CHAPTER 12

Creating Scripts

A script is a program written in an interpreted language, typically associ-
ated with a shell or other program whose primary purpose is something other
than as an interpreted language. In Linux, many scripts are shell scripts,
which are associated with Bash or another shell. (If you're familiar with batch
files in DOS or Windows, scripts serve a similar purpose.) You can write shell
scripts to help automate tedious repetitive tasks or to perform new and com-
plex tasks. Many of Linux’s startup functions are performed by scripts, so
mastering scripting will help you manage the startup process.

This chapter covers Bash shell scripts, beginning with the task of creating
a new script file. | then describe several important scripting features that
help you to perform progressively more complex scripting tasks.

~ Beginning a shell script
Using commands
- Using arguments
Using variables
» Using conditional expressions
= Using loops
Using functions

Setting the script’s exit value

LEARNING MORE

Like any programming task, shell scripting can be quite complex.
Consequently, this chapter barely scratches the surface of what you can
accomplish through shell scripting. Consult a book on the topic, such as
Cameron Newham’s Learning the Bash Shell, 3rd Edition (O’Reilly, 2005)
or Richard Blum’s Linux Command Line and Shell Scripting Bible (Wiley,
2008), for more information.

Smith, Roderick W.. Linux Essentials. Hoboken, NJ, USA: Sybex, 2012. ProQuest ebrary. Web. 18 February 2016.
Copyright © 2012. Sybex. All rights reserved.

204 Chapter 12 » Creating Scripts

Beginning a Shell Script

certiication Shell scripts are plain-text files, so you create them in text editors such as Vi,

ORlective hano, or pico, as described in Chapter 11, “Editing Files.” A shell script begins
with a line that identifies the shell that’s used to run it, such as the following:
#1/bin/bash
Certification The first two characters are a special code that tells the Linux kernel that this is
Objective

a script and to use the rest of the line as a pathname to the program that’s to inter-
L pret the script. (This line is sometimes called the shebang, hashbang, hashpling,
or pound bang line.) Shell scripting languages use a hash mark (#) as a comment
This chapter character, so the script utility ignores this line, although the kernel doesn’t. On
UENERRIES Tl STen most systems, /bin/sh is a symbolic link that points to /bin/bash, but it can point
scripts. Simple Bash i . . :

SEHRE ot e to some other shell. Specifying the script as using /bin/sh guarantees that any
other shells, but Linux system will have a shell program to run the script, but if the script uses any
more complex scripts features specific to a particular shell, vou should specify that shell instead—for
aremorelikelytobe instance, use /bin/bash or /bin/tcsh instead of /bin/sh.

it s When you're done writing the shell script, you should modify it so that it’s
executable. You do this with the chmod command, which is described in more
detail in Chapter 15, “Setting Ownership and Permissions.” For now know that
you use the a+x option to add execute permissions for all users. For instance,
to make a file called my-script executable, vou should issue the following

command:

$ chmod a+x my-script

You'll then be able to execute the script by typing its name, possibly preceded
by ./ to tell Linux to run the script in the current directory rather than search-
ing the current path. If you fail to make the script executable, you can still run
the script by running the shell program followed by the script name (as in bash
my-script), but it’s generally better to make the script executable. If the script is
one you run regularly, you may want to move it to a location on your path, such as
/usr/local/bin. When you do that, you won't have to type the complete path or
move to the script’s directory to execute it; you can just type my-script.

Using Commands

One of the most basic features of shell scripts is the ability to run commands.
You can use both commands that are built into the shell and external com-
mands—that is, you can run other programs as commands. Most of the

Smith, Roderick W.. Linux Essentials. Hoboken, NJ, USA: Sybex, 2012. ProQuest ebrary. Web. 18 February 2016.
Copyright © 2012. Sybex. All rights reserved.

Using Commands 205

commands you type in a shell prompt are external commands—they’re pro-
grams located in /bin, /usr/bin, and other directories on your path. You can
run such programs, as well as internal commands, by including their names
in the script. You can also specify parameters to such programs in a script. For
instance, suppose vou want a script that launches two xterm windows and the
KMail mail reader program. Listing 12.1 presents a shell script that accom-
plishes this goal.

Listing 12.1: A simple script that launches three programs

#1/bin/bash
Jusr/bin/xterm &

Jusr/bin/xterm &
Jusr/bin/kmail &

Aside from the first line that identifies it as a script, the script looks just like KT

the commands you might type to accomplish the task manually, except for one

fact: The script lists the complete paths to each program. This is usually not TG0 ph

. — : . to rearrange its
strictly necessary, but listing the complete path ensures that the script will ilechay fre: stitug
find the programs even if the PATH environment variable changes. On the other with Fedoiz 17 Dine
hand, if the program files move (say, because you upgrade the package from this is done, most

which they’re installed and the packager decides to move them), scripts that use PDSITRN ies win
complete paths will break. If a script produces a No such file or directory b e
error for a command, typing which command, where command is the offending
command, should help you locate it.
Each program-launch line in Listing 12.1 ends in an ampersand (&). This
character tells the shell to go on to the next line without waiting for the first to
finish. If you omit the ampersands in Listing 12.1, the effect will be that the first
xterm will open but the second won't open until the first is closed. Likewise,
KMail won't start until the second xterm terminates.
Although launching several programs from one script can save time in startup
scripts and some other situations, scripts are also frequently used to run a series
of programs that manipulate data in some way. Such scripts typically do not
include the ampersands at the ends of the commands because one command
must run after another or may even rely on output from the first. A comprehen-
sive list of such commands is impossible because you can run any program you
can install in Linux as a command in a script—even another script. A few com-
mands that are commonly used in scripts include the following:

Normal flle manipulation commands The file manipulation commands, such
as s, mv, cp, and rm, are often used in scripts. You can use these commands to
help automate repetitive file maintenance tasks.

Smith, Roderick W.. Linux Essentials. Hoboken, NJ, USA: Sybex, 2012. ProQuest ebrary. Web. 18 February 2016.
Copyright © 2012. Sybex. All rights reserved.

206 Chapter 12 » Creating Scripts

grep This command is described in Chapter 10, “Searching, Extracting, and
Archiving Data.” It locates files that contain the string vou specify, or displays
the lines that contain those strings in a single file.

find Where grep searches for patterns within the contents of files, find does
so based on filenames, ownership, and similar characteristics. Chapter 10 covers
this command.

cut This command extracts text from fields in a file. It's frequently used to
extract variable information from a file whose contents are highly patterned. To
use it, vou pass it one or more options that specify what information you want,
followed by one or more filenames. For instance, users’ home directories appear
in the sixth colon-delimited field of the /etc/passwd file. You can therefore type
cut -f 6 -d ":" /etc/passwd to extract this information. The same command
in a script will extract this information, which you'll probably save to a variable
or pass to a subsequent command.

sed This program provides many of the capabilities of a conventional text edi-
tor (such as search-and-replace operations) but via commands that can be typed
at a command prompt or entered in a script.

“oseswe. @cho Sometimes a script must provide a message to the user; echo is the tool

to accomplish this goal. You can pass various options to echo or just a string
to be shown to the user. For instance, echo "Press the Enter key" causesa
script to display the specified string. You can also use echo to display the value
of variables (described later, in “Using Variables”).

B il The mai1 command can be used to send e-mail from within a script. Pass
it the -s subject parameter to specify a subject line, and give it an e-mail address
as the last argument. If it'’s used at the command line, you then type a message
and terminate it with a Ctrl4+D keystroke. If it’s used from a script, you might omit
the subject entirely or pass it an external file as the message using input redirec-
tion. You might want to use this command to send mail to the superuser about
the actions of a startup script or a script that runs on an automated basis.

Chapter 10 describes
input redirection.

Many of these commands are extremely complex, and completely describing
them is beyond the scope of this chapter. You can consult these commands’ man
pages for more information. A few of them are described elsewhere in this book,
as noted in their descriptions.

Even if vou have a full grasp of how to use some key external commands, sim-
ply executing commands as vou might when typing them at a command prompt
1s of limited utility. Many administrative tasks require vou to modify what you
type at a command, or even what commands you enter, depending on informa-
tion from other commands. For this reason, scripting languages include addi-
tional features to help you make your scripts useful.

Smith, Roderick W.. Linux Essentials. Hoboken, NJ, USA: Sybex, 2012. ProQuest ebrary. Web. 18 February 2016.
Copyright © 2012. Sybex. All rights reserved.

Using Arguments 207

Using Arguments

Variables can help yvou expand the utility of scripts. A variable is a placeholder Certificatlon
in a script for a value that will be determined when the script runs. Variables’ e s
values can be passed as parameters to a script, generated internally to a script,
or extracted from a script’s environment. (An environment is a set of variables
that any program can access. The environment includes things like the current
directory and the search path for running programs.)

Variables that are passed to the script are frequently called parameters or argu-
ments. They're represented in the script by a dollar sign ($) followed by a number
from 0 up—$0 stands for the name of the script, $1 is the first parameter to the
script, $2 is the second parameter, and so on. To understand how this might be
useful, consider the task of adding a user. As described in Chapter 14, “Creating
Users and Groups,” creating an account for a new user typically involves running
at least two commands—useradd and passwd. You may also need to run addi-
tional site-specific commands, such as commands that create unusual user-owned
directories aside from the user’s home directory.

As an example of how a script with an argument variable can help in such
situations, consider Listing 12.2. This script creates an account and changes the
account’s password (the script prompts you to enter the password when you run
the script). It creates a directory in the /shared directory tree corresponding
to the account, and it sets a symbolic link to that directory from the new user’s
home directory. It also adjusts ownership and permissions in a way that may be
useful, depending on your system’s ownership and permissions policies.

Listing 12.2: A script that reduces account-creation tedium

#1/bin/bash

useradd -m $1

passwd $1

mkdir -p /shared/$1

chown $1.users /shared/%1

chmod 775 /shared/$1

In -s /shared/%$1 /home/$1/shared
chown %$1.users /home/$1/shared

If you use Listing 12.2, you need to type only three things: the script name
with the desired username and the password (twice). For instance, if the script
is called mkuser, you can use it like this:

mkuser ajones

Changing password for user ajones

New password:

Retype new password:

passwd: all authentication tokens updated successfully

Smith, Roderick W.. Linux Essentials. Hoboken, NJ, USA: Sybex, 2012. ProQuest ebrary. Web. 18 February 2016.
Copyright © 2012. Sybex. All rights reserved.

208 Chapter 12 « Creating Scripts

Most of the script’s programs operate silently unless they encounter problems,
so the interaction (including typing the passwords, which don't echo to the
screen) is a result of just the passwd command. In effect, Listing 12.2’s script
replaces seven lines of commands with one. Every one of those lines uses the
username, so by running this script, vou also reduce the chance of a typo caus-
ing problems.

Using Variables

certiication ANother type of variable is assigned within scripts—for instance, such variables
Offeetive can be set from the output of a command. These variables are also identified by
leading dollar signs, but they're typically given names that at least begin with a
letter, such as $Addr or $Name. (When values are assigned to variables, the dollar
sign is omitted, as illustrated shortly.) You can then use these variables in con-
junction with normal commands as if they were command parameters, but the
value of the variable is passed to the command.

For instance, consider Listing 12.3, which checks to see if the computer’s
router is up with the help of the ping utility. This script uses two variables. The
first is $1p, which is extracted from the output of route using the grep, tr, and
cut commands. When you're assigning a value to a variable from the output of
a command, that command should be enclosed in backtick characters (*), which
appear on the same key as the tilde (7) on most kevboards. These are nof ordi-
nary single quotes, which appear on the same key as the regular quote character
(") on most keyboards. The second variable, $ping, simply points to the ping
program. It can just as easily be omitted, with subsequent uses of $ping replaced
by the full path to the program or simply by ping (relying on the $PATH environ-

In addition to severaj Ment variable to find the program). Variables like this are sometimes used to

o Sy make it easier to modify the script in the future. For instance, if you move the

’ P - P ;

line uses backticks ping program, vou need to modify only one line of the script. Variables can also
()toassigntheout- |,. \;5ed in conjunction with conditionals to ensure that the script works on more
putof that command .\ s for instance, if ping were called something else on some systems
chainto ip. Chapter > 1 PINg 8 ‘ .

10 describes this Listing 12.3: Script demonstrating assignment and use of variables

technique.

#1/bin/bash
— ip="route -n | grep UG | tr -s " " | cut -f 2 -d " "°
ping="/bin/ping”
echo "Checking to see if $ip 1s up..."
$ping -c 5 $ip

In practice, you use Listing 12.3 by typing the script’s name. The result
should be the message Checking to see if 192.168.1.1 is up (with

Smith, Roderick W.. Linux Essentials. Hoboken, NJ, USA: Sybex, 2012. ProQuest ebrary. Web. 18 February 2016.
Copyright © 2012. Sybex. All rights reserved.

Using Variables 209

192.168.1.1 replaced by the computer’s default gateway system) and the out-

put from the ping command, which should attempt to send five packets to the
router. If the router is up and is configured to respond to pings, you'll see five

return packets and summary information, similar to the following:

$ routercheck

Checking to see 1f 192.168.1.1 1is up...

PING 192.168.1.1 (192.168.1.1) 56(84) bytes of data.

64 bytes from 192.168.1.1: icmp_seg=1 ttl1=63 time=23.0 ms
64 bytes from 192.168.1.1: icmp_seg=2 ttl=63 time=0.176 ms
64 bytes from 192.168.1.1: icmp_seg=3 ttl1=63 time=0.214 ms
64 bytes from 192.168.1.1: icmp_seg=4 tt1=63 time=0.204 ms
64 bytes from 192.168.1.1: icmp_seg=5 tt1=63 time=0.191 ms

--- 192.168.1.1 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 4001ms
rtt min/avg/max/mdev = 0.176/4.758/23.005/9.123 ms

If the router is down, vou'll see error messages to the effect that the host was
unreachable.

Listing 12.3 is of limited practical use and contains bugs. For instance, the
script identifies the computer’s gateway merely by the presence of the string UG
in the router’s output line from route. If a computer has two routers defined,
this won’t work correctly, and the result is likely to be a script that misbehaves.
The purpose of Listing 12.3 is to illustrate how variables can be assigned and
used, not to be a flawless working script.

Scripts like Listing 12.3, which obtain information from running one or more
commands, are useful in configuring features that rely on system-specific infor-
mation or information that varies with time. You can use a similar approach to
obtain the current hostname (using the hostname command), the current time
(using date), the total time the computer’s been running (using uptime), free
disk space (using df), and so on. When combined with conditional expressions
(described shortly), variables become even more powerful because then your
script can perform one action when one condition is met and another in some
other case. For instance, a script that installs software can check free disk space
and abort the installation if insufficient disk space is available.

In addition to assigning variables with the assignment operator (=), you can s
read variables from standard input using read, as in read response to read S
input for subsequent access as $response. This method of variable assignment
is useful for scripts that must interact with users. For instance, instead of read-
ing the username from the command line, Listing 12.2 may be modified to
prompt the user for the username. Listing 12.4 shows the result. To use this
script, you type its name without typing a username on the command line. The

Smith, Roderick W.. Linux Essentials. Hoboken, NJ, USA: Sybex, 2012. ProQuest ebrary. Web. 18 February 2016.
Copyright © 2012. Sybex. All rights reserved.

210 Chapter 12 = Creating Scripts

script will then prompt for a username, and after you enter one, the script will
attempt to create an account with that name.

Listing 12.4: Modified version of Listing 12.2 that employs user interaction

#1/bin/bash

echo -n "Enter a username:
read name

useradd -m $name

passwd $name

mkdir -p /shared/$name
chown $name.users /shared/$name

chmod 775 /shared/$name

In -s /shared/$name /home/%$name/shared
chown $name.users /home/$name/shared

One special type of variable is an environment variable, which is assigned and
accessed just like a shell script variable. The difference is that the script or com-
mand that sets an environment variable uses Bash'’s export command to make
the value of the variable accessible to programs launched from the shell or shell
script that made the assignment. In other words, you can set an environment
variable in one script and use it in another script that the first script launches.
Environment variables are most often set in shell startup scripts, but the scripts
you use can access them. For instance, if vour script calls X programs, it might
check for the presence of a valid $DISPLAY environment variable and abort if it
finds that this variable isn’t set. By convention, environment variable names are
all uppercase, whereas non-environment shell script variables are all lowercase
or mixed case.

eet==Eza2 s o3 One special variable deserves mention: $?. This variable holds the exif status
(or return value) of the most recently executed command. Most programs return
Consult a program’s : .
nan page to learn a value of 0 whenl they termmate nlnrmall}-' and ret.urn annthu?rl value to SpElE:lf}’
the meanings of its errors. You can display this value with echo or use it in a conditional expression
return values. (described next) to have your script perform special error handling.

Using Conditional Expressions

certification Scripting languages support several types of conditional expressions. These
Objective . . : ;
enable a script to perform one of several actions contingent on some condi-
tion—typically the value of a variable. One common command that uses con-
ditional expressions is 1f, which allows the system to take one of two actions
depending on whether some condition is true. The 1f keyword’s conditional
expression appears in brackets after the if keyword and can take many forms.

Smith, Roderick W.. Linux Essentials. Hoboken, NJ, USA: Sybex, 2012. ProQuest ebrary. Web. 18 February 2016.
Copyright © 2012. Sybex. All rights reserved.

Using Conditional Expressions 211

For instance, -f file is true if file exists and is a regular file; -s file is true
if f17e exists and has a size greater than 0; and stringl == string?2 is true if
the two strings have the same values.

Conditionals may be combined together with the logical and (&&) or logical cenadlon
or (| |) operators. When conditionals are combined with &&, both sides of the s g
operator must be true for the condition as a whole to be true. When | | is used,
if either side of the operator is true, the condition as a whole is true.

To better understand the use of conditionals, consider the following code
fragment:

1t [-s /tmp/tempstuff]
then
echo "/tmp/tempstuff found; aborting!”
exit
i

This fragment causes the script to exit if the file /tmp/tempstuff is present.
The then keyword marks the beginning of a series of lines that execute only
if the conditional is true, and f1 (1 f backward) marks the end of the 1f block.
Such code may be useful if the script creates and then later deletes this file,
because its presence indicates that a previous run of the script didn't succeed or
is still underwav.
An alternative form for a conditional expression uses the test keyword rather cermcation
than square brackets around the conditional: ooy

it test -s /tmp/tempstuff

You can also test a command’s return value by using the command as the
condition:

1if [command]
then

additional-commands
f1

In this example, the additional-commands will be run only if command com-
pletes successfully. If command returns an error code, the additional-commands
won't be run.

Conditional expressions may be expanded by use of the else clause:

1f [conditional-expression]
then
commands
else

other-commands
fi

Smith, Roderick W.. Linux Essentials. Hoboken, NJ, USA: Sybex, 2012. ProQuest ebrary. Web. 18 February 2016.
Copyright © 2012. Sybex. All rights reserved.

Smith, Roderick W
Copyright © 2012.

212

Certification
Objective

Certificatlon
Objective

Filename expansion
using asterisks (*),
question marks

(7), and so on is
sometimes called
globbing.

The aplay
command is a basic
audio file player.

On some systems,
you may need to use
p lay or some other
command instead of
aplay.

Chapter 12 » Creating Scripts

Code of this form causes either commands or other-commands to execute,
depending on the evaluation of conditional-expression. This is useful if
something should happen in a part of the program, but precisely what should
happen depends on some condition. For instance, you may want to launch one
of two different file archiving programs depending on a user’s input.

What do you do if more than two outcomes are possible—for instance,
if a user may provide any one of four possible inputs? You can nest several
if/then/e1se clauses, but this gets awkward quickly. A cleaner approach is to
use case:

case word 1n
patternl) command(s) ;;
pattern2) command(s) ;;

esdc

For a case statement, a word is likely to be a variable, and each pattern is
a possible value of that variable. The patterns can be expanded much like file-
names, using the same wildcards and expansion rules (* to stand for any string,
for instance). You can match an arbitrarv number of patterns in this way. Each
set of commands must end with a double semicolon (; ;), and the case state-
ment as a whole ends in the string esac (case backward).

Upon execution, bash executes the commands associated with the first pat-
tern to match the word. Execution then jumps to the line following the esac
statement; any intervening commands don’t execute. If no patterns match the
word, no code within the case statement executes. If you want to have a default
condition, use * as the final pattern; this pattern matches any word, so its com-
mands will execute if no other pattern matches.

Using Loops

Conditional expressions are sometimes used in loops. Loops are structures that
tell the script to perform the same task repeatedly until some condition is met
(or until some condition is no longer met). For instance, Listing 12.5 shows a
loop that plays all the .wav audio files in a directory.

Listing 12.5: A script that executes a command on every matching file in a directory

#1/bin/bash

for d in "1s *.wav' ; do
aplay $d

done

entials. Hoboken, NJ, USA: Sybex, 2012. ProQuest ebrary. Web. 18 February 2016.

.. Linux Ess
Sybex. All rights reserved.

Using Functions 213

The for loop as used here executes once for every item in the list generated by
1s *.wav. Each of those items (filenames) is assigned in turn to the $d variable
and so is passed to the aplay command.
The seq command can be useful in creating for loops (and in other ways,
too): This command generates a list of numbers starting from its first argument
and continuing to its last one. For instance, typing seq 1 10 generates 10 lines,
each with a number between 1 and 10. You can use a for loop beginning for
x in “seq 1 10 to have the loop execute 10 times, with the value of x incre-
menting with each iteration. If you pass just one parameter to seq, it interprets
that number as an ending point, with the starting point being 1. If vou pass
three values to seq, it interprets them as a starting value, an increment amount,
and an ending value.
Another type of loop is the while loop, which executes for as long as its condi- cemication
tion is true. The basic form of this loop type is like this: i e

while [condition]
do

commands
done

The unti1 loop is similar in form, but it continues execution for as long as its
condition is false—that is, until the condition becomes true.

Using Functions

A function is a part of a script that performs a specific sub-task and that can be
called by name from other parts of the script. Functions are defined by placing
parentheses after the function name and enclosing the lines that make up the
function within curly braces:

myfn() |
commands

}

The keyword function may optionally precede the function name. In either
event, the function is called by name as if it were an ordinary internal or exter-
nal command.

Functions are very useful in helping to create modular scripts. For instance, if
your script needs to perform half a dozen distinct computations, vou can place
each computation in a function and then call them all in sequence. Listing 12.6
demonstrates the use of functions in a simple program that copies a file but aborts
with an error message if the targdet file already exists. This script accepts a target
and a destination filename and must pass those filenames to the functions.

Smith, Roderick W.. Linux Essentials. Hoboken, NJ, USA: Sybex, 2012. ProQuest ebrary. Web. 18 February 2016.
Copyright © 2012. Sybex. All rights reserved.

214 Chapter 12 = Creating Scripts

Listing 12.6: A script demonstrating the use of functions

#/bin/bash

doit() |
cp $1 %2
|

function check() {
1if [-s $2]
then
echo "Target file exists! Exiting!’
exit
fi
}

check %1 %2
doit $1 $2

If vou enter Listing 12.6 and call it safercp, you can use it like this, assuming
the file original.txt exists and dest.txt doesn't:

$./safercp original.txt dest.txt
$./safercp original.txt dest.txt
Target file exists! Exiting!

The first run of the script succeeded because dest.txt didn't exist. On the
second run, though, the destination file did exist, so the script terminated with
the error message.

Note that the functions aren’t run directly and in the order in which they appear
in the script. They're run only when called in the main body of the script—which
in Listing 12.6 consists of just two lines, each corresponding to one function call,
at the very end of the script.

Setting the Script’s Exit Value

certification Ordinarily, a script’s return value is the same as the last command the script

Obective called—that is, the script returns $?. You can control the exit value, however,
or exit from the script at any point, by using the exit command. Used without
any options, exit causes immediate termination of the script, with the usual
exit value of $?. This can be useful in error handling or in aborting an ongoing
operation for any reason—if the script detects an error or if the user selects an
option to terminate, you can call exit to quit.

If you pass a numeric value between 0 and 255 to exit, the script terminates

and returns the specified value as the script’s own exit value. You can use this
feature to signal errors to other scripts that might call your own script. You may

Smith, Roderick W.. Linux Essentials. Hoboken, NJ, USA: Sybex, 2012. ProQuest ebrary. Web. 18 February 2016.
Copyright © 2012. Sybex. All rights reserved.

The Essentials and Beyond 215

have to include extra code to keep track of the causes of abnormal termination,
though. For instance, you might set aside a variable (say, $termcause) to hold the
cause of the script’s termination. Set it to 0 at the start of the script and then,

if the script detects a problem that will cause termination, reset $termcause to

some non-0 value. (You can use any numeric codes you like; there’s no set mean-
ing for such codes.) On exit, be sure to pass $termcause to exit:

exit $termcause

THE ESSENTIALS AND BEYOND

Serious Linux users and administrators must have at least a basic understanding of shell
scripts. Many configuration and startup files are in fact shell scripts, and being able to
read them, and perhaps modify them, will help you administer your system. Being able to
create new shell scripts is also important, because doing so will help you simplify tedious
tasks and create site-specific tools by gluing together multiple programs to accomplish
your goals.

SUGGESTED EXERCISES

» Write a script that copies a file by prompting the user to enter the source and destination
filenames rather than by accepting them as arguments on the command line, as cp does.

» Some text editors leave backup files with filenames that end in tildes (7). Write a script
that, when you pass it a directory name as an arqument, locates all such files in that
directory. The script should then ask the user whether to delete each file individually
and do so if and only if the user responds by typing Y.

REVIEW QUESTIONS

1. After using a text editor to create a shell script, what step should you take before
trying to use the script by typing its name?

A. Set one or more executable bits using chmod.
B. Copy the script to the /usr/bin/scripts directory.

C. Compile the script by typing bash scriptname, where scriptname is
the script’s name.

D. Run a virus checker on the script to be sure it contains no viruses.

E. Run aspell checker on the script to ensure it contains no bugs.

(Continues)

Smith, Roderick W.. Linux Essentials. Hoboken, NJ, USA: Sybex, 2012. ProQuest ebrary. Web. 18 February 2016.
Copyright © 2012. Sybex. All rights reserved.

216 Chapter 12 » Creating Scripts

THE ESSENTIALS AND BEYOND (Continued)

2. Describe the effect of the following short script, cpl, if it’s called as cpl big.c
big.cc

#1/bin/bash
cp $2 %1

A. It has the same effect as the cp command—copying the contents of
big.cto big.cc.

. It compiles the C program big.c and calls the result big. cc.
It copies the contents of big. cc to big. ¢, eliminating the old big. c.

It converts the C program b1g. c into a C++ program called big. cc.

m o A W

. The script’s first line is invalid, so it won’t work.
3. What is the purpose of conditional expressions in shell scripts?
A. They prevent scripts from executing if license conditions aren’t met.
B. They display information about the script’s computer environment.
C. They enable the script to take different actions in response to variable data.
D

They enable scripts to learn in a manner reminiscent of Pavlovian
conditioning.

E. They cause scripts to run only at specified times of day.

4. True or false: A user types myscript laser.txt to run a script called
myscript. Within myscript, the $0 variable holds the value lTaser. txt.

5. True orfalse: Valid looping statements in Bash include for, while, and until.

6. True or false: The following script launches three simultaneous instances of the
terminal program.
#1/bin/bash
terminal

terminal
terminal

7. You've written a simple shell script that does nothing but launch programs. In
order to ensure that the script works with most user shells, what should its first
line read?

8. What command can you use to display prompts for a user in a shell script?

9. What Bash scripting command can you use to control the program flow based on
a variable that can take many values (such as all the letters of the alphabet)?

Smith, Roderick W.. Linux Essentials. Hoboken, NJ, USA: Sybex, 2012. ProQuest ebrary. Web. 18 February 2016.
Copyright © 2012. Sybex. All rights reserved.

CHAPTER 13

Understanding Users
and Groups

Linux is a multi-user OS, meaning that it provides features to help mul-
tiple individuals use the computer. Collectively, these features constitute
accounts. Previous chapters of this book have referred to accounts in passing
but haven't covered them in detail. This chapter changes that; it describes
important account principles and a few commands you can use to begin inves-
tigating accounts. Related to accounts are groups, which are collections of
accounts that can be given special permissions on the computer, so this chap-
ter also describes groups. One account, known as root, has special privileges
on the computer. You use this account to perform most system administration
tasks, so you should understand this account before you tackle the administra-
tive tasks described in the last few chapters of this book.

Understanding accounts
Using account tools

Working as root

Understanding Accounts

I Accounts enable multiple users to share a single computer without causing

each other too much trouble. They also enable system administrators to track

ie'::;:ﬁh:r who is using system resources and, sometimes, who is doing things they
multiple accounts. shouldn't be doing. Thus, account features help users use a computer and
Such a computer administrators administer it. Understanding these features is the basis for
may have just one enabling you to manage accounts.

E::;:;:’mhm Some account features help you identify accounts and the files and
accomts help resources associated with them. Knowing how to use these features will help

keep the computer you track down account-related problems and manage users of a computer.
running.

Smith, Roderick W.. Linux Essentials. Hoboken, NJ, USA: Sybex, 2012. ProQuest ebrary. Web. 18 February 2016.
Copyright © 2012. Sybex. All rights reserved.

