

A+ Guide to Hardware, 9th Edition

Chapter 6 Supporting Hard Drives and Other Storage Devices

Objectives

- Discuss technologies used inside a hard drive and how a computer communicates with a hard drive
- Install and support a hard drive
- Identify tape drives and tape cartridges
- Support optical drives and flash memory devices
- Troubleshoot hard drives

Hard Drive Technologies and Interface Standards

- Hard disk drive (HDD) or hard drive sizes
 - 2.5" size for laptop computers
 - 3.5" size for desktops
 - 1.8" size for low-end laptops, other equipment

- Solid state drive (SSD) or solid state device (SSD)
 - No moving parts
 - Built using nonvolatile flash memory stored on EEPROM (Electronically Erasable Programmable Read Only Memory) chips
 - Memory in an SSD is called **NAND flash memory**
 - Lifespan is based on the number of write operations to the drive
 - Expensive technology, but faster, more reliable, last longer, and use less power than magnetic drives

- Magnetic hard drive
 - One, two, or more platters, or disks
 - Stacked together, spinning in unison inside a sealed metal housing
 - Firmware controls data reading, writing and motherboard communication
 - Read/write heads are controlled by an actuator
 - Data is organized in concentric circles, called tracks
 - Tracks are divided into segments called sectors
 - Most current drives use 4096-byte sectors
- Hybrid hard drives use both technologies
 - Operating system must support it

A+ Guide to Hardware, 9th Edition

Courtesy of Toshiba America Electronic Components

Figure 6-2 Solid-state drives by Toshiba

Figure 6-3 Inside a magnetic hard drive

Figure 6-4 A hard drive is divided into tracks and sectors; several sectors make one cluster

- Low-level formatting sector markings are written to the hard drive at the factory
 - Not the same as high-level formatting performed for Operating System installation
- Firmware, UEFI/BIOS and OS use logical block addressing (LBA) to address all hard drive sectors
 - Size of each sector + total number of sectors determine drive capacity
- S.M.A.R.T Self-Monitoring Analysis ad Reporting Technology
 - Used to predict when a drive is likely to fail

A+ Guide to Hardware, 9th Edition

- All current hard drives use the Serial ATA (SATA) interface standards to connect to the motherboard
- External hard drive methods
 - External SATA (eSATA), FireWire, or USB

Figure 6-5 A SATA cable connects a single SATA drive to a motherboard SATA connector

A+ Guide to Hardware, 9th Edition

- Interface standards define data speeds and transfer methods with a computer system
 - Also define types of cables and connectors
- Standards
 - Developed by Serial ATA International Organization (SATA-IO)
 - Have the oversight of the T13 Committee

SATA Standard	Data Transfer Rate	Comments
SATA Revision 1.x* SATA I or SATA1 Serial ATA-150 SATA/150 SATA-150	1.5 Gb/sec	SATA, first introduced as an ATA/ATAPI-7 standard, was published as part of a revision to the older PATA standards managed by the T13 Committee (<i>t13.org</i>) that governed the PATA standards.
SATA Revision 2.x* SATA II or SATA2 Serial ATA-300 SATA/300 SATA-300	3 Gb/sec	The first SATA II standards were published by the T13 Committee (<i>t13.org</i>) within ATA/ATAPI-8; later revisions of SATA II were published by SATA-IO (<i>sata-io.org</i>), which now manages SATA standards. The standard first came out in 2006. Most motherboards used it by 2010.
SATA Revision 3.x* SATA III or SATA3 Serial ATA-600 SATA/600 SATA-600	6 Gb/sec	SATA III was first published by SATA-IO in 2009. Most new motherboards today use this standard.
*Name assigned by the SA	TA-IO organization	

Table 6-1 SATA standards

- Serial ATA standards are used by all drive types
 - Supports hot-swapping (hot-plugging)
 - Connect and disconnect drive while system is running
 - Connects to one internal SATA connector on the motherboard via a 7-pin SATA data cable
 - Uses a 15-pin SATA power connector
 - A motherboard might have two or more SATA connectors
 - Use connectors in the order recommended in the motherboard user guide

Figure 6-6 A SATA data cable and SATA power cable

- Motherboard or expansion card can provide external SATA (eSATA) ports for external drives
- External SATA (eSATA)
 - eSATA drives use special external shielded serial ATA cable up to 2 meters long
- Purchasing considerations
 - SATA standards for the drive and motherboard need to match for optimum speed
 - If no match, system runs at the slower speed

How to Select and Install Hard Drives

- Topics covered
 - Selecting a hard drive
 - Installation details for a SATA drive
 - How to install hard drive in a bay too wide for drive
 - How to set up a RAID system

Selecting a Hard Drive

- Hard drive must match OS and motherboard
 - Need to know what standards the motherboard or controller card providing the drive interface can use
 - Consult documentation for the board or card
- UEFI/BIOS uses autodetection to prepare the device
 - Drive capacity and configuration selected
 - Best possible standard becomes part of configuration

Selecting a Hard Drive

- Considerations:
 - Drive capacity
 - Today's desktop hard drives range from 1 TB for SSD to more than 6 TB for magnetic
 - Spindle speed
 - Most common is 7200 RPM
 - The higher the RPMs, the faster the drive
 - Interface standard
 - Use standards the motherboard supports
 - Cache or buffer size
 - Ranges from 2 MB to 128 MB

A+ Guide to Hardware, 9th Edition

- A SATA drive might have jumpers
 - Most likely set by factory as they should be
- Some SATA drives have two power connectors
 - Choose only one to use
 - Never install two power cords at the same time
- May have to purchase controller card when the motherboard drives connectors are not functioning
 - Or the if the motherboard does not support a fast
 SATA standard that your hard drives uses

- Step 1: Know your starting point
 - How is your system configured?
 - Is everything working properly?
 - Write down what you know about the system
- Step 2: Read the documentation and prepare your work area
 - Read all installation instructions first
 - Visualize all the steps
 - Protect against ESD and avoid working on carpet

- Step 2: Read the documentation and prepare your work area (cont'd)
 - Handle the drive carefully
 - Do not touch any exposed circuitry
 - Prevent other people from touching exposed microchips
 - Drain static electricity from the package and from your body by touching metal for at least 2 seconds
 - If you must set it down, place it component-side up
 - Do not place the drive on the computer case or on a metal table

A+ Guide to Hardware, 9th Edition

- Step 3: Install the drive
 - Shut down the computer and unplug it
 - Decide which bay will hold the drive
 - Slide drive in the bay and secure it (use two screws on both sides)
 - Use correct motherboard SATA connector
 - Connect a 15-pin SATA or 4-pin Molex power connector from the power supply to the drive
 - Check all connections and power up the system
 - Verify drive recognized correctly via UEFI/BIOS setup

- You are ready to prepare the hard drive for first use
 - Boot from Windows setup DVD
 - Follow directions on the screen to install Windows on the new drive
 - If installing a second hard drive with Windows installed on first drive use Windows Disk Management utility to partition and format the second drive

Installing a Drive in a Removable Bay

- Unplug the cage fan from its power source
- Turn handle on each locking device counterclockwise to remove it
- Slide the bay to the front and out of the case
- Insert hard drive in the bay
 - Use two screws on each side to anchor the drive in the bay
- Slide the bay back into the case
- Reinstall the locking pins
- Plug in the cage fan power cord

A+ Guide to Hardware, 9th Edition

Installing a Drive in a Removable Bay

Figure 6-19 The removable bay has a fan in front and is anchored to the case with locking pins

Installing a Drive in a Removable Bay

Figure 6-20 Install the hard drive in the bay using two screws on each side of the drive

Installing a Small Drive in a Wide Bay

- Use a universal bay kit to securely fit a small drive into the bay
- The adapter spans the distance between the sides of the drive and bay

Figure 6-21 Use the universal bay kit to make the drive fit the bay

A+ Guide to Hardware, 9th Edition

Installing a Hard Drive in a Laptop

- General guidelines:
 - See manufacturer's documentation for drive sizes and connector types
 - Be aware of voiding manufacturer's warranty
- Considerations when shopping for a laptop drive:
 - Laptop drive is 2.5 or 1.8 inches wide
 - May use SSD (solid state device) technology
 - Hard drives connector: SATA or PATA (older laptops)
 - If upgrading, may want to use a USB-to-SATA converter, so both drives can be working and you can copy files from one to the other

A+ Guide to Hardware, 9th Edition

Installing a Hard Drive in a Laptop

- Older laptop computers required disassembly
- Newer notebooks: easy to replace
 - If UEFI/BIOS setup uses autodetect:
 - System boots up and UEFI/BIOS recognizes new drive
 - Searches for an operating system
 - If a new drive: boot from Windows recovery CD and install the OS

