate.

 Graphical user interfaces, or GUIs (pronounced “gooeys”) are programs that allow users
to interact with a program in a graphical environment, such as by clicking with a mouse or
using a touch screen.

Thinking about objects in these two types of applications makes sense. For example, a
city might want to develop a program that simulates traffic patterns to better prevent
congestion. By creating a model with objects such as cars and pedestrians that contain
their own data and rules for behavior, the simulation can be set in motion. For example,
each car object has a specific current speed and a procedure for changing that speed. By
creating a model of city traffic using objects, a computer can create a simulation of a real
city at rush hour.
Creating a GUI environment for users also is a natural use for object orientation. It is easy
to think of the components a user manipulates on a computer screen, such as buttons and
scroll bars, as similar to real-world objects. Each GUI object contains data— for example,
a button on a screen has a specific size and color. Each object also contains behaviors—for
example, each button can be clicked and reacts in a specific way when clicked. Some people
consider the term object-oriented programming to be synonymous with GUI programming,
but object-oriented programming means more. Although many GUI programs are object
oriented, one does not imply the other. Modern businesses use object-oriented design
techniques when developing all sorts of business applications, whether they are GUI
applications or not.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

7

Features of Object-Oriented Programming Languages

TWO TRUTHS & A LIE

Procedural and Object-Oriented Programming
1. Procedural programs use variables and tasks that are grouped into methods or

procedures.

2. Object-oriented programming languages do not support variables or methods; instead
they focus on objects.

3. Object-oriented programs were first used for simulations and GUI programs.

The false statement is #2. Object-oriented programs contain variables and
methods just as procedural programs do.

Features of Object-Oriented Programming Languages
For a language to be considered object-oriented, it must support the following features:
 Classes
 Objects
 Encapsulation and interfaces
 Inheritance
 Polymorphism

A class describes potential objects, including their attributes and behaviors. A class is similar
to a recipe or a blueprint in that it describes what features objects will have and what they
will be able to do after they are created. An object is an instance of a class; it is one tangible
example of a class.
For example, you might create a class named Automobile. Some of an Automobile’s attributes
are its make, model, year, and purchase price. All Automobiles possess the same attributes,
but not the same values, or states, for those attributes. (Programmers also call the values of an
object’s attributes the properties of the object.) When you create specific Automobile objects,
each object can hold unique values for the attributes, such as Ford, Taurus, 2016, and $27,000.
Similarly, a Dog has attributes that include its breed, name, age, and vaccination status; the
attributes for a particular dog might be Labrador retriever, Murphy, 7, and current.
When you understand that an object belongs to a specific class, you know a lot about the object.
If your friend purchases an Automobile, you know it has some model name; if your friend gets a
Dog, you know it has some breed. You probably don’t know the current state of the Automobile’s
speed or of the Dog’s shots, but you do know that those attributes exist for the Automobile and

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8

C H A P T E R 1 A First Program Using C#

Dog classes. Similarly, in a GUI operating environment, you expect each window you open to
have specific, consistent attributes, such as a menu bar and a title bar, because each window
includes these attributes as a member of the general class of GUI windows.

 By convention, programmers using C# begin their class names with an uppercase letter and use a singular
noun. Thus, the class that defines the attributes and methods of an automobile would probably be named
Automobile, and the class that contains dogs would probably be named Dog. If the class requires two
words, programmers conventionally use upper camel casing, as in BankAccount.

Besides attributes, objects possess methods that they use to accomplish tasks, including
changing attributes and discovering the values of attributes. Automobiles, for example, have
methods for moving forward and backward. They also can be filled with gasoline or be washed;
both are methods that change some of an Automobile’s attributes. Methods also exist for
determining the status of certain attributes, such as the current speed of an Automobile and
the number of gallons of gas in its tank. Similarly, a Dog can walk or run, eat, and get a bath,
and there are methods for determining whether it needs a walk, food, or a bath. GUI operating
system components, such as windows, can be maximized, minimized, and dragged; depending
on the component, they can also have their color or font style altered.
Like procedural programs, object-oriented programs have variables (attributes) and procedures
(methods), but the attributes and methods are encapsulated into objects that are then used
much like real-world objects. Encapsulation is the technique of packaging an object’s attributes
and methods into a cohesive unit that can be used as an undivided entity. Programmers
sometimes refer to encapsulation as using a “black box,” a device you use without regard for
the internal mechanisms. If an object’s methods are well written, the user is unaware of the
low-level details of how the methods are executed; in such a case, the user must understand
only the interface or interaction between the method and object. For example, if you can fill
your Automobile with gasoline, it is because you understand the interface between the gas
pump nozzle and the vehicle’s gas tank opening. You don’t need to understand how the pump
works or where the gas tank is located inside your vehicle. If you can read your speedometer, it
does not matter how the display value is calculated. In fact, if someone produces a new, more
accurate speedometer and inserts it into your Automobile, you don’t have to know or care how
it operates, as long as the interface remains the same as the previous one. The same principles
apply to well-constructed objects used in object-oriented programs.
Object-oriented programming languages support two other distinguishing features in addition
to organizing objects as members of classes. One feature, inheritance, provides the ability
to extend a class so as to create a more specific class. The more specific class contains all
the attributes and methods of the more general class and usually contains new attributes or
methods as well. For example, if you have created a Dog class, you might then create a more
specific class named ShowDog. Each instance of the ShowDog class would contain, or inherit,
all the attributes and methods of a Dog, along with additional methods or attributes. For
example, a ShowDog might require an attribute to hold the number of ribbons won and a
method for entering a dog show. The advantage of inheritance is that when you need a class
such as ShowDog, you often can extend an existing class, thereby saving a lot of time and work.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

9

The C# Programming Language

Object-oriented languages also support polymorphism, which is the ability to create methods
that act appropriately depending on the context. That is, programs written in object-oriented
languages can distinguish between methods with the same name based on the type of object
that uses them. For example, you are able to “fill” both a Dog and an Automobile, but you do
so by very different means. Similarly, the procedure to “fill” a ShowDog might require different
food than that for a “plain” Dog. Older, non-object-oriented languages could not make such
distinctions, but object-oriented languages can.

 The chapters “Using Classes and Objects” and “Introduction to Inheritance” contain much more information
on the features of object-oriented programs.

 Watch the video Object-Oriented Programming.

TWO TRUTHS & A LIE

Features of Object-Oriented Programming Languages
1. Object-oriented programs contain classes that describe the attributes and methods of

objects.

2. Object-oriented programming languages support inheritance, which refers to the
packaging of attributes and methods into logical units.

3. Object-oriented programming languages support polymorphism, which is the ability of
a method to act appropriately based on the context.

The false statement is #2. Inheritance is the ability to extend classes to make more
specific ones. Encapsulation refers to the packaging of attributes and methods.

The C# Programming Language
The C# programming language was developed as an object-oriented and component-
oriented language. It is part of Microsoft Visual Studio, a package designed for developing
applications that run on Windows computers. Unlike other programming languages, C#
allows every piece of data to be treated as an object and to consistently employ the principles
of object-oriented programming. C# provides constructs for creating components with
properties, methods, and events, making it an ideal language for modern programming,
where building small, reusable components is more important than building huge, stand-alone
applications. You can find Microsoft’s C# specifications at msdn.microsoft.com. Search for C#
specifications.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10

C H A P T E R 1 A First Program Using C#

If you have not programmed before, the differences between C# and other languages mean
little to you. However, experienced programmers will appreciate the thought that was put into
C# features. For example:
 C# contains a GUI interface that makes it similar to Visual Basic, but C# is considered more

concise than Visual Basic.
 C# is modeled after the C++ programming language, but is considered easier to learn. Some

of the most difficult features to understand in C++ have been eliminated in C#.

 Some differences between C# and C++ are that pointers (variables that hold memory addresses) are not
used in C# (except in a mode called unsafe, which is rarely used), object destructors and forward
declarations are not needed, and using #include files is not necessary. Multiple inheritance, which causes
many C++ programming errors, is not allowed in C#.

 C# is very similar to Java, because Java was also based on C++. However, C# is more truly
object oriented. Unlike in Java, every piece of data in C# is an object, providing all data with
increased functionality.

 In Java, simple data types are not objects; therefore, they do not work with built-in methods. Additionally,
in Java, data can only be passed to and from methods using a copy; C# omits this limitation. You will learn
more in two later chapters: “Introduction to Methods” and “Advanced Method Concepts.”

 The C# programming language was standardized in 2002 by Ecma International. You can read or download
this set of standards at www.ecma-international.org/publications/standards/Ecma-334.htm.

The C# Programming Language
1. The C# programming language was developed as an object-oriented and component-

oriented language.

2. C# contains several features that make it similar to other languages such as Java and
Visual Basic.

3. C# contains many advanced features, so the C++ programming language was created
as a simpler version of the language.

The false statement is 3. C# is modeled after the C++ programming language,
but some of the most difficult features to understand in C++ have been
eliminated in C#.

TWO TRUTHS & A LIE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

11

Writing a C# Program that Produces Output

Writing a C# Program that Produces Output
At first glance, even the simplest C# program involves a fair amount of confusing syntax.
Consider the simple program in Figure 1-2. This program is written on seven lines, and its only
task is to display This is my first C# program on the screen.

class FirstClass
{
 static void Main()
 {
 System.Console.WriteLine("This is my first C# program");
 }
}

Figure 1-2 FirstClass console application

The statement that does the actual work in this program is in the middle of the figure:
System.Console.WriteLine("This is my first C# program");

The statement ends with a semicolon because all C# statements do.
The text "This is my first C# program" is a literal string of characters—that is, a series
of characters that will be used exactly as entered. Any literal string in C# appears between
double quotation marks.
The string "This is my first C# program" appears within parentheses because the string
is an argument to a method, and arguments to methods always appear within parentheses.
Arguments represent information that a method needs to perform its task. For example, if
making an appointment with a dentist’s office was a C# method, you would write the following:
MakeAppointment("September 10", "2 p.m.");

Accepting and processing a dental appointment is a method that consists of a set of standard
procedures. However, each appointment requires different information—the date and time—
and this information can be considered the arguments of the MakeAppointment() method.
If you make an appointment for September 10 at 2 p.m., you expect different results than if
you make one for September 9 at 8 a.m. or December 25 at midnight. Likewise, if you pass the
argument "Happy Holidays" to a method, you will expect different results than if you pass
the argument "This is my first C# program".

 Although an argument to a method might be a string, not all arguments are strings. In this book, you will see
and write methods that accept many other types of data.

Within the statement System.Console.WriteLine("This is my first C# program");,
the method to which you are passing the argument string is named WriteLine(). The

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

12

C H A P T E R 1 A First Program Using C#

WriteLine()method displays output on the screen and positions the cursor on the next line,
where additional output might be displayed subsequently. The Write() method is very similar
to the WriteLine() method. With WriteLine(), the cursor is moved to the following line
after the message is displayed. With Write(), the cursor does not advance to a new line; it
remains on the same line as the output.
Within the statement System.Console.WriteLine("This is my first C# program");,
Console is a class that contains the WriteLine() method. Of course, not all classes have
a WriteLine() method (for instance, you can’t write a line to a computer’s mouse, an
Automobile, or a Dog), but the creators of C# assumed that you frequently would want to
display output on the screen at your terminal. For this reason, the Console class was created
and endowed with the method named WriteLine(). When you use the WriteLine() method,
programmers say that you call it or invoke it. Soon, you will create your own C# classes and
endow them with your own callable methods.
Within the statement System.Console.WriteLine("This is my first C# program");,
System is a namespace. A namespace is a construct that acts like a container to provide a
way to group similar classes. To organize your classes, you can (and will) create your own
namespaces. The System namespace, which is built into your C# compiler, holds commonly
used classes.

 An advantage to using Visual Studio is that all of its languages use the same namespaces. In other
words, everything you learn about any namespace in C# is knowledge you can transfer to Visual C++
and Visual Basic.

The dots (periods) in the phrase System.Console.WriteLine are used to separate the names
of the namespace, class, and method. You will use this same namespace-dot-class-dot-method
format repeatedly in your C# programs.
In the FirstClass class in Figure 1-2, the WriteLine() statement appears within a method
named Main(). Every executable C# application must contain a Main() method because that
is the starting point for every program. As you continue to learn C# from this book, you will
write applications that contain additional methods. You will also create classes that are not
programs, and so do not need a Main() method.
Every method in C# contains a header and a body. A method header includes the method
name and information about what will pass into and be returned from a method. A method
body is contained within a pair of curly braces ({ }) and includes all the instructions executed
by the method. The program in Figure 1-2 includes only one statement between the curly
braces of the Main() method. Soon, you will write methods with many more statements. In
Figure 1-2, the WriteLine()statement within the Main() method is indented within the curly
braces. Although the C# compiler does not require such indentation, it is conventional and
clearly shows that the WriteLine() statement lies within the Main() method.
For every opening curly brace ({) in a C# program, there must be a corresponding closing curly
brace (}). The precise position of the opening and closing curly braces is not important to the
compiler. In general, whitespace is optional in C#. Whitespace is any combination of spaces,

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

13

Writing a C# Program that Produces Output

tabs, and carriage returns (blank lines). You use whitespace to organize your program code
and make it easier to read; it does not affect your program’s execution. Usually, you vertically
align each pair of opening and closing curly braces and indent the contents between them, as
shown in Figure 1-2.
The method header for the Main() method in Figure 1-2 contains three words. Two of these
words are keywords. In this book, C# keywords appear in bold. A complete list of keywords
appears in Table 1-1 later in this chapter. In the method header static void Main(), the
keyword static indicates that the Main() method will be executed through a class—not by
a variety of objects. It means that you do not need to create an object of type FirstClass to
use the Main() method defined within FirstClass. Later in this book, you will create other
methods that are nonstatic methods and that are executed by objects.
The second word in the method header in Figure 1-2 is void. In English, the word void means
empty or having no effect. When the keyword void is used in the Main() method header, it
does not indicate that the Main() method is empty, or that it has no effect, but rather that the
method does not return any value when called. You will learn more about methods that return
values (and do affect other methods) when you study methods in greater detail.
In the method header, the name of the method is Main(). Main() is not a C# keyword, but all
C# applications must include a method named Main(), and most C# applications will have
additional methods with other names. Recall that when you execute a C# application, the
Main() method always executes first. Classes that contain a Main() method are application
classes. Applications are executable or runnable. Classes that do not contain a Main()
method are non-application classes, and are not runnable. Non-application classes provide
support for other classes.

 Watch the video The Parts of a C# Program.

TWO TRUTHS & A LIE

Writing a C# Program that Produces Output
1. Strings are information that methods need to perform their tasks.

2. The WriteLine() method displays output on the screen and positions the cursor on
the next line, where additional output might be displayed.

3. Many methods such as WriteLine() have been created for you because the creators
of C# assumed you would need them frequently.

The false statement is #1. Strings are literal values represented between quotation
marks. Arguments represent information that a method needs to perform its task.
Although an argument might be a string, not all arguments are strings.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

14

C H A P T E R 1 A First Program Using C#

Selecting Identifiers
Every method that you use within a C# program must be part of a class. To create a class, you
use a class header and curly braces in much the same way you use a header and braces for a
method within a class. When you write class FirstClass, you are defining a class named
FirstClass. A class name does not have to contain the word Class as FirstClass does; as
a matter of fact, most class names you create will not contain Class. You can define a C# class
using any identifier you need, as long as it meets the following requirements:
 An identifier must begin with an underscore, the “at” sign (@), or a letter. Letters include

foreign-alphabet letters such as П and Ω, which are contained in the set of characters known
as Unicode. You will learn more about Unicode in the next chapter.

 An identifier can contain only letters, digits, underscores, and the @ sign. An identifier
cannot contain spaces or any other punctuation or special characters such as #, $, or &.

 An identifier cannot be a C# reserved keyword, such as class or void. Table 1-1 provides
a complete list of reserved keywords. Actually, you can use a keyword as an identifier if
you precede it with an @ sign, as in @class. An identifier with an @ prefix is a verbatim
 identifier. This feature allows you to use code written in other languages that do not have
the same set of reserved keywords. However, when you write original C# programs, you
should not use the keywords as identifiers.

abstract float return

as for sbyte

base foreach sealed

bool goto short

break if sizeof

byte implicit stackalloc

case in static

catch int string

char interface struct

checked internal switch

class is this

const lock throw

continue long true

decimal namespace try

default new typeof

 Table 1-1 C# reserved keywords (continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

15

Selecting Identifiers

The following identifiers have special meaning in C# but are not keywords: add, alias, get,
global, partial, remove, set, value, where, and yield. For clarity, you should avoid using
these words as your own identifiers.
Table 1-2 lists some valid and conventional class names you might use when creating classes in
C#. You should follow established conventions for C# so that other programmers can interpret
and follow your programs. Table 1-3 lists some class names that are valid, but unconventional;
Table 1-4 lists some illegal class names.

delegate null uint

do object ulong

double operator unchecked

else out unsafe

enum override ushort

event params using

explicit private virtual

extern protected void

false public volatile

finally readonly while

fixed ref

 Table 1-1 C# reserved keywords

 (continued)

Class Name Description
Employee Begins with an uppercase letter

FirstClass Begins with an uppercase letter, contains no spaces, and has an initial
uppercase letter that indicates the start of the second word

PushButtonControl Begins with an uppercase letter, contains no spaces, and has an initial
uppercase letter that indicates the start of all subsequent words

Budget2016 Begins with an uppercase letter and contains no spaces

 Table 1-2 Some valid and conventional class names in C#

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

16

C H A P T E R 1 A First Program Using C#

In Figure 1-2, the line class FirstClass contains the keyword class, which identifies
FirstClass as a class.
The simple program shown in Figure 1-2 has many pieces to remember. For now, you
can use the program shown in Figure 1-3 as a shell, where you replace the identifier
AnyLegalClassName with any legal class name, and the line /*********/ with any
statements that you want to execute.

class AnyLegalClassName
{
 static void Main()
 {
 /*********/;
 }
}

Figure 1-3 Shell program

Class Name Description
employee Unconventional as a class name because it begins with a lowercase letter

First_Class Although legal, the underscore is not commonly used to indicate new
words in class names

Pushbuttoncontrol No uppercase characters are used to indicate the start of a new word,
making the name difficult to read

BUDGET2016 Unconventional as a class name because it contains all uppercase letters

Void Although this identifier is legal because it is different from the keyword
void, which begins with a lowercase v, the similarity could cause confusion

 Table 1-3 Some unconventional (though legal) class names in C#

Class Name Description
an employee Space character is illegal

Push Button Control Space characters are illegal

class class is a reserved word

2016Budget Class names cannot begin with a digit

phone# The # symbol is not allowed; identifiers consist of letters, digits,
underscores, or @

 Table 1-4 Some illegal class names in C#

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

17

Improving Programs

Improving Programs by Adding Comments
and Using the System Namespace
As you can see, even the simplest C# program takes several lines of code and contains
somewhat perplexing syntax. Large programs that perform many tasks include much more
code. As you work through this book, you will discover many ways to improve your ability to
handle large programs. Two things you can do immediately are to add program comments and
use the System namespace.

Adding Program Comments
As you write longer programs, it becomes increasingly difficult to remember why you included
steps and how you intended to use particular variables. Program comments are nonexecuting
statements that you add to document a program. Programmers use comments to leave notes
for themselves and for others who might read their programs.

 As you work through this book, you should add comments as the first few lines of every program file. The
comments should contain your name, the date, and the name of the program. Your instructor might want
you to include additional comments.

Comments also can be useful when you are developing a program. If a program is not
performing as expected, you can comment out various statements and subsequently run
the program to observe the effect. When you comment out a statement, you turn it into a
comment so the compiler will ignore it. This approach helps you pinpoint the location of errant
statements in malfunctioning programs.

 Watch the video C# Identifiers.

TWO TRUTHS & A LIE

Selecting Identifiers
1. I n C#, an identifier must begin with an underscore, the at sign (@), or an uppercase

letter.

2. An identifier can contain only letters, digits, underscores, and the @ sign, not special
characters such as #, $, or &.

3. An identifier cannot be a C# reserved keyword.

The false statement is #1. In C#, an identifier must begin with an underscore, the
@ sign, or a letter. There is no requirement that the initial letter be capitalized,
although in C#, it is a convention that the initial letter of a class name is capitalized.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

18

C H A P T E R 1 A First Program Using C#

/* This program is written to demonstrate using comments
*/
class ClassWithOneExecutingLine
{
 static void Main()
 {
 // The next line writes the message
 System.Console.WriteLine(“Message");
 } // End of Main
} // End of ClassWithOneExecutingLine

C# offers three types of comments:
 Line comments start with two forward slashes (//) and continue to the end of the current

line. Line comments can appear on a line by themselves, or they can occupy part of a line
following executable code.

 Block comments start with a forward slash and an asterisk (/*) and end with an asterisk
and a forward slash (*/). Block comments can appear on a line by themselves, on a line
before executable code, or after executable code. When a comment is long, block comments
can extend across as many lines as needed.

 C# also supports a special type of comment used to create documentation within a program.
These comments, called XML-documentation format comments, use a special set of tags
within angle brackets (< >). (XML stands for Extensible Markup Language.) You will learn
more about this type of comment as you continue your study of C#.

 The forward slash (/) and the backslash (\) characters often are confused, but they are distinct
characters. You cannot use them interchangeably.

Figure 1-4 shows how comments can be used in code. The program covers 10 lines, yet only
seven are part of the executable C# program, including the last two lines, which contain curly
braces and are followed by partial-line comments. The only line that actually does anything
visible when the program runs is the shaded one that displays Message.

Figure 1-4 Using comments within a program

Using the System Namespace
A program can contain as many statements as you need. For example, the program in
Figure 1-5 produces the three lines of output shown in Figure 1-6. (To get the output, you
have to know how to compile and execute the program, which you will learn in the next part
of this chapter.) A semicolon separates each program statement.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

19

using System;
class ThreeLinesOutput
{
 static void Main()
 {
 Console.WriteLine("Line one");
 Console.WriteLine("Line two");
 Console.WriteLine("Line three");
 }
}

Improving Programs

 Figure 1-6 shows the output of the ThreeLinesOutput program when it is run in Visual Studio. The prompt to
press any key to continue is not part of the program; it is added by Visual Studio, but it does not appear if
you run the program from the command prompt.

The program in Figure 1-5 shows a lot of repeated code—the phrase System.Console.
WriteLine appears three times. When you need to repeatedly use a class from the same
namespace, you can shorten the statements you type by adding a clause that indicates a
namespace containing the class. You indicate a namespace with a using clause, or using
directive, as shown in the shaded statement in the program in Figure 1-7. If you type using
System; prior to the class definition, the compiler knows to use the System namespace when
it encounters the Console class. The output of the program in Figure 1-7 is identical to that in
Figure 1-5, in which System was repeated with each WriteLine() statement.

class ThreeLinesOutput
{
 static void Main()
 {
 System.Console.WriteLine("Line one");
 System.Console.WriteLine("Line two");
 System.Console.WriteLine("Line three");
 }
}

Figure 1-5 A program that produces three lines of output

Figure 1-7 A program that produces three lines of output with a using System; clause

Figure 1-6 Output of the ThreeLinesOutput program

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

20

C H A P T E R 1 A First Program Using C#

Starting with C# 6.0, you can reduce typing in programs even further by inserting using
static System.Console; at the top of a program. So, In Visual Studio 2015, the program in
Figure 1-8 uses only the method name WriteLine() in its output statements, and the program
works correctly, (You have already seen the word static in the Main() method header. Recall
that static means a method is used without creating an object. In Chapter 7, you will learn
more about the use of the keyword static.) The simpler style shown in Figure 1-8 is the style
used for programs in the rest of this book.

using static System.Console;
class ThreeLinesOutput
{
 static void Main()
 {
 WriteLine("Line one");
 WriteLine("Line two");
 WriteLine("Line three");
 }
}

Figure 1-8 A program that produces three lines of output with a using static System.Console; clause

Improving Programs by Adding Comments
and Using the System Namespace

1. Line comments start with two forward slashes (//) and end with two backslashes (\\).

2. Block comments can extend across as many lines as needed.

3. You use a namespace with a using clause, or using directive, to shorten statements
when you need to repeatedly use a class from the same namespace.

The false statement is #1. Line comments start with two forward slashes (//) and
continue to the end of the current line.

TWO TRUTHS & A LIE

Now that you understand the basic framework of a program written in C#, you
are ready to enter your first C# program into a text editor so you can compile and
execute it. It is a tradition among programmers that the first program you write in

You Do It

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

21

Improving Programs

Entering a Program into an Editor

1. Start any text editor, such as Notepad, and open a new document, if necessary.

2. Type the using statement and the header for the class:
 using static System.Console;
 class Hello

3. On the next two lines, type the class-opening and class-closing curly braces: {}.
Some programmers type a closing brace as soon as they type the opening one
to guarantee that they always type complete pairs.

4. Between the class braces, insert a new line, type three spaces to indent, and
write the Main() method header:

 static void Main()

5. On the next two lines, type the opening and closing braces for the Main()
method, indenting them about three spaces.

6. Between the Main() method’s braces, insert a new line and type six spaces so
the next statement will be indented within the braces. Type the one executing
statement in this program:

 WriteLine("Hello, world!");

 Your code should look like Figure 1-9.

any language produces Hello, world! as its output. To create a C# program, you can
use any simple text editor, such as Notepad, or the editor that is included as part of
Microsoft Visual Studio. There are advantages to using the C# editor to write your
programs, but using a plain text editor is simpler when you are getting started.

using static System.Console;
class Hello
{
 static void Main()
 {
 WriteLine("Hello, world!");
 }
}

Figure 1-9 The Hello class
(continues)

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

22

C H A P T E R 1 A First Program Using C#

7. Choose a location that is meaningful to you to save your program. For
example, you might create a folder named C# on your hard drive. Within that
folder, you might create a folder named Chapter.01 in which you will store
all the examples and exercises in this chapter. If you are working in a school
lab, you might be assigned a storage location on your school’s server. Save
the program as Hello.cs. It is important that the file extension be .cs, which
stands for C Sharp. If the file has a different extension, the compiler for C#
will not recognize the program as a C# program.

 Many text editors attach their own filename extension (such as .txt or .doc) to a saved file. Double-
check your saved file to ensure that it does not have a double extension (as in Hello.cs.txt). If the
file has a double extension, rename it. If you use a word-processing program as your editor, select
the option to save the file as a plain text file.

(continued)

Compiling and Executing a C# Program
After you write and save a program, two more steps must be performed before you can view
the program output:

1. You must compile the program you wrote (called the source code) into intermediate
language (IL).

2. The C# just in time (JIT) compiler must translate the intermediate code into
executable code.

When you compile a C# program, your source code is translated into intermediate
language. The JIT compiler converts IL instructions into native code at the last moment,
and appropriately for each type of operating system on which the code might eventually
be executed. In other words, the same set of IL can be JIT compiled and executed on any
supported architecture.

 Some developers say that languages like C# are “semi-compiled.” That is, instead of being translated
immediately from source code to their final executable versions, programs are compiled into an intermediate
version that is later translated into the correct executable statements for the environment in which the
program is running.

You can write a program using a simple editor such as Notepad and then perform these steps
from the command prompt in your system. You also can write a program within the Integrated
Development Environment that comes with Visual Studio. Both methods can produce the
same output; the one you use is a matter of preference.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

23

Compiling and Executing a C# Program

 The command line is the line on which you type a command in a system that uses a text
interface. The command prompt is a request for input that appears at the beginning of
the command line. In DOS, the command prompt indicates the disk drive and optional
path, and ends with >. You might prefer the simplicity of the command line because you do
not work with multiple menus and views. Additionally, if you want to pass command-line
arguments to a program, you must compile from the command line.

 The Integrated Development Environment (IDE) is a programming environment that
allows you to issue commands by selecting choices from menus and clicking buttons.
Many programmers prefer using the IDE because it provides features such as color-coded
keywords and automatic statement completion.

Compiling Code from the Command Prompt
 If you will be using the IDE to write all your programs, you can read this section quickly, and then

concentrate on the section titled “Compiling Code Using the Visual Studio IDE.”

To compile your source code from the command line, you first locate the developer command
prompt. In a Windows 8.1 system, you can swipe from the right, click Search, and enter
Developer Command Prompt. (Depending on your version of Visual Studio, the command
prompt might be followed by a year.) If you don’t find the command prompt window, you need
to obtain and install a copy of Visual Studio. For more information, visit msdn2.microsoft.com/
en-us/vcsharp.
In the developer command prompt window, you type csc, followed by the name of the file
that contains the source code. The command csc stands for C Sharp compiler. For example, to
compile a file named ThreeLinesOutput.cs, you would type the following and then press Enter:

csc ThreeLinesOutput.cs

One of three outcomes is possible:
 You receive an operating system error message such as Bad command or file name or csc

is not recognized as an internal or external command, operable program or batch file. You
can recognize operating system messages because they do not start with the name of the
program you are trying to compile.

 You receive one or more program language error messages. You can recognize program
language error messages because they start with the name of the program followed by a line
number and the position where the error was first noticed.

 You receive no error messages (only a copyright statement from Microsoft), indicating that
the program has compiled successfully.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

24

C H A P T E R 1 A First Program Using C#

What to Do If You Receive an Operating System Error Message at the
Command Prompt
If you receive an operating system message such as csc is not recognized…, or Source file… could
not be found, it may mean that:
 You misspelled the command csc.
 You misspelled the filename.
 You forgot to include the extension .cs with the filename.
 You are not within the correct subdirectory or folder on your command line. For example,

Figure 1-10 shows the csc command typed in the root directory of the C: drive. If the
ThreeLinesOutput.cs file is stored in a folder on the C: drive rather than in the root
directory, then the command shown will not work because the C# file cannot be found.

 The C# compiler was not installed properly. If you are working on your own computer, you
might need to reinstall C#; if you are working in a school laboratory, you need to notify the
system administrator.

Figure 1-10 Attempt to compile a program from the root directory at the command prompt, and
error message received

What to Do If You Receive a Programming Language Error Message
at the Command Prompt
If you receive a programming language error message, it means that the compiler was installed
correctly, but that the source code contains one or more syntax errors. A syntax error occurs
when you introduce typing errors into your program. Program error messages start with
the program name, followed by parentheses that hold the line number and the position in
the line where the compiler noticed the error. For example, in Figure 1-11, an error is found
in ThreeLinesOutput.cs in line 8, position 7. In this case, the message is generated because
WriteLine is typed as writeLine (with a lowercase w). The error message is The name
‘writeLine” does not exist in the current context. If a problem like this occurs, you must reopen
the text file that contains the source code, make the necessary corrections, save the file, and
compile it again.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

25

Compiling and Executing a C# Program

 The C# compiler issues warnings as well as errors. A warning is less serious than an error; it means that the
compiler has determined you have done something unusual, but not illegal. If you have purposely introduced
a warning situation to test a program, then you can ignore the warning. Usually, however, you should treat a
warning message just as you would an error message and attempt to remedy the situation.

What to Do When the Program Compiles Successfully at the
Command Prompt
If you receive no error messages after compiling the code, then the program compiled
successfully, and a file with the same name as the source code—but with an .exe
extension—is created and saved in the same folder as the program text file. For example, if
ThreeLinesOutput.cs compiles successfully, then a file named ThreeLinesOutput.exe is created.
To run the program from the command line, you simply type the program name—for example,
ThreeLinesOutput. You can also type the full filename, ThreeLinesOutput.exe, but it is not
necessary to include the extension. The three lines of output, Line one, Line two, and Line three,
appear in the command prompt window, and the command prompt is displayed again, awaiting
a new command.

Compiling Code Using the Visual Studio IDE
As an alternative to using the command line, you can compile and write your program within
the Visual Studio IDE. This approach has several advantages:
 Some of the code you need is already created for you.
 The code is displayed in color, so you can more easily identify parts of your program.

Reserved words appear in blue, comments in green, and identifiers in black.
 If error messages appear when you compile your program, you can double-click an error

message and the cursor will move to the line of code that contains the error.
 Other debugging tools are available. You will become more familiar with these tools as you

develop more sophisticated programs.
If Visual Studio has been installed on your system, you can open it from the menu bar which,
in the Visual Studio IDE, is the list of choices that runs horizontally across the top of the screen.

Figure 1-11 Error message generated when WriteLine is mistyped in the ThreeLinesOutput
program compiled from the command prompt

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

26

C H A P T E R 1 A First Program Using C#

Start a new project, designate it to be a Console Project, and give the project a name. Figure 1-12
shows a program and project named ThreeLinesOutput written in the editor of the Visual
Studio IDE. Everything in the figure was generated automatically by Visual Studio except for
the following:
 The programmer selected the project name.
 The programmer added a using static System.Console; statement so that
WriteLine() could be used without adding System and Console each time.

 The programmer added the three lines coded in the Main() method to produce output.
You can see that the Visual Studio environment looks like a word processor, containing menu
options such as File, Edit, and Help, and buttons with icons representing options such as
Save Selected Items and Undo. Selecting many of the menu options displays a drop-down
list of additional options. Many of the options have shortcut keys that you can use instead
of accessing the menus. For example, if you select File from the menu bar, you can see that a
shortcut for Save Program.cs is Ctrl + S. You will learn about some of these options later in this
chapter and continue to learn about more of them as you work with C# in the IDE.

Figure 1-12 The ThreeLinesOutput program as it appears in Visual Studio

Project name is
ThreeLinesOutput.

These three WriteLine()
statements were added by
the programmer.

This using statement
was added by the
programmer.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

27

Compiling and Executing a C# Program

 In Figure 1-12 you can see two instances of 0 references, above the class header and the Main() method
header. This means that neither this class nor method is used by any other method. When you start to write
methods in Chapter 7, you will be able to see how many places your methods are referenced.

One way to compile a program from Visual Studio is to select Build from the menu bar and
then select Build Solution. As an alternative, you can press Ctrl + Shift + B. You can also select
Debug from the menu bar, and then click Start Without Debugging. The advantage of the
latter option is that the program will be compiled if there are no syntax errors and then execute
so you can see the output.

What to Do If You Receive a Programming Language Error Message
in the IDE
If you introduce a syntax error into a program in the IDE, you receive a programming language
error message. For example, in Figure 1-13, WriteLine is spelled incorrectly because it uses
a lowercase w. The error message displayed at the bottom is: ‘The name 'writeLine" does not
exist in the current context’. (If you cannot read the entire message, you can adjust the size of
the window.) The position is given (project, file, and line number), and as an additional visual
aid, a wavy underline emphasizes the unrecognized definition. When you fix the problem and
compile again, the error message is eliminated.

Figure 1-13 Error message generated when WriteLine is mistyped in the ThreeLinesOutput
program compiled in the IDE

Wavy underline

Error message

Error location
information

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

28

C H A P T E R 1 A First Program Using C#

What to Do When the Program Compiles Successfully in the IDE

 In Figure 1-13 you can see a code CS0103 next to the generated error message. You can search the web
for this code and discover its general meaning. However, usually sufficient explanation is provided in Visual
Studio, and a web search is unnecessary.

If you receive no error messages after compiling the code, then the program compiled successfully,
and you can run the program. Select Debug from the menu bar, and then select Start Without
Debugging. The output appears, as you saw it in Figure 1-6 earlier in this chapter.

Noticing the Differences Between the Programs
in the Text Editor and the IDE
There are a few differences between the ThreeLinesOutput programs in Figures 1-8 and 1-12.
Specifically, the Visual Studio version in Figure 1-12 contains the following extra components
that are highlighted in Figure 1-14:
 Five using statements at the top of the file—Visual Studio automatically provides you

with several commonly needed using statements. In this case, you could delete all five
statements from the Visual Studio version of the program, and the program would still run
correctly. (The only using statement you need to retain is the using static System.
Console; statement that allows you to use WriteLine() without qualification.) Conversely,
you could add all five additional using statements to the command-line version of the
program, and it would also run correctly.

 A namespace declaration and its opening and closing curly braces—You already know that
C# uses built-in namespaces like System and others that are automatically listed at the top
of the Visual Studio version of programs. C# also allows you to create your own namespaces;
Visual Studio assumes that you will want to create one using the name you have assigned to
the project. In this case, you could remove the namespace declaration from the Visual Studio
version of the program, or you could add one to the command-line version of the program.
In both cases, the programs would still run correctly.

 The class name Program—Visual Studio assumes that you want to avoid confusion by
having different names for your namespace and the class contained within it, so it assigns
the generic name Program to the class that contains the Main() method. You could
change this name to match the namespace identifier, ThreeLinesOutput, or use any other
legal identifier, and the program would still work correctly. In the Notepad version of the
program, you could change the class name to Program or any other legal identifier, and the
program would also work.

 The words string[] args between the parentheses of the Main() method header. C#
allows a program’s Main() method header to be written in several ways. For example, you
can include the words string[] args between the method’s parentheses, or you can omit

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

29

Compiling and Executing a C# Program

the words. The square brackets indicate an array, as you will learn when studying arrays later
in this book. In this example, you could write the Main() method header with or without
the extra code in either the Notepad or Visual Studio version of the program, and the
Main() method would still work correctly.

In summary, the Visual Studio version of the ThreeLinesOutput program provides everything
you need to run the program and saves you as much typing as possible in case you want to
include additional options. The command-line and Visual Studio versions of the program
function identically.

Notepad version of the program Visual Studio version of the program

XVLQJ�6\VWHP�
XVLQJ�6\VWHP�&ROOHFWLRQV�*HQHULF�
XVLQJ�6\VWHP�/LQT�
XVLQJ�6\VWHP�7H[W�
XVLQJ�6\VWHP�7KUHDGLQJ�7DVNV�
XVLQJ�VWDWLF�6\VWHP�&RQVROH�

QDPHVSDFH�7KUHH/LQHV2XWSXW

FODVV�3URJUDP
^
��VWDWLF�YRLG�0DLQ�VWULQJ>@�DUJV�
��^

��`
`

`

��:ULWH/LQH��/LQH�RQH���
��:ULWH/LQH��/LQH�WZR���
��:ULWH/LQH��/LQH�WKUHH���

^

XVLQJ�VWDWLF�6\VWHP�&RQVROH�

FODVV�7KUHH/LQHV2XWSXW
^

VWDWLF�YRLG�0DLQ��
^

:ULWH/LQH��/LQH�RQH���
:ULWH/LQH��/LQH�WZR���
:ULWH/LQH��/LQH�WKUHH���

`
`

Figure 1-14 Comparing the command line and Visual Studio versions of the
ThreeLinesOutput program

Deciding Which Environment to Use
When you write, compile, and execute a C# program, you can use either a text editor and the
command line or the Visual Studio IDE. You would never need to use both. You might prefer
using an editor with which you are already familiar (such as Notepad) and compiling from the
command line because only two files are generated, saving disk space.
On the other hand, the IDE provides many useful features, such as automatic statement
completion. For example, if you type u, then a list of choices including using is displayed
and you can click using instead of typing it. Similarly, if you type using s, then a list of choices
including static is displayed

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

30

C H A P T E R 1 A First Program Using C#

Additionally, in the IDE, words are displayed using different colors based on their category;
for example, one color is used for C#-reserved words and a different color for literal strings.
It is also easier to correct many errors using the IDE. When compiler errors or warnings are
issued, you can double-click the message, and the cursor jumps to the location in the code
where the error was detected. Another advantage to learning the IDE is that if you use another
programming language in Visual Studio (C++ or Visual Basic), the environment will already be
familiar to you.
The C# language works the same way no matter which method you use to compile your
programs. Everything you learn in the next chapters about input, output, decision making,
loops, and arrays is correct in both environments. You can use just one technique or compile
some programs in each environment as the mood strikes you. You can also mix and match
techniques if you prefer. For example, you can use an editor you like to compose your
programs, then paste them into the IDE to execute them. Although any program can be written
using either compilation technique, when you write GUI applications that use existing objects
such as buttons and labels, you will find that the extensive amount of code automatically
generated by the IDE is very helpful.

 Watch the video Writing and Compiling a Program.

TWO TRUTHS & A LIE

Compiling and Executing a C# Program
1. After you write and save a program, you must compile it into intermediate language

and then the C# just in time (JIT) compiler must translate the intermediate code into
executable code.

2. You can compile and execute a C# program from the command line or within the
Integrated Development Environment (IDE) that comes with Visual Studio.

3. Many programmers prefer to compile their programs from the command line because it
provides features such as color-coded keywords and automatic statement completion.

The false statement is #3. Programmers who prefer the command line prefer its
simplicity. Programmers who prefer the Visual Studio IDE prefer the color-coded
keywords and automatic statement completion.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

31

Compiling and Executing a C# Program

Compiling and Executing a Program from the Command Line
If you do not plan to use the command line to execute programs, you can skip to the next part of
this “You Do It” section, called “Compiling and Executing a Program Using the Visual Studio IDE.”

1. Go to the command prompt on your system. For example, in Windows 8.1,
swipe from the right, click Search, start to type Developer Command
Prompt, and then click it.

2. Change the current directory to the name of the folder that holds your
program. You can type cd\ and then press Enter to return to the root
directory. You can then type cd to change the path to the one where your
program resides. For example, if you stored your program file in a folder
named Chapter.01 within a folder named C#, then you can type the following:

cd C#\Chapter.01

The command cd is short for change directory.
3. Type the command that compiles your program:

csc Hello.cs

If you receive no error messages and the prompt returns, it means that the
compile operation was successful, that a file named Hello.exe has been
created, and that you can execute the program. If you do receive error
messages, check every character of the program you typed to make sure
it matches Figure 1-9 in the last “You Do It” section. Remember, C# is case
sensitive, so all casing must match exactly. When you have corrected the
errors, repeat this step to compile the program again.

4. You can verify that a file named Hello.exe was created in these ways:

At the command prompt, type dir to view a directory of the files stored in
the current folder. Both Hello.cs and Hello.exe should appear in the list.

Use Windows Explorer to view the contents of the Chapter.01 folder,
verifying that two Hello files are listed.

You Do It

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

32

C H A P T E R 1 A First Program Using C#

5. At the command prompt, type Hello, which is the name of the program
(the name of the executable file), and then press Enter. Alternatively, you
can type the full filename Hello.exe, but typing the .exe extension isn’t
necessary. The output should look like Figure 1-15.

Figure 1-15 Output of the Hello application

 You can use the /out compiler option between the cs command and the name of the .cs file to
indicate the name of the output file. For example, if you type csc /out:Hello.exe Hello.cs,
you create an output file named Hello.exe. By default, the name of the output file is the same as
the name of the .cs file. Usually, this is your intention, so most often you omit the /out option.

Compiling and Executing a Program Using the Visual Studio IDE

Next, you use the C# compiler environment to compile and execute the same Hello
program you ran from the command line.

1. Open Visual Studio. If there is a shortcut icon on your desktop, you can
double-click it. Alternatively, in Windows 8, you can swipe from the right, click
Search, start to type Visual Studio 2015, and select it. When you see the
Start Page, click New Project.

2. In the New Project window, click Visual C#, and then click
Console Application. By default, the name for the project is set to
ConsoleApplication1.

Change it to Hello, and select the path where you want to save the project
(see Figure 1-16). Click OK. Visual C# creates a new folder for your project
named after the project title.

 Students might like to walk through these “You Do It” exercises multiple times for practice. Note
that Visual Studio does not allow you to create a project with the same name as one already
stored in a folder. When you perform these steps additional times, either delete the first version
of the project before you start the next one, store the new version in a different folder, or give the
new project a different name.

(continued)

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

33

Compiling and Executing a C# Program

This project is a
Console Application.

Click the OK
button to create
the project.

You specify a
storage location.

The Solution name appears
automatically as you type
the project Name.

This project
uses Visual C#.

The project
Name is
entered here.

Figure 1-16 Starting a new project

3. The Hello application editing window appears. A lot of code is already written
for you in this window, including some using statements, a namespace
named Hello, a class named Program, and a Main() method. To create the
Hello program, you need to add only two statements to the prewritten code.
Place your cursor after the last using statement, press Enter to start a new
line, and add an additional using statement:

using static System.Console;

After the opening brace of the Main() method, press Enter to start a new
line, and add the following statement:

WriteLine("Hello, world!");

Figure 1-17 shows the editing window after the using and WriteLine()
statements have been added.

(continued)

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

34

C H A P T E R 1 A First Program Using C#

Figure 1-17 The Hello application editing window after the code has been added

4. Save the project by clicking File on the menu bar and then clicking Save All,
or by clicking the Save All button (which shows two disks) on the toolbar, or
by typing Ctrl + Shift + S.

5. To compile the program, click Build on the menu bar, and then click Build
Solution. You should receive no error messages, and the words Build
succeeded should appear near the lower-left edge of the window.

6. Click Debug on the menu bar, and then click Start Without Debugging.
Figure 1-18 shows the output; you see Hello, world! followed by the message
Press any key to continue. Press any key to close the output screen.

Figure 1-18 Output of the Hello application in Visual Studio

(continued)

(continues)

These two lines
were added by
the programmer.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

35

Compiling and Executing a C# Program

7. Close Visual Studio by clicking File on the menu bar and then clicking
Exit, or by clicking the Close box in the upper-right corner of the Visual
Studio window.

8. When you create a C# program using an editor such as Notepad and compile
it with the csc command, only two files are created—Hello.cs and Hello.
exe. When you create a C# program using the Visual Studio editor, many
additional files are created. You can view their filenames from the command
prompt or visually:

At the command prompt, type dir to view a directory of the files stored
in the folder where you saved the project (for example, your Chapter.01
folder). Within the folder, a new folder named Hello has been created.
Type the command cd Hello to change the current path to include this
new folder, then type dir again. You see another folder named Hello. Type
cd Hello again, and dir again. You should see several folders and files.
(Depending on the version of Visual Studio you are using, your folder
configuration might be slightly different.)

Use File Explorer to view the contents of the Hello folders within the
Chapter.01 folder.

Regardless of the technique you use to examine the folders, you will find that
the innermost Hello folder contains a bin folder, an obj folder, a Properties
folder, and additional files. If you explore further, you will find that the bin
folder contains Debug and Release folders, which include additional files.
Using the Visual Studio editor to compile your programs creates a significant
amount of overhead. These additional files become important as you create
more sophisticated C# projects.

 If you followed the earlier instructions on compiling a program from the command line, and you
used the same folder when using the IDE, you will see the additional Hello.cs and Hello.exe files in
your folder. These files will have an earlier time stamp than the files you just created. If you were
to execute a new program within Visual Studio without saving and executing it from the command
line first, you would not see these two additional files.

(continued)

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

36

C H A P T E R 1 A First Program Using C#

Adding Comments to a Program

Comments are nonexecuting statements that help to document a program. In the
following steps, you add some comments to the program you just created.

1. If you prefer compiling programs from the command line, then open the
Hello.cs file in your text editor. If you prefer compiling programs from Visual
Studio, then open Visual Studio, click File, point to Open, click Project/
Solution, browse for the correct folder, double-click the Hello folder, and
then double-click the Hello file.

2. Position your cursor at the top of the file, press Enter to insert a new line,
press the up arrow to go to that line, and then type the following comments
at the top of the file. Press Enter after typing each line. Insert your name and
today’s date where indicated.
//Filename Hello.cs
//Written by <your name>
//Written on <today's date>

3. Scroll to the line that reads static void Main(), and press Enter to start
a new line. Then press the up arrow; in the new blank line, aligned with the
start of the Main() method header, type the following block comment in the
program:

/* This program demonstrates the use of the WriteLine()
method to display the message Hello, world! */

4. Save the file, replacing the old Hello.cs file with this new, commented
version.

5. If you prefer to compile programs from the command line, type
csc Hello.cs at the command line. When the program compiles
successfully, execute it with the command Hello. If you prefer compiling
and executing programs from Visual Studio, click Debug, and then
click Start Without Debugging. Adding program comments makes no
difference in the execution of the program.

6. If you are working from the command line, you can close the command-line
window. If you are working from Visual Studio, you can close the output
screen and then close Visual Studio.

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

37

Chapter Summary

Chapter Summary
 A computer program is a set of instructions that tell a computer what to do. Programmers

write their programs, then use a compiler to translate their high-level language statements
into intermediate language and machine code. A program works correctly when both its
syntax and logic are correct.

 Procedural programming involves creating computer memory locations, called variables,
and sets of operations, called methods. In object-oriented programming, you envision
program components as objects that are similar to concrete objects in the real world; then
you manipulate the objects to achieve a desired result. OOP techniques were first used for
simulations and GUIs.

 Objects are instances of classes and are made up of attributes and methods. Object-oriented
programming languages support encapsulation, inheritance, and polymorphism.

 The C# programming language was developed as an object-oriented and component-
oriented language. It contains many features similar to those in Visual Basic, Java, and C++.

 To produce a line of console output in a C# program, you must pass a literal string as an
argument to the System.Console.WriteLine() method. System is a namespace and
Console is a class. Calls to the WriteLine() method can appear within the Main()
method of a class you create.

 You can define a C# class or variable by using any name or identifier that begins with an
underscore, a letter, or an @ sign. These names can contain only letters, digits, underscores,
and the @ sign, and cannot be C#-reserved keywords.

 You can improve programs by adding comments, which are nonexecuting statements
that you add to document a program or to disable statements when you test a program.
The three types of comments in C# are line comments that start with two forward slashes
(//) and continue to the end of the current line, block comments that start with a forward
slash and an asterisk (/*) and end with an asterisk and a forward slash (*/), and XML-
documentation comments. You can also improve programs and shorten the statements you
type by using a clause that indicates a namespace where your classes can be found.

 To create a C# program, you can use the Microsoft Visual Studio IDE or any text editor, such
as Notepad. After you write and save a program, you must compile the source code into
intermediate and machine language.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

38

C H A P T E R 1 A First Program Using C#

Key Terms
A computer program is a set of instructions that tell a computer what to do.
Software is computer programs.
System software describes the programs that operate the computer.
Application software is the programs that allow users to complete tasks.
Hardware comprises all the physical devices associated with a computer.
Machine language is the most basic circuitry-level language.
A high-level programming language allows you to use a vocabulary of keywords instead of
the sequence of on/off switches that perform these tasks.
Keywords are predefined and reserved identifiers that have special meaning to the compiler.
Camel casing, also called lower camel casing, is a style of creating identifiers in which the
first letter is not capitalized, but each new word is.
A language’s syntax is its set of rules.
A compiler is a computer program that translates high-level language statements into
machine code.
A syntax error is an error that occurs when a programming language is used incorrectly.
The logic behind any program involves executing the various statements and methods in the
correct order to produce the desired results.
Semantic errors are the type of logical errors that occur when you use a correct word in the
wrong context, generating incorrect results.
A bug is an error in a computer program.
Debugging a program is the process of removing all syntax and logical errors from
the program.
A procedural program is created by writing a series of steps or operations to
manipulate values.
Variables are named computer memory locations that hold values that might vary.
An identifier is the name of a program component such as a variable, class, or method.
Pascal casing, also called upper camel casing, is a style of creating identifiers in which the
first letter of all new words in a name, even the first one, is capitalized.
Methods are compartmentalized, named program units containing instructions that
accomplish tasks.
A program calls or invokes methods.
Object-oriented programming (OOP) is a programming technique that features objects,
classes, encapsulation, interfaces, polymorphism, and inheritance.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Key Terms

39

An object is a concrete entity that has attributes and behaviors; an object is an instance
of a class.
The attributes of an object represent its characteristics.
The state of an object is the collective value of all its attributes at any point in time.
The behaviors of an object are its methods.
Taking an object-oriented approach to a problem means defining the objects needed to
accomplish a task and developing classes that describe the objects so each maintains its own
data and carries out tasks when another object requests them.
Computer simulations are programs that attempt to mimic real-world activities to foster a
better understanding of them.
Graphical User Interfaces, or GUIs (pronounced “gooeys”), are program elements that allow
users to interact with a program in a graphical environment.
A class is a category of objects or a type of object.
An instance of a class is an object.
The properties of an object are its values.
Encapsulation is the technique of packaging an object’s attributes and methods into a cohesive
unit that can be used as an undivided entity.
A black box is a device you use without regard for the internal mechanisms.
An interface is the interaction between a method and an object.
Inheritance is the ability to extend a class so as to create a more specific class that contains all
the attributes and methods of a more general class; the extended class usually contains new
attributes or methods as well.
Polymorphism is the ability to create methods that act appropriately depending on the context.
The C# programming language was developed as an object-oriented and component-
oriented language. It exists as part of Visual Studio, a package used for developing applications
for the Windows family of operating systems.
A literal string of characters is a series of characters enclosed in double quotes that is used
exactly as entered.
An argument to a method represents information that a method needs to perform its task.
An argument is the expression used between parentheses when you call a method.
A namespace is a construct that acts like a container to provide a way to group similar classes.
A method header includes the method name and information about what will pass into and be
returned from a method.
The method body of every method is contained within a pair of curly braces ({}) and
includes all the instructions executed by the method.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

40

C H A P T E R 1 A First Program Using C#

Whitespace is any combination of spaces, tabs, and carriage returns (blank lines). You use
whitespace to organize your program code and make it easier to read.
The keyword static, when used in a method header, indicates that a method will be executed
through a class and not by an object.
The keyword void, when used in a method header, indicates that the method does not return
any value.
Application classes contain a Main() method and are executable programs.
Runnable describes files that are executable.
Non-application classes do not contain a Main() method; they provide support for other
classes.
A verbatim identifier is an identifier with an @ prefix.
Program comments are nonexecuting statements that you add to document a program.
To comment out a statement is to make a statement nonexecuting.
Line comments start with two forward slashes (//) and continue to the end of the current
line. Line comments can appear on a line by themselves or at the end of a line following
executable code.
Block comments start with a forward slash and an asterisk (/*) and end with an asterisk and
a forward slash (*/). Block comments can appear on a line by themselves, on a line before
executable code, or after executable code. They can also extend across as many lines as needed.
XML-documentation format comments use a special set of tags within angle brackets to create
documentation within a program.
A using clause or using directive declares a namespace.
Source code is the statements you write when you create a program.
Intermediate language (IL) is the language into which source code statements are compiled.
The C# just in time (JIT) compiler translates intermediate code into executable code.
The command line is the line on which you type a command in a system that uses a
text interface.
The command prompt is a request for input that appears at the beginning of the
command line.
An Integrated Development Environment (IDE) is a program development environment that
allows you to select options from menus or by clicking buttons. An IDE provides such helpful
features as color coding and automatic statement completion.
The menu bar in the IDE lies horizontally across the top of the window, and includes
submenus that list additional options.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Review Questions

41

Review Questions
1. Programming languages such as Java and Visual Basic are _____________________ .

a. machine languages
b. low-level languages

c. high-level languages
d. uninterpreted languages

2. A program that translates high-level programs into intermediate or machine
code is a(n) _____________________ .
a. mangler
b. compiler

c. analyst
d. logician

3. The grammar and spelling rules of a programming language constitute
its _____________________ .
a. logic
b. variables

c. syntax
d. class

4. Variables are _____________________ .
a. methods
b. named memory locations

c. grammar rules
d. operations

5. Programs in which you create and use objects that have attributes similar to their real-
world counterparts are known as _____________________ programs.
a. procedural
b. logical

c. authentic
d. object-oriented

6. Which of the following pairs is an example of a class and an object, in that order?
a. Robin and bird
b. Chair and desk

c. University and Harvard
d. Oak and tree

7. The technique of packaging an object’s attributes into a cohesive unit that can be used
as an undivided entity is _____________________ .
a. inheritance
b. encapsulation

c. polymorphism
d. interfacing

8. Of the following languages, which is least similar to C#?
a. Java
b. Visual Basic

c. C++
d. COBOL

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

42

C H A P T E R 1 A First Program Using C#

9. A series of characters that appears within double quotation marks is a(n)___.
a. method
b. interface

c. argument
d. literal string

10. The C# method that produces a line of output on the screen and then positions the
cursor on the next line is _____________________ .
a. WriteLine() c. DisplayLine()

b. PrintLine() d. OutLine()

11. Which of the following is a class?
a. System c. void

b. Console d. WriteLine()

12. In C#, a container that groups similar classes is a(n) _____________________ .
a. superclass
b. method

c. namespace
d. identifier

13. Every method in C# contains a _____________________ .
a. header and a body
b. header and a footer

c. variable and a class
d. class and an object

14. Which of the following is a method?
a. namespace c. Main()

b. class d. static

15. Which of the following statements is true?
a. An identifier must begin with an underscore.
b. An identifier can contain digits.
c. An identifier must be no more than 16 characters long.
d. An identifier can contain only lowercase letters.

16. Which of the following identifiers is not legal in C#?
a. per cent increase c. HTML

b. annualReview d. alternativetaxcredit

17. The text of a program you write is called _____________________.
a. object code
b. source code

c. machine language
d. executable documentation

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exercises

43

18. Programming errors such as using incorrect punctuation or misspelling words are
collectively known as _____________________ errors.
a. syntax
b. logical

c. executable
d. fatal

19. A comment in the form /* this is a comment */ is a(n)___.
a. XML comment
b. block comment

c. executable comment
d. line comment

20. If a programmer inserts using static System.Console; at the top of a
C# program, which of the following can the programmer use as an alternative to
System.Console.WriteLine("Hello");?

a. System("Hello"); c. Console.WriteLine
("Hello");

b. WriteLine("Hello"); d. Console("Hello");

Exercises

Programming Exercises

1. Indicate whether each of the following C# programming language identifiers is legal or
illegal. If it is legal, indicate whether it is a conventional identifier for a class.
a. paycheck g. Ay56we

b. Paycheck h. Theater_Tickets

c. Pay check i. 102Item

d. static j. heightInInches

e. Void k. Zip23891

f. #phone l. void

2. Name at least three attributes that might be appropriate for each of the following
classes:
a. TVShow

b. Party

c. JobApplication

d. CheckingAccount

3. Name at least two classes to which each of these objects might belong:
a. your sister
b. Franklin D. Roosevelt

c. Starbucks
d. Paris

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

44

C H A P T E R 1 A First Program Using C#

4. Write, compile, and test a program named PersonalInfo that displays a person’s
name, e-mail address, and phone number.

5. Write, compile, and test a program named Lyrics that displays at least four lines of
your favorite song.

6. Write, compile, and test a program named Comments that displays a statement
that defines program comments. Include at least one block comment and one line
comment in the program.

7. Write, compile, and test a program named WineGlass that displays a pattern similar
to the following on the screen:
XXXXXXXXXXXXX
 X X
 X X
 XXXXXXX
 X
 X
 XXXXX

8. Write a program named BigLetter that displays a large letter composed of smaller
letters as in the following example:
H H
H H
H H
HHHHHHHH
H H
H H
H H

9. From 1925 through 1963, Burma Shave advertising signs appeared next to highways
all across the United States. There were always four or five signs in a row containing
pieces of a rhyme, followed by a final sign that read “Burma Shave.” For example, one
set of signs that has been preserved by the Smithsonian Institution reads as follows:
Shaving brushes
You’ll soon see ’em
On a shelf
In some museum
Burma Shave

 Find a classic Burma Shave rhyme on the Web and write a program named
BurmaShave that displays the rhyme.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exercises

45

Debugging Exercises

1. Each of the following files in the Chapter.01 folder of your downloadable student files
has syntax and/or logical errors. In each case, determine the problem and fix the
program. After you correct the errors, save each file using the same filename preceded
with Fixed. For example, DebugOne1.cs will become FixedDebugOne1.cs.
a. DebugOne1.cs
b. DebugOne2.cs
c. DebugOne3.cs
d. DebugOne4.cs

Case Problems

The case problems in this section introduce two fictional businesses. Throughout this
book, you will create increasingly complex classes for these businesses that use the newest
concepts you have mastered in each chapter.

1. Greenville County hosts the Greenville Idol competition each summer during the
county fair. The talent competition takes place over a 3-day period during which
contestants are eliminated following rounds of performances until the year’s ultimate
winner is chosen. Write a program named GreenvilleMotto that displays the
competition’s motto, which is “The stars shine in Greenville.” Create a second program
named GreenvilleMotto2 that displays the motto surrounded by a border composed
of asterisks.

2. Marshall’s Murals is a company that paints interior and exterior murals for both
business and residential customers. Write a program named MarshallsMotto
that displays the company motto, which is “Make your vision your view.” Create a
second program named MarshallsMotto2 that displays the motto surrounded by
a border composed of repeated Ms.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

