CHAPTER 14
Setting Ownership and Permissions

As a multiuser OS, Linux provides tools to help you secure your files against unwanted access
—after all, you wouldn’t want another user to read your personal files or even delete your
work files, whether accidentally or intentionally. Linux handles these tasks through two
features of files and directories: their ownership and their permissions. Every file has an
associated owner (an account with which it’s linked) and also an associated group. Three sets
of permissions define what the file’s owner, members of the file’s group, and all other users
can do with the file. Thus ownership and permissions are intertwined, although you use
different text-mode commands to manipulate them. (GUI tools often combine the two, as
described in this chapter.)

e Setting ownership
e Setting permissions

Setting Ownership

Linux’s security model is based on that of Unix, which was designed as a multiuser OS. This
security model therefore assumes the presence of multiple users on the computer, and it
provides the means to associate individual files with the users who create them—that is, files
have owners. You should thoroughly understand this concept, and with that understanding, you
can change a file’s ownership, using either a GUI file manager or a text-mode shell.

r N

The set user ID (SUID) and set group ID (SGID) permission bits, described later in
“Using Special Execute Permissions,” can modify the account and group associated
with a program.

Ownership also applies to running programs (or processes). Most programs that you run are
tied to the account that you used to launch them. This identity, in conjunction with the file’s
ownership and permissions, determines whether a program may modify a file.

Understanding Ownership

Chapter 12, “Understanding Basic Security,” and Chapter 13, “Creating Users and Groups,”
described Linux’s system of accounts. These accounts are the basis of file ownership.
Specifically, every file has an owner—an account with which it’s associated. This association
occurs by means of the account’s user ID (UID) number. Every file is also associated with a
group by means of a group ID (GID) number.

As described later, in the section “Setting Permissions,” access to the file is controlled by

means of permissions that can be set independently for the file’s owner, the file’s group, and all
other users of the computer. As root, you can change the owner and group of any file. The
file’s owner can also change the file’s group, but only to a group to which the user belongs.

The same principles of ownership apply to directories as apply to files: directories have
owners and groups. These can be changed by root or, to a more limited extent, by the
directory’s owner.

;-)

Cross-Installation UIDs and GIDs

You may use multiple Linux installations, either dual-booting on one computer or
installed on multiple computers. If you do, and if you transfer files from one
installation to another, you may find that the ownership of files seems to change as
you move them around. The same thing can happen with non-Linux Unix-like OSs,
such as Mac OS X. The reason is that the filesystems for these OSs store ownership
and group information by using UID and GID numbers, and a single user or group can
have different UID or GID numbers on different computers, even if the name
associated with the account or group is identical.

This problem is most likely to occur when using native Linux or Unix filesystems to
transfer data, including both disk-based filesystems (such as Linux’s ext2fs or Mac
OS X’s HFS+) or the Network File System (NES) for remote file access. This
problem is less likely to occur if you use a non-Linux/Unix filesystem, such as the File
Allocation Table (FAT) or the New Technology File System (NTES) for disks, or the

Server Message Block/Common Internet File System (SMB/CIFS—handled by
Samba in Limuix) for network access.

If you run into this problem, several solutions exist, but many of them are beyond the
scope of this book. One that you can use, though, is to change the UID or GID
mappings on one or more installations so that they all match. Chapter 13 describes
how to change a user’s UID number with usermod and how to change a group’s GID
number with groupmod. When transferring data via removable disks, using FAT or
NTEFS can be a simple solution, provided that you don’t need to preserve Unix-style
permissions on the files.

L vy

Setting Ownership in a File Manager

As described in Chapter 4, “Using Common Linux Programs,” a file manager enables you to
manipulate files. You're probably familiar with file managers in Windows or Mac OS X.
Linux’s ownership and permissions are different from those of Windows, though, so you may
want to know how to check on, and perhaps change, ownership features by using a Linux file
manager. As noted in Chapter 4, you have a choice of several file managers in Linux. Most are
similar in broad strokes but differ in some details. In this section, we use Nautilus, the default
file manager used in the GNOME desktop, as an example.

If you want to change the file’s owner, you must run Nautilus as root, but you can change the
file’s group to any group to which you belong as an ordinary user. The procedure to perform
this task as root is as follows:

1.
2.

N | ;| s

Bresnahan, Christi

[Launch a terminal window.

In the terminal window, type su to acquire root privileges.

If you’re using Ubuntu, you may instead need to use sudo to launch Nautilus.

In the terminal window, type nautilus to launch Nautilus. You can optionally include the
path to the directory in which you want Nautilus to start up. If you don’t include a path,
Nautilus will begin by displaying the contents of the /root directory.

The /root directory is the root account’s home directory.

Locate the file whose ownership you want to adjust and right-click it.
In the resulting menu, select Properties. The result is a Properties dialog box.
Click the Permissions tab in the Properties dialog box. The result resembles Figure 14.1.

To change the file’s owner, select a new owner in the Owner field. This action is possible
only if you run Nautilus as root.

To change the file’s group, select a new group in the Group field. If you run Nautilus as an
ordinary user, you will be able to select any group to which you belong, but if you run
Nautilus as root, you will be able to select any group.

When you’ve adjusted the features that you want to change, click Close.

hard. Linux Essentials (2). Hoboken, US: Sybex, 2015. ProQuest ebrary. Web. 17 January 2017.

an, ine, and Blum, Ric .
Copyright © 2015. Sybex. All rights reserved.

Bresn

testfile Properties

Basic Permissions OpenWith

Owner: rich = Rich Blum

ACCess: Read and write

Group: rich

ACCess: Read and write

Others

Access: | Read-only

Execute: Allow executing File as program

Figure 14.1 Linux file managers give you access to the file’s ownership and permission
metadata.

If you want to change a file’s group but not its owner, and if you’re a member of the target
group, you can launch Nautilus as an ordinary user. You can then pick up the preceding
procedure at step 4.

You should be extremely cautious about running Nautilus as root. If you forget that you’re
running this program as root, you can easily create new files as root, which will require
additional root-privilege actions to correct by changing file ownership. It’s also easy to delete
critical system files accidentally as root, which you could not delete as an ordinary user. For
these reasons, we recommend that you use a text-mode shell to adjust file ownership. The
change in the prompt makes it easier to notice that you’re running as root, and if you’re used to

using a GUI, you’re less likely to launch additional programs as root from a text-mode shell
than from Nautilus.

Setting Ownership in a Shell

Certification
Objective

The command to change the ownership of a file in the preferred text-mode manner is chown. In
its most basic form, you pass it the name of a file followed by a username:

ahan, Christine, and Blum, Richard. Linux Essentials (2). Hoboken, US: Sybex, 2015. ProQuest ebrary. Web. 17 January 2017.

Copyright © 2015. Sy’bex. All rights reserved.

Bres

The chown command’s name stands for change owner.

chown bob targetfile.odf

This example gives ownership of targetfile.odf to bob. You can change the file’s principal
owner and its group with a single command by separating the owner and group with a colon

L)

chown bob:users targetfile.odf

This example gives ownership of targetfile.odf to bob and associates the file with the
users group. To change the group without changing the owner, you can omit the owner, leaving
the colon and group name:

$ chown:users targetfile.odf

Certification

Objective
Alternatively, you can use the chgrp command, which works in the same way but changes only
the group and does not require the colon before the group name:

$ chgrp users targetfile.odf

Note that the commands used to change the owner require root privileges, whereas you can
change the group as an ordinary user—but only if you own the file and belong to the target

group.

The chown and chgrp commands both support a number of options that modify what they do.
The most useful of these is -R (or--recursive), which causes a change in ownership of all
the files in an entire directory tree. For instance, suppose that the user mary has left a company,
and an existing employee, bob, must access her files. If mary’s home directory was
/home/mary, you might type this:

chown -R bob /home/mary

This command gives bob ownership of the /home/mary directory, all the files in the
/home/mary directory, including all its subdirectories, the files in the subdirectories, and so
on. To make the transition a bit easier for bob, you might also want to move mary’s former
home directory into bob’s home directory.

Setting Permissions

File ownership is meaningless without some way to specify what particular users can do with
their own or other users’ files. That’s where permissions enter the picture. Linux’s permission
structure is modeled after that of Unix, and it requires a bit of explanation before you tackle the
issue. Once you understand the basics, you can begin modifying permissions, using either a

nahan, Christine, and Blum, Richard. Linux Essentials (2). Hoboken, US: Sybex, 2015. ProQuest ebrary. Web. 17 January 2017.

Copyright © 2015. Sy’bex. All rights reserved.

GUI file manager or a text-mode shell. You can also set default permissions for new files that
you create.

Understanding Permissions

Certification
Objective

To understand Unix (and hence Linux) permissions, you may want to begin with the display
created by the 1s command, which lists the files in a directory, in conjunction with its -1
option, which creates a long directory listing that includes files’ permissions. For instance, to
see a long listing of the file test, you might type the following:

Chapter 6, “Getting to Know the Command Line,” introduced the 1s command and
describes additional 1s options.

$ 1s -1 test
-rwXr-xXxr-xXx 1 rich users 111 Apr 13 13:48 test

This line consists of several sections, which provide assorted pieces of information on the file:

Permissions The first column (-rwxr-xr-x in this example) is the file’s permissions, which
are of interest at the moment.

Number of Links The next column (1 in this example) shows the number of hard links to the
file—that is, the number of unique filenames that may be used to access the file.

Chapter 7, “Managing Files,” describes links in more detail.

Username The next column (rich in this example) identifies the file’s owner by username.
Group Name The file’s group (users in this example) appears next.
File Size This example file’s size is quite small—111 bytes.

Time Stamp The time stamp (Apr 13 13:48 in this example) identifies the time the file was
last modified.

Filename Finally, 1s -1 shows the file’s name—test in this example.

The string that begins this output (- rwxr-xr-x in this example) is a symbolic representation of
the permissions string. Figure 14.2 shows how this string is broken into four parts.

Bresnahan, Christine, and Blum, Richard. Linux Essentials (2). Hoboken, US: Sybex, 2015. ProQuest ebrary. Web. 17 January 2017.
Copyright © 2015. Sybex. All rights reserved.

File Type
Code Owner Permissions Group Permissions Waorld Permissions

fﬁfﬁﬁ\\\ /fff'—‘t-x,\x /ﬁ""w\\&‘

r W X r . X r B X

read write execute read write execule read write pxecute

Figure 14.2 A symbolic representation of file permissions is broken into four parts.

File Type Code The first character is the file type code, which represents the file’s type, as
summarized in Table 14.1. This type character is sometimes omitted from descriptions when
the file type is not relevant or when it’s identified in some other way.

Table 14.1 Linux file type codes

- Normal May be text, an executable program, graphics, compressed data, or just about
data file any other type of data.

d Directory Disk directories are files, but they contain filenames and pointers to those
named files’ data structures.
1 Symbolic The file contains the name of another file or directory. When Linux accesses
link the symbolic link, it tries to read the linked-to file.
p Named A pipe enables two running Linux programs to communicate with each other
pipe in a one-way fashion.
S Socket A socket is similar to a named pipe, but it permits network and bidirectional
links.
b Block A file that corresponds to a hardware device to and from which data is

device ftransferred in blocks of more than 1 byte. Disk devices (hard disks, USB
flash drives, CD-ROMIs, and so on) are common block devices.

C Character A file that corresponds to a hardware device to and from which data is
device transferred in units of 1 byte. Examples include parallel and RS-232 serial
port devices.

Most of the files that you’ll manipulate are normal files, directories, and symbolic
links.
Owner Permissions These permissions determine what the file’s owner can do with the file.

Group Permissions These permissions determine what members of the file’s group (who
aren’t its owner) can do with the file.

World (or “Other”) Permissions These permissions determine what users who aren’t the

Bresnahan, Christine, and Blum, Richard. Linux Essentials (2). Hoboken, US: Sybex, 2015. ProQuest ebrary. Web. 17 January 2017.
Copyright © 2015. Sybex. All rights reserved.

file’s owner or members of its group can do with the file.

In each of the three sets of permissions, the string identifies the presence or absence of each of
three types of access: read, write, and execute. Read and write permissions are fairly self-
explanatory. If the execute permission is present, it means that the file may be run as a program.
The absence of the permission is denoted by a dash (-) in the permission string. The presence
of the permission is indicated by the letter r for read, w for write, or x for execute.

Setting the execute bit on a nonprogram file doesn’t turn it into a program, of
course; it just indicates that a user may run a file that is a program.

Thus the example permission string - rwxr -xr -x means that the file is a normal data file and
that its owner, members of the file’s group, and all other users can read and execute the file.
Only the file’s owner has write permission to the file.

Another representation of permissions is possible; it’s compact but a bit confusing. It takes
each of the three permissions groupings of the permission string (omitting the file type code)
and converts it into a number from O to 7 (that is, a base 8 or octal number). The result is a
three-digit octal number. Each number is constructed by starting with a value of 0 and then:

e Adding 4 if read permissions are present

e Adding 2 if write permissions are present

e Adding 1 if execute permissions are present

These procedures involve binary numbers and logical, not arithmetic, operations. The
arithmetic description is easier to understand, though.

The resulting three-digit code represents permissions for the owner, the group, and the world.
Table 14.2 shows some examples of common permissions and their meanings.

Bresnahan, Christine, and Blum, Richard. Linux Essentials (2). Hoboken, US: Sybex, 2015. ProQuest ebrary. Web. 17 January 2017.
Copyright © 2015. Sybex. All rights reserved.

Table 14.2 Example permissions and their interpretations

Permission|Octal Meaning
string code

rwuxrwxrwx 777 Read, write, and execute permissions for all users.

rwxr-xr-x 755 Read and execute permission for all users. The file’s owner also has write
permission.

rwxr-x—— 750 Read and execute permission for the owner and group. The file’s owner
also has write permission. Other users have no access to the file.

PR 700 Read, write, and execute permissions for the file’s owner only; all others
have no access.

rw-rw-rw- 666 Read and write permissions for all users. No execute permissions for
anybody.

rw-rw-r-- 664 Read and write permissions for the owner and group. Read-only
permission for all others.

rw-rw---- 660 Read and write permissions for the owner and group. No world
permissions.

rw-r—r— 644 Read and write permissions for the owner. Read-only permission for all
others.

rw-r-—-—-——- 640 Read and write permissions for the owner, and read-only permission for
the group. No permission for others.

rW——————- 600 Read and write permissions for the owner. No permission for anybody
else.

R 400 Read permission for the owner. No permission for anybody else.

There are 512 possible combinations of permissions, so Table 14.2 is incomplete. It
shows the most common and useful combinations, though.

Several special cases apply to permissions:

Directory Execute Bits Directories use the execute bit to grant permission to search the
directory. This is a highly desirable characteristic for directories, so you’ll almost always find
the execute bit set when the read bit is set.

Directory Write Permissions Directories are files that are interpreted in a special way. As
such, if a user can write to a directory, that user can create, delete, or rename files in the
directory, even if the user isn’t the owner of those files and does not have permission to write
to those files.

Bresnahan, Christine, and Blum, Richard. Linux Essentials (2). Hoboken, US: Sybex, 2015. ProQuest ebrary. Web. 17 January 2017.
Copyright © 2015. Sybex. All rights reserved.

The usual rules for writing to directories can be modified with the sticky bit, which is
described later in “Using Sticky Bits.”

Symbolic Links Permissions on symbolic links are always 777 (rwxrwxrwx, or 1rwXrwxrwx
to include the file type code). This access applies only to the link file itself, not to the linked-to
file. In other words, all users can read the contents of the link to discover the name of the file
to which it points, but the permissions on the linked-to file determine its file access. Changing
the permissions on a symbolic link affects the linked-to file.

root Many of the permission rules don’t apply to root. The superuser can read or write any
file on the computer—even files that grant access to nobody (that is, those that have 000
permissions). The superuser still needs an execute bit set to run a program file.

Setting Permissions in a File Manager

The procedure for setting permissions in a file manager is similar to that for setting the
ownership of a file:

* You normally adjust these settings by using the same dialog box used to adjust ownership,
such as the Nautilus dialog box shown earlier in Figure 14.1.

Details vary in other file managers, but the principles are the same as those
described here.

e You don’t need to be root to adjust the permissions of files that you own.

e You should use root access for this job only on files that you don’t own.

As seenin Figure 14.1, there are three Access items associated with the Owner, the Group, and
Others:

e The Owner item provides two options: Read-Only and Read and Write.

e The Group and Others items both provide Read-Only and Read and Write plus the None
option. You can use these options to set the read and write permission bits on your file.

Nautilus requires setting the execute bit separately, by selecting the Allow Executing File As
Program check box. This check box sets all three execute permission bits; you can’t control
execute permission more precisely with Nautilus. You also can’t adjust the execute
permissions on directories with Nautilus.

Setting Permissions in a Shell

Carrification
Objective

In a text-mode shell, you can use chmod to change permissions. This command is rather
complex, mostly because of the complex ways that permissions may be changed. You can

specify the permissions in two forms: as an octal number or in a symbolic form, which is a set
of codes related to the string representation of the permissions.

The chmod command’s name stands for change mode, mode being another name for
permissions.

The octal representation of the mode is the same as that described earlier and summarized in
Table 14.2. For instance, to change permissions on report.tex to rw-r--r--, you can issue

the following command:

$ chmod 644 report.tex

A symbolic mode, by contrast, consists of three components:

e A code indicating the permission set that you want to modify—u for the user (that is, the
owner), g for the group, o for other users, and a for all permissions

e A symbol indicating whether you want to add (+), delete (-), or set the mode equal to (=)
the stated value

e A code specifying what the permission should be, such as the common r, w, or x symbols,
or various others for more-advanced operations

Using symbolic modes with chmod can be confusing, so we don’t describe them fully here;
however, you should be familiar with a few common types of use, as summarized in Table
14.3. Symbolic modes are more flexible than octal modes because you can specify symbolic
modes that modify existing permissions, such as adding or removing execute permissions
without affecting other permissions. You can also set only the user, group, or world
permissions without affecting the others. With octal modes, you must set all three permission
bits equal to a value that you specify.

As with the chown and chgrp commands, you can use the -R (or--recursive) option
to chmod to have it operate on an entire directory tree.

Table 14.3 Examples of symbolic permissions with chmod

Command Initial permissions End permissions

chmod a+x bigprogram rw-r--r-- rWXr -Xr-X
chmod ug=rw report.tex f-——————-- rw-rw———-—
chmod o-rwx bigprogram FWXrwXxr-X FrWXrwx——-—
chmod g-w,0-rw report.tex rw-rw-rw- rw-r-———-

Setting the umask

The user mask, or umask, determines the default permissions for new files. The umask is the

Bresnahan, Christine, and Blum, Richard. Linux Essentials (2). Hoboken, US: Sybex, 2015. ProQuest ebrary. Web. 17 January 2017.
Copyright © 2015. Sybex. All rights reserved.

Bres

value that is removed from 666 (rw-rw-rw-) permissions when creating new files, or from
777 (rwxrwxrwx) when creating new directories. For instance, if the umask is 022, then files
will be created with 644 permissions by default, and new directories will have 755
permissions. Note that the removal operation is not a simple subtraction but a bitwise removal.
That is, a 7 value in a umask removes the corresponding rwx permissions; but for files, for
which the starting point is rw-, the result is — (0), not —1 (which is meaningless).

You can adjust the umask with the umask command, which takes the umask value, as in umask
022. Typically, this command appears in a system configuration file, such as /etc/profile,
or in a user configuration file, such as ~/.bashrec.

Using Special Permission Bits and File Features

When you investigate the Linux directory tree, you will encounter certain file types that require
special attention. Sometimes, you may just want to be aware of how these files are handled,
since they deviate from what you might expect based on the information presented in earlier
chapters. In other cases, you may need to adjust how you use 1s or other commands to deal
with these files and directories—for example, when using the sticky bit, using special execute
permissions, hiding files from view, or obtaining long listings of directories.

Using Sticky Bits

Certification
Objective

Consider the following commands, typed on a system with a few files and subdirectories laid
out in a particular way:

$ whoami

kirk

$ 1s -1

total ©

drwXrwXrwx 2 root root 80 Dec 14 17:58 subdir

$ 1s -1 subdir/

total 2350

-rw-r — - 1 root root 2404268 Dec 14 17:59 f1701.tif

These commands establish the current configuration: The effective user ID is kirk, and the
current directory has one subdirectory, called subdir, which root owns but to which kirk,
like all of the system’s users, has full read/write access. This subdirectory has one file,
f1701.tif, which is owned by root and to which kirk has no access. You can verify that
kirk can’t write to the file by attempting to do so with the touch command:

$ touch subdir/fi1701.t1if
touch: cannot touch 'subdir/fi17e01.tif ': Permission denled

This error message verifies that kirk could not write to subdir/f1701.tif. The file, you
might think, is safe from tampering. Not so fast! Try this:

nahan, Christine, and Blum, Richard. Linux Essentials (2). Hoboken, US: Sybex, 2015. ProQuest ebrary. Web. 17 January 2017.

Copyright © 2015. Sy’bex. All rights reserved.

Bres

$ rm subdir/fi17e1.tif
$ 1s -1 subdir/
total ©

The rm command returns no error message, and a subsequent check of subdir verifies that it’s
now empty. In other words, kirk could delete the file even without write permission to it! This
may seem like a bug—atfter all, if you can’t write to a file, you might think that you shouldn’t be
able to delete it. Recall, however, that directories are just a special type of file, one that holds
other files’ names and pointers to their lower-level data structures. Thus modifying a file
requires write access to the file, but creating or deleting a file requires write access to the
directory in which it resides. In this example, kirk has write access to the subdir directory,
but not to the f1701. tif file within that directory. Thus kirk can delete the file but not modify
it. This result is not a bug; it’s just a counterintuitive feature.

Although Linux filesystems were designed to work this way, such behavior is not always
desirable. The way to create a more intuitive result is to use a sticky bit, which is a special
filesystem flag that alters this behavior. With the sticky bit set on a directory, Linux will permit
you to delete a file only if you own either it or the containing directory; write permission to the
containing directory is not enough. You can set the sticky bit with chown in either of two ways:

Using an Octal Code By prefixing the three-digit octal code described earlier in this chapter
with another digit, you can set any of three special permission bits, one of which is the sticky

bit. The code for the sticky bitis 1, so you would use an octal code that begins with 1, such as
1755, to set the sticky bit. Specifying a value of 0, as in 0755, removes the sticky bit.

r B

Other odd numbers will set the sticky bit, too, but will also set additional special
permission bits, which are described shortly, in “Using Special Execute Permissions.”

e o

Using a Symbolic Code Pass the symbolic code t for the world permissions, as in chmod o+t
subdir, to set the sticky bit on subdir. You can remove the sticky bit in a similar way by
using a minus sign, as in chmod o-t subdir.

Restoring the file and setting the sticky bit enables you to see the effect:

$ 1s -1

total O

drwXxrwXrwt 2 root root 80 Dec 14 18:25 subdir

$ 1s -1 subdir/

total 304

-Frw-r--r-- 1 root root 2404268 Dec 14 18:25 fT1701.tif

$ rm subdir/fi7e1.tif

rm: cannot remove ~subdir/fi17e1.tif ': Operation not permitted

In this example, although kirk still has full read/write access to subdir, kirk cannot delete
another user’s files in that directory.

You can identify a directory with the sticky bit set by a small change in the symbolic mode
shown by 1s -1. The world execute bit is shown as a t rather than an x. In this example, the

nahan, Christine, and Blum, Richard. Linux Essentials (2). Hoboken, US: Sybex, 2015. ProQuest ebrary. Web. 17 January 2017.

Copyright © 2015. Sy’bex. All rights reserved.

Bres

result is that subdir’s permission appears as drwxrwxrwt rather than drwxrwxrwx.

The sticky bit is particularly important for directories that are shared by many users. It’s a
standard feature on /tmp and /var/tmp, for instance, since many users store temporary files in
these directories, and you wouldn’t want one user to be able to delete another user’s temporary
files. If you want users who collaborate on a project to be able to write files into each others’
home directories, you might want to consider setting the sticky bit on those home directories,
or on the subdirectories in which users are sharing files.

If you delete /tmp or /var/tmp and need to re-create it, be sure to set the sticky bit
on your new replacement directory!

Using Special Execute Permissions

As described earlier in this chapter, the execute permission bit enables you to identify program
files as such. Linux then allows you to run these programs. Such files run using your own
credentials, which is generally a good thing—associating running processes with specific
users is a key part of Linux’s security model. Occasionally, though, programs need to run with
elevated privileges. For instance, the passwd program, which sets users’ passwords, must run
as root to write, and in some cases to read, the configuration files it handles. Thus if users are
to change their own passwords, passwd must have root privileges even when ordinary users
run it.

Certification

Objective
To accomplish this task, two special permission bits exist, similar to the sticky bit described
earlier:

Set User ID (SUID) The set user ID (SUID) option tells Linux to run the program with the
permissions of whoever owns the file rather than with the permissions of the user who runs the
program. For instance, if a file is owned by root and has its SUID bit set, the program runs
with root privileges and can therefore read any file on the computer. Some servers and other
system programs run this way, which is often called SUID root. SUID programs are indicated
by an s in the owner’s execute bit position in the permission string, as in rwsr -Xr - X.

Set Group ID (SGID) The set group ID (SGID) option is similar to the SUID option, but it
sets the group of the running program to the group of the file. It’s indicated by an s in the group
execute bit position in the permission string, as in rwxr-sr-x.

You can set these bits by using chmod:

Using an Octal Code In the leading digit of a four-digit octal code, set the leading value to 4
to set the SUID bit, to 2 to set the SGID bit, or to 6 to set both bits. For instance, 4755 sets the
SUID bit, but not the SGID bit, on an executable file.

Using a Symbolic Code Use the s symbolic code, in conjunction with u to specify the SGID

nahan, Christine, and Blum, Richard. Linux Essentials (2). Hoboken, US: Sybex, 2015. ProQuest ebrary. Web. 17 January 2017.

Copyright © 2015. Sy’bex. All rights reserved.

Bres

bit, g to specify the SGID bit, or both to set both bits. For instance, typing chmod u+s myprog
sets the SUID bit on myprog, whereas chmod ug-s myprog removes both the SUID bit and the

SGID bit.

Ordinarily, you don’t need to set or remove these bits; when necessary, the package
management program sets these bits correctly when you install or upgrade a program. You
might need to alter these bits if they’ve been mistakenly set or removed on files. In some cases,
you might want or need to adjust these values on program files that you compile from source
code or if you need to modify the way a program works. Be cautious when doing so, though. If
you set the SUID or SGID bit on a garden-variety program, it will run with increased
privileges. If the program contains bugs, those bugs will then be able to do more damage. If
you accidentally remove these permissions, the results can be just as bad—programs like
passwd, sudo, and su all rely on their SUID bits being set, so removing this feature can cause
them to stop working.

Hiding Files from View

Certification

Crbjective
If you’re used to Windows, you may be familiar with the concept of a hidden bit, which hides
files from view in file managers, by the Windows DIR command, and in most programs. If
you're looking for something analogous in Linux, you won’t find it—at least not in the form of
a dedicated filesystem feature. Instead, Linux uses a file-naming convention to hide files from
view: most tools, such as 1s, hide files and directories from view if their names begin with a
dot (.). Thus 1s shows the file afile. txt, butnot .afile. txt. Most file managers and
dialog boxes that deal with files also hide such dot files, as they’re commonly called;
however, this practice is not universal.

Many user programs take advantage of this feature to keep their configuration files from
cluttering your display. For instance, ~/.bashrc is a Bash user configuration file, Evolution’s
configuration files go in the ~/ .evolution directory, and ~/ . fonts.conf holds user-specific
font configuration information.

You can view dot files in various ways depending on the program in question. Some GUI tools
have a check box that you can set in their configuration options to force the program to display
such files. At the command line, you can add the -a option to the other options in 1s:

$ 1s -1

total ©

drwXrwXxrwt 2 root root 80 Dec 14 18:25 subdir

$ 1s -1la

total 305

drwxXxr-Xxr-x 3 kirk users 104 Dec 14 18:44

drwxXxr-Xxr-x 3 kirk users 528 Dec 14 18:21 ..

-rw-r -r - 1 kirk users 309580 Dec 14 18:44 .f1701.tif
drwXrwXxrwt 2 root root 80 Dec 14 18:25 subdir
Certification

Crbjective

nahan, Christine, and Blum, Richard. Linux Essentials (2). Hoboken, US: Sybex, 2015. ProQuest ebrary. Web. 17 January 2017.

Copyright © 2015. Sy’bex. All rights reserved.

Bres

This example shows the hidden file . f1701. tif in the current directory. It also shows two

hidden directory files. The first . refers to the current directory. The second . . refers to the
parent directory.

Recall from Chapter 7 that . . is a relative directory reference. This hidden entry is
why it works.

Note that renaming a file so that it begins with a dot will hide it, but this action will also make
the file inaccessible to any program that uses the original filename. That is, if you rename

f1701.tif to .f1701.tif, and if another program or file refers to the file as f1701.tif, that
reference will no longer work. You must include the leading dot in any reference to the hidden

file.

Viewing Directories

Certification

Objective
Chapter 6 introduced the 1s command, including many of its options. One of these deserves
elaboration at this point: -d. If you’re working in a directory that holds many subdirectories,
and if you use a wildcard with 1s that matches one or more subdirectories, you may get an
unexpected result: the output will show the files in the matched subdirectories, rather than the
information on the subdirectories themselves. For instance, say you start in a directory with
two subdirectories, subdiri and subdir2:

$ 1s -1 subdir*

subdiri:

total 304

-Frw-r--r-- 1 kirk users 309580 Dec 14 18:54 fT1701.tif

subdir2:
total 84
-rw-r--r-- 1 kirk users 86016 Dec 14 18:54 106792cil17.doc

The /proc and /sys directories contain real-time data populated automatically by the
kernel so you can view process and device status. Those files and subdirectories may
appear and change at any time, making it tricky to display them.

If instead you want information on the subdirectories rather than the contents of those
subdirectories, you can include the -d option:

$ 1s -1d subdir*
drwXxr-xr-x 2 kirk users 80 Dec 14 18:54 subdiri
drwXxr-Xr-x 2 kirk users 80 Dec 14 18:54 subdir2

nahan, Christine, and Blum, Richard. Linux Essentials (2). Hoboken, US: Sybex, 2015. ProQuest ebrary. Web. 17 January 2017.

Copyright © 2015. Sy’bex. All rights reserved.

P

resnahan, Christi d Bl

The Essentials and Beyond

File security is important on a multiuser OS such as Linux, and one of the pieces of the
puzzle of security is ownership. In Linux, every file has one owner and one associated
group. The superuser can set the owner with chown, and either the superuser or the file’s
owner can set the file’s group with chown or chgrp. By itself, ownership is useless, so
Linux supports the concept of file permissions to control which other users can access a
file and in what ways. You can set permissions with the chmod utility. You can view

ownership, permissions, and some additional file features by using the -1 option to the 1s
command.

Suggested Exercises

e As root, copy a file that you created as an ordinary user, placing the copy in your
ordinary user home directory. Using your normal account, try to edit the file with a text
editor and save your changes. What happens? Try to delete that file with the rm
command. What happens?

e Create a scratch file as an ordinary user. As root, use chown and chmod to experiment
with different types of ownership and permissions to discover when you can read and
write the file by using your normal login account.

e Use the 1s -1 command to view the ownership and permissions of files in your home
directory, in /usr/bin (where many program files reside), and in /etc (where most
system configuration files reside). What are the implications of the different
ownership and permissions you see for who can read, write, and execute these files?

Review Questions

1. What command would you type (as root) to change the ownership of somefile. txt
from ralph to tony?

A. chown ralph:tony somefile.txt
B. chmod somefile.txt tony
C. chown somefile.txt tony
D. chown tony somefile.txt
E. chmod tony somefile.txt

2. Typing 1s -1d wonderjaye reveals a symbolic file mode of drwxr -xr-x. Which of
the following are true? (Select all that apply.)

A. wonderjaye is a symbolic link.
B. wonderjaye is an executable program.

C. wonderjaye is a directory.

Richard. Linux Essentials (2). Hoboken, US: Sybex, 2015. ProQuest ebrary. Web. 17 January 2017.

B n, ne, and Blum,
Copyright © 2015. Sybex. All rights reserved.

Bresnahan, Christine, and Blum, Richard. Linux Essentials (2). Hoboken, US: Sybex, 2015. ProQuest ebrary. Web. 17 January 2017.
Copyright © 2015. Sybex. All rights reserved.