Setting Up Hardware RAID

- RAID (Redundant Array of Inexpensive Disks)
 - Also called: Redundant Array of Independent Disks
 - A technology that configures two or more hard drives to work together as an array of drives
- Why use RAID?
 - To improve fault tolerance by writing two copies of it, each to a different hard drive
 - To improve performance by writing data to two or more hard drives to that a single drive is not excessively used

- Spanning sometimes called JBOD (just a bunch of disks)
 - Uses two hard drives to hold a single Windows volume
 - When one drive is full, data is written to second drive
- RAID 0 uses two or more physical disks
 - Writes to physical disks evenly across all disks so that no one disk receives all activity
 - Windows calls RAID 0 a striped volume

- RAID 1: Mirroring
 - Duplicates data on one drive to another drive and is used for fault tolerance (mirrored volume)
- RAID 5: uses three or more drives
 - Stripes data across drives and uses parity checking
 - Data is not duplicated
- RAID 10: RAID 1+0 (pronounced RAID one zero)
 - Combination of RAID 1 and RAID 0
 - Takes at least 4 disks
 - Data is mirrored across pairs of disks

Figure 6-26 Ways that hard drives can work together

RAID 1: Two pairs of mirrored disks

RAID 10: Mirrored and striped

Figure 6-27 RAID 1 and RAID 10

How to Implement Hardware RAID

- Hardware implementation
 - Hardware RAID controller or RAID controller card
 - Motherboard does the work
- Software implementation uses operating system
- Best RAID performance
 - All hard drives in an array should be identical in brand, size, speed, other features
- If Windows is to be installed on a RAID hard drive
 - RAID must be implemented before Windows installed

How to Implement Hardware RAID

Figure 6-28 RAID controller card provides four SATA internal connectors

- General directions to install RAID 5 array using three matching SATA drives
 - Install drives in the computer case and connect each to motherboard
 - Boot system and enter UEFI/BIOS setup
 - Verify drives recognized, select option to configure SATA, and select RAID
 - Reboot the system
 - Press Ctrl and I to enter the RAID configuration utility
 - Select option 1 to "Create RAID Volume"
 - Select RAID 5 (Parity), stripe size value, volume size
 - Create volume

System Setup						
Main Advanced	Performance	Security	Power	Boot	Exit	
Drive Configuratio ATA/IDE Mode Configure SATA as S.M.A.R.T. SATA Port 0 SATA Port 1 SATA Port 1 SATA Port 2 SATA Port 3 SATA Port 3 SATA Port 4 SATA Port 5 Hard Drive Pre-Del	ANALIVES AIDES AIDES AENABLES WDC WD640 [Not Inst WDC WD640 LITE-ON I WDC WD640 [Not Inst ANALINE (0)	00AAKS-2 - talled] 00AAKS-2 - DVDRW LH - IDE RAID AHCI	640.1 GB 640.1 GB ATAPI 640.1 GB	PgUp, 11=S Ente ESC=	/Pg/Dn=Scroll List Select Item pr=Change Setting Discard Changes	

Source: Intel

Figure 6-30 Configure SATA ports on the motherboard to enable RAID

Intel (R) Copy	Matrix St right(C)	orage Manager option 2003-08 Intel Corpora	ROM v8.5.0. tion. All !	1030 ICH10R/DO wRAID5 Rights Reserved.	
2. Dele	te RAID Vo	[MAIN MENU Clume	3. Reset 4. Exit	Disks to Non-R A ID	
RAID Volum None define	ed.	= [DISK/VOLUME INFO DISK/VOLUME INFO	RMATION] —	* = Data is Encrypted	ď
Physical Di Port Drive 0 WDC WD 2 WDC WD 4 WDC WD	sks: Model 6400aaks-2 6400aaks-2 6400aaks-2	Serial # WD-WMASY6125538 WD-WMASY6240636 WD-WMASY6243647	Size 596.1GB 596.1GB 596.1GB	Type/Status (Vol ID) Non-RAID Disk Non-RAID Disk Non-RAID Disk	
	[†;]-Selec	t [ESC]-Exit	[ENTER]]-Select Menu	

Figure 6-31 BIOS utility to configure a RAID array

Intel (R) Matrix : Copyright(C)	Storage Manager option ROM v8.5.0.1030 ICH10R/D0 wRAID5 2003-08 Intel Corporation. All Rights Reserved.
	[CREATE VOLUME MENU]
	Name: FileServer RAID Level: Definition Disks: Select Disks Strip Size: 64KB Capacity: 1192.3GB
	Create Volume
ſ	[HELP]
	Choose the RAID level:
RAID	<pre>RAID 0: Stripes data (performance) RAID 1: Mirrors data (redundancy) 10: Mirrors data and stripes the mirror. RAID 5: Stripes data and parity</pre>
[†↓]=Change	[TAB]-Next [ESC]-Previous Menu [ENTER]-Select

Figure 6-32 Make your choices for the RAID array

External Enclosures

- Hard drives are sometimes stored in external enclosures
 - Make it easy to expand storage capacity of a single computer or make available hard drive storage to an entire network
- For network attached storage (NAS)
 - Enclosure connects to the network via Ethernet port
- Hard drives inside the enclosure might use a SATA connection

External Enclosures

- What to know about supporting external enclosures:
 - Enclosure might contain firmware that supports RAID
 - To replace a hard drive in an enclosure, see the documentation for the enclosure
 - If a computer case is overheating, remove hard drives from the case and install them in an external enclosure
 - It is better to leave the hard drive that contains the Windows installation in the case

About Tape Drives

- Tapes drives an inexpensive way of backing up a hard drive
- WORM (write once read many) assures data written will not be deleted or overwritten
- Disadvantage: data is stored by sequential access
 - To read data from anywhere on the tape, you must start at the beginning of the tape and read until you find the data you want
 - Slow and inconvenient

About Tape Drives

- Two kinds of tapes:
 - Full-sized data cartridges
 - Minicartridges popular because their drives can fit into a standard 3-inch drive bay of a PC case
- Common types of tape cartridges:
 - DDS (Digital Data Storage)
 - LTO (Linear Tape-Open)
 - DLT (Digital Linear Tape)
 - SDLT (Super Digital Linear Tape)
 - Travan

About Tape Drives

- Common types of tape cartridges (cont'd):
 - AIT (Advanced Intelligent Tape)
 - SLR (Scalable Linear Recording)
- When selecting a tape drive, consider:
 - How many and what type of cartridges the drive can use
 - How it interfaces with the computer
- External drives can connect to a computer using a USB, FireWire, SCSI, SAS, or eSATA port

Supporting Other Types of Storage Drives

- Storage devices to support might include:
 - Optical discs
 - USB flash drives
 - Memory cards

File Systems Used by Storage Devices

- File system used to manage data stored on a device
 - Overall structure the OS uses to name, store, and organize files on a drive
 - In Windows, each storage device is assigned a driver letter
- Formatting installing a new file system on a device
- Types of file systems:
 NTFS, exFAT, FAT32 and FAT

Standards Used by Optical Drives and Discs

- CDs, DVDs, and Blu-ray discs (BD) use similar laser technologies
 - Tiny lands and pits on surface represent bits read by a laser beam
- CD drives use CDFS (Compact Disc File System) or UDF (Universal Disk Format) file system
- DVD and Blue-ray drives use UDF
- Internal optical drive interfaces with motherboard via a SATA connection
 - External might use eSATA, FireWire, or USB

Standards Used by Optical Drives

- Data can be written to:
 - One side of a CD
 - One or both sides of a DVD or Blu-ray disc
- DVD or Blu-ray disc can hold in two layers on each side

A+ Guide to Hardware, 9th Edition

Replacing an Optical Drive on a Laptop

- Replacing optical drives:
 - Unplug the AC adapter and remove the battery pack
 - Remove keyboard (not all laptops require this step)
 - Remove screw holding DVD drive to the laptop
 - Slide drive out of the bay and new drive into the bay
 - Ensure connection with drive connector
 - Replace the screw

Solid State Storage

- Solid-state storage:
 - SSD hard drives, USB flash drives, and memory cards
- USB flash drives go by many names:
 - Flash pen drive, jump drive, thumb drive, and key drive
 - Might work at USB 2.0 or USB 3.0 speed
 - Use FAT or exFAT file system
 - Windows 8/7/Vista has embedded drivers to support flash drives

Solid State Storage

- Memory cards might be used in:
 - Digital cameras, tablets, cell phones, MP3 players, digital camcorders, etc...
 - Most laptops have memory card slots
- SD (Secure Digital) Association is responsible for standards:
 - 1.x (regular SD)
 - 2.x (SD High Capacity or SDHC)
 - 3.x (SD eXtended Capacity or SDXC)
- SD cards come in three physical sizes

Solid State Storage

- SDHC and SDXC slots are backward compatible with SD cards
- Cannot use:
 - SDHC card in an SD slot
 - SDXC card in an SDHC or SD slot
- SD and SDHC cards use FAT file system
- SDXC cards use exFAT file system

Troubleshooting Hard Drives

- Problems caused by hard drive during the boot can be caused by:
 - Hard drive subsystem
 - File system on the drive
 - Files required by Windows when it begins to load
- When trying to solve a problem with the boot
 - Decide if the problem is caused by hardware or software

Slow Performance

- Common complaint:
 - Computer is running slowly
- Try running the defragmentation tool on the hard drive
 - The Windows defragmentation tool rearranges fragments or part of files in contiguous clusters so files are easier and faster to find

- Hardware problems usually show up at POST
- Could be due to the drive, data cable, electrical system, motherboard, or a loose connection
- Things to do and check before opening case:
 - Check to see if UEFI/BIOS displays a numeric error code or other message during POST
 - Check UEFI/BIOS setup for errors in the hard drive configuration
 - Try booting from another bootable media
 - For a RAID array, use the firmware utility to check the status of each disk in the array and check for errors

- If the problem is still not solved, open case and check these things:
 - Remove and reattach all drive cables
 - If using a RAID, SATA, PATA, or SCSI controller card, remove and reseat it or place in a different slot
 - Inspect drive for damage
 - Determine if hard drive is spinning by listening to it
 - Check the cable for frayed edges
 - Check installation manual
 - S.M.A.R.T. errors mean data should be backed up and drive replaced as soon as possible

A+ Guide to Hardware, 9th Edition

- If the problem is still not solved, open case and check these things (cont'd):
 - Use Windows tools for checking a hard drive
 - Check the drive manufacturer's web site for diagnostic software
 - Move the device to a working computer and install it as a second drive
 - Exchange the three field replaceable units
 - Reconnect or swap the data cable
 - Reseat or exchange the controller card
 - Exchange the hard drive for a known good drive

- If the problem is still not solved, open case and check these things (cont'd):
 - Use Windows tools for checking a hard drive
 - Check the drive manufacturer's web site for diagnostic software
 - Move the device to a working computer and install it as a second drive
 - Try these things to clean the drive and get a fresh start:
 - Format the drive
 - Use *diskpart* to start over with a fresh file system

- If the problem is still not solved, open case and check these things (cont'd):
 - Exchange the three field replaceable units
 - Reconnect or swap the data cable
 - Reseat or exchange the controller card
 - Exchange the hard drive for a known good drive
 - If your drives whines loudly, try replacing it
 - A bad power supply or a bad motherboard also might cause a disk boot failure

- A hard disk drive (HDD) comes in 3.5" for desktop and 2.5" and 1.8" for laptops
- A hard drive can be magnetic, solid-state, or hybrid
- Most hard drives, tape drives, and optical drives use the SATA interface standards
- Three SATA standards provide data rates of 1.5 Gb/sec, 3.0 Gb/sec, and 16.0 Gb/sec
- S.M.A.R.T is a self-monitoring technology whereby the BIOS monitors the health of a hard drive

- When selecting a hard drive, consider storage capacity, technology, spindle speed, interface standard, and buffer size
- SATA drives require no configuration and are installed using a power cord and a data cable
- Laptop hard drives plug directly into a SATA connection on the system board
- RAID technology uses an array of hard drives to provide fault tolerance and/or improvement in performance

- Hardware RAID is implemented using the motherboard UEFI/BIOS or a RAID controller card
- Software RAID is implemented in Windows
- Tape drives are an inexpensive way to back up an entire hard drive or portions of it
- File systems a storage device might use in Windows include NTFS, exFAT, and FAT
- Optical discs can be recordable (CD-R) or rewritable (DVD-RW)

- Types of flash memory standards include SD, MiniSD, MicroSD, SDHC, MiniSDHC, MicroSDHC, SDXC, MicroSDXC
- Other memory cards include Memory Stick PRO Duo, Memory Stick PRO, Memory Stick Micro M2, CompactFlash I and II, and xD-Picture Card
- Problems caused by the hard drive during a boot can be caused by the hard drive subsystem, file system, or by files required by Windows to load