CHAPTER 6 Using Arrays

Storing values in variables provides programs with flexibility; a program that uses variables to
replace constants can manipulate different values each time it executes. When you add loops to
your programs, the same variable can hold different values during successive cycles through the
loop within the same program execution. Learning to use the data structure known as an array

offers further flexibility. Arrays allow you to store multiple values in adjacent memory locations
and access them by varying a value that indicates which of the stored values to use. In this
chapter, you will learn to create and manage C# arrays.

Declaring an Array and Assigning Values

Sometimes, storing just one value in memory at a time isn't adequate. For example, a sales
manager who supervises 20 employees might want to determine whether each employee has
produced sales above or below the average amount. When you enter the first employee’s sales
value into a program, you can't determine whether it is above or below average because you
won't know the average until you have entered all 20 values. You might plan to assign

20 sales values to 20 separate variables, each with a unique name, then sum and average them.
However, that process is awkward and unwieldy: You need 20 prompts, 20 input statements
using 20 separate storage locations (in other words, 20 separate variable names), and

20 addition statements. This method might work for 20 salespeople, but what if you have

30, 40, or 10,000 salespeople?

You could enter data for 20 salespeople using just one variable in 20 successive iterations
through a loop that contains one prompt, one input statement, and one addition statement.
Unfortunately, when you enter the sales value for the second employee, that data item replaces
the value for the first employee, and the first employee’s value is no longer available to compare
to the average of all 20 values. With this approach, when the data-entry loop finishes, the only
individual sales value left in memory is the last one entered.

The best solution to this problem is to create an array. An array is a list of data items that all
have the same data type and the same name. Each object in an array is an array element. You
can distinguish each element from the others in an array with a subscript. A subscript (also
called an index) is an integer that indicates the position of a particular array element. In C¥#,

a subscript is written between square brackets that follow an array name.

You declare an array variable with a data type, a pair of square brackets, and an identifier. For
example, to declare an array of doub1e values to hold sales values for salespeople, you write the
following:

double[] sales;

In some programming languages, such as C+ + and Java, you also can declare an array variable by placing
the square brackets after the array name, as in double sales(];. This format is illegal in C#.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copled, scanned, or duplicated, In whole or In part. WCN 02-200-202



Declaring an Array and Assigning Values_

You can provide any legal identifier you want for an array, but programmers conventionally
name arrays like they name variables—starting with a lowercase letter and using uppercase
letters to begin subsequent words. Additionally, many programmers observe one of the
following conventions to make it more obvious that the name represents a group of items:

e Arrays are often named using a plural noun such as sales. 225

e Arrays are often named by adding a final word that implies a group, such as salesList,
salesTable, or salesArray.

After you declare an array variable, you still need to create the actual array because declaring
an array and reserving memory space for it are two distinct processes. You can declare an
array variable and reserve memory locations for 20 sales objects using the following two
statements:

double[] sales;
sales = new double[20];

The keyword new is also known as the new operator; it is used to create objects. In this case, it
creates 20 separate sales elements. You also can declare and create an array in one statement,
such as the following:

double[] sales = new double[20];

int[] myArray;, you can assign five elements later with myArray = new int[5];; later in the program,
you might alter the array size to 100 with myArray = new int[100];. Most other programming languages
do not provide this capability. If you resize an array in C#, the same identifier refers to a new array in
memory, and all the values are set to the default value for the data type.

ﬂ You can change the size of an array associated with an identifier, if necessary. For example, if you declare

The statement double[] sales = new double[20] ; reserves 20 memory locations. In C¥#,
an array’s elements are numbered beginning with 0, so if an array has 20 elements, you can use
any subscript from 0 through 19. In other words, the first sales array element is sales[0],
and the last sales element is sales[19].

Figure 6-1 shows how the array of 20 sales values appears in computer memory. The figure
assumes that the array begins at memory address 20000. When you instantiate an array, you
cannot choose its location in memory any more than you can choose the location of any other
variable. However, you do know that after the first array element, the subsequent elements will
follow immediately. Because a double takes eight bytes of storage, each element of a double
array is stored in succession at an address that is eight bytes higher than the previous one.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copled, scanned, or duplicated, in whole or in part. WCN 02-200-202



CHAPTER 6 Using Arrays

226

In C#, an array subscript must be an integer. For example,
20000 | sales[0] no array contains an element with a subscript of 1.5.
A subscript can be an integer constant or variable or an
20008 | sales[1] expression that evaluates to an integer. For example, if
Jsovi L sanesag x and y are integers, and their sum is at least O but less
3 than the size of an array named array, then it is legal to
é 20024 refer to the element array[x + y].
: . /\/\/\ Some other languages, such as COBOL, BASIC, and Visual
& 5 /\/\/\ ﬁ Basic, use parentheses rather than square brackets to refer to
£ 20136 individual array elements. By using brackets, the creators of
= C# made it easier for you to distinguish arrays from methods.
20144 | sales[18] Like C#, C+ ~ and Java also use brackets surrounding array
subscripts.
20152 | sales[19] A common mistake is to forget that the first element in an
array is element O (sometimes called the zeroth element),

especially if you know another programming language in
which the first array element is element 1. Making this
mistake means you will be “off by one” in your use of any
array. If you are “off by one” but still using a valid subscript
when accessing an array element, your program most likely will produce incorrect output. If
you are “off by one” so that your subscript becomes larger than the highest value allowed, you
will cause a program error.

Figure 6-1 An array of 20 sales
items in memory

To remember that array elements begin with element 0, it might be helpful to think of the
first array element as being “zero elements away from” the beginning of the array, the second
element as being “one element away from” the beginning of the array, and so on.

When you work with any individual array element, you treat it no differently than you treat a
single variable of the same type. For example, to assign a value to the first element in the sales
array, you use a simple assignment statement, such as the following:

sales[0] = 2100.00;
To output the value of the last sales in a 20-element array, you write:
wWriteLine(sales[19]);

@ Watch the video Declaring an Array.

Initializing an Array

In C#, arrays are objects. When you instantiate an array, you are creating a specific instance of a
class that derives from, or builds upon, the built-in class named System.Array. (In the chapter
“Introduction to Inheritance,’ you will learn more about deriving classes.)

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copled, scanned, or duplicated, in whole or in part. WCN 02-200-202



Declaring an Array and Assigning Values_

When you declare arrays or any other objects, the following default values are assigned to the
elements:

e Numeric fields are set to 0.

o Character fields are set to ‘w0000’ or nu11. (You learned about escape sequences that start
with ‘W’ in Chapter 2.) 227

e bool fields are set to false.

You can assign nondefault values to array elements at declaration by including a comma-
separated list of values enclosed within curly braces. For example, if you want to create an array
named myScores and store five test scores within the array, you can use any of the following
declarations:

new int[5] {100, 76, 88, 100, 90};

new int[] {100, 76, 88, 100, 90};

{100, 76, 88, 100, 90};

The list of values provided for an array is an initializer list. When you initialize an array by
providing a size and an initializer list, as in the first example, the stated size and number of list
elements must match. However, when you initialize an array with values, you are not required
to give the array a size, as shown in the second example; in that case, the size is assigned

based on the number of values in the initializing list. The third example shows that when

you initialize an array, you do not need to use the keyword new and repeat the type; instead,
memory is assigned based on the stated array type and the length of the list of provided values.
Of these three examples, the first is most explicit, but it requires two changes if the number

of elements is altered. The third example requires the least typing but might not clarify thata
new object is being created. Microsoft’s documentation prefers the third example because it is
most concise, but you should use the form of array initialization that is clearest to you or that is
conventional in your organization.

int[] myScores
int[] myScores
int[] myScores

When you use curly braces at the end of a block of code, you do not follow the closing curly
brace with a semicolon. However, when you use curly braces to enclose a list of array values,
you must complete the statement with a semicolon.

shorter than the number of declared array elements, the “extra” elements will be set to default values. This

ﬁ Programmers who have used other languages such as C+ + might expect that when an initialization list is
is not the case in C#; if you declare a size and list any values, then you must list a value for each element.

char[] arrayOfLetters = {'h', 'e', '1', '1', '0o'};

ﬂ An array of characters can be assigned to a string. For example, you can write the following:
string word = new string(arrayOflLetters);

You also can access a single character in a string using a subscript. For example, if you have defined
string greeting = "Hello™;, then greeting[0] is 'H'. However, a string is not an array of
characters, and you cannot assign a character to a portion of a string such as in the invalid assignment
word[0] = 'A";.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copled, scanned, or duplicated, in whole or in part. WCN 02-200-202



CHAPTER 6 Using Arrays

Declaring an Array and Assigning Values

228 1. To reserve memory locations for 10 testScores objects, you can use the following
statement:

int[] testScores = new int[9];

. To assign 60 to the last element in a 10-element array named testScores, you can
use the following statement:

testScores[9] = 60;

. The following statement creates an array named testScores and stores four values
within the array:

int[] testScores = new int[] {90, 85, 76, 92};

6 Ydnoayy 0 sydudsgns ay)
SN ||IM SJUBIJE (T YL 'S8JL.q 8/eNDS JO }3S PUOIBS B} LIYYM O 8SN SN nok
5309100 $3.40353521 ()T 10§ SUORRIO] AIOWBW BAI3SRI Of “T4# S| JuaLIRe)s asie) 8y

Accessing Array Elements

When you declare an array of five integers, such as the following, you often want to perform
the same operation on each array element:

int[] myScores = {100, 76, 88, 100, 90};
To increase each array element by 3, for example, you can write the following five statements:

myScores[0] += 3;
myScores[1] += 3;
myScores[2] += 3;
myScores[3] += 3;
myScores[4] += 3;

If you treat each array element as an individual entity, declaring an array doesn't offer much of
an advantage over declaring individual variables. The power of arrays becomes apparent when

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copled, scanned, or duplicated, in whole or in part. WCN 02-200-202



Accessing Array Elements

you use subscripts that are variables rather than constant values. Then you can use a loop to
perform arithmetic on each element in the array. For example, you can use a while loop, as
follows:

int sub = 0;

while(sub < 5) 229
{

myScores[sub] += 3;
++sub;

You also can use a for loop, as follows:

for(int sub = 0; sub < 5; ++sub)

myScores[sub] += 3;
In both examples, the variable sub is declared and initialized to 0, then compared to 5.
Because it is less than 5, the loop executes, and myScores [0] increases by 3. The variable
sub is incremented and becomes 1, which is still less than 5, so when the loop executes again,
myScores[1] increases by 3, and so on. If the array had 100 elements, individually increasing
the array values by 3 would require 95 additional statements, but the only change required
using either loop would be to change the limiting value for sub from 5 to 100.

New array users sometimes think there is a permanent connection between a variable used as
a subscript and the array with which it is used, but that is not the case. For example, if you vary
sub from 0 to 10 to fill an array, you do not need to use sub later when displaying the array
elements—either the same variable or a different variable can be used as a subscript elsewhere
in the program.

Using the Length Property

When you work with array elements, you must ensure that the subscript you use remains
in the range of 0 through one less than the array’s length. If you declare an array with five
elements and use a subscript that is negative or more than 4, you will receive the error
message IndexOutOfRangeException when you run the program. (You will learn about the
IndexOutOfRangeException in the chapter “Exception Handling") This message means the
index, or subscript, does not hold a value that legally can access an array element. For example,
if you declare an array of five integers, you can display them as follows:
int[] myScores = {100, 75, 88, 100, 90};
for(int sub = 0; sub < 5; ++sub)

WriteLine("{0} ", myScores[sub]);

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copled, scanned, or duplicated, In whole or In part. WCN 02-200-202



CHAPTER 6 Using Arrays

If you modify your program to change the size of the array, you must remember to change the
comparison in the for loop as well as every other reference to the array size within the program.
Many text editors have a “find and replace” feature that lets you change (for example) all of the 5s
in a file, either simultaneously or one by one. However, you must be careful not to change 5s that
have nothing to do with the array; for example, do not change the 5 in the score 75 inadvertently—

s it is the second listed value in the myScores array and has nothing to do with the array size.

A better approach is to use a value that is automatically altered when you declare an array.
Because every array automatically derives from the class System.Array, you can use the fields
and methods that are part of the System.Array class with any array you create. In Chapter 2, you
learned that every string has a Length property. Similarly, every array has a Length property
that is a member of the System.Array class and that automatically holds an array’s length.
The Length property is always updated to reflect any changes you make to an array's size. The
following segment of code displays Array size is S and subsequently displays the array's contents:
int[] myScores = {100, 76, 88, 100, 90};
WriteLine("Array size is {0}", myScores.Length);
for(int x = 0; x < myScores.Length; ++x)

WriteLine(myScores[x]);

a new value, It is capitalized, as is the convention with all C# property identifiers. You will create property

ﬂ An array’s Length is a read-only property—a property you can access, but to which you cannot assign
identifiers for your own classes in the chapter “Using Classes and Objects.”

smaller array. For example, if a program requires interactive data entry for 50 items, you might want to test
it first with only three or four items so you can work out the bugs without wasting too much time on data
entry. After the program works correctly with just a few items, if you have used the Length property to
access the array, you need only make one change to the array size at the top of the program when you are
ready to test the full version.

ﬂ When you write a program in which a large array is required, you might want to test it first with a much

Using foreach

You can easily navigate through arrays using a for or while loop that varies a subscript from
0 through Array.Length - 1.C# also supports a foreach statement that you can use to
cycle through every array element without using a subscript. With the foreach statement, you
provide a temporary iteration variable that automatically holds each array value in turn.

For example, the following code displays each element in the payRates array in sequence:

double[] payRates = {12.00, 17.35, 21.12, 27.45, 32.22};
foreach(double money in payRates)
WriteLine("{0}", money.ToString("C"));

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copled, scanned, or duplicated, In whole or In part. WCN 02-200-202



Accessing Array Elements

The variable money is declared as a double within the foreach statement. During the
execution of the loop, money holds each payRates element value in turn—first, payRates[0],
then payRates[1], and so on. As a simple variable, money does not require a subscript, making
it easier to work with.

The foreach statement is used only under certain circumstances: 231

e You typically use foreach only when you want to access every array element. To access only
selected array elements, you must manipulate subscripts using some other technique—for
example, using a for loop or while loop.

e The foreach iteration variable is read-only—that is, you can access it, but you cannot
assign a value to it. If you want to assign a value to array elements, you must use a different
type of loop.

Accessing Array Elements

1. Assume you have declared an array of six doubles named balances. The following
statement displays all the elements:

for(int index = 0; index < 6; ++index)
WriteLine(balances[index]);

. Assume you have declared an array of eight doubles named prices. The following
statement subtracts 2 from each element:

for(double pr = 0; pr < 8; ++pr)
prices[pr] -= 2;

. The following code displays 3:

int[] array = {1, 2, 3};
WriteLine(array.Length);

31.qnop e asn ¢} sjduwae djdwexs siy
pue ‘Ae.se e 0) 1dLISGNS 3L Se JUL Ue 3SN AU UBD NOA “Zé 1 JUBLIAJES asfey U

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copled, scanned, or duplicated, in whole or in part. WCN 02-200-202



CHAPTER 6 QEI-LYEE

% \ You Do It

232 Creating and Using an Array

In the next steps, you create a small array to see how it is used. The array will hold
salaries for four categories of employees.

1.

Open a new file, and begin a console-based program named ArrayDemol
that demonstrates array use:

using static System.Console;
class ArrayDemol

static void Main(Q)

. Declare and create an array that holds four double values by typing:

double[] payRate = {13.00, 17.35, 19.12, 22.45};

. To confirm that the four values have been assigned, display them using the

following code:
for(int x = 0; x < payRate.Length; ++x)
WriteLine("Pay rate {0} is {1}",
X, payRate[x].ToString("C"));

. Add the two closing curly braces that end the Main() method and the

ArrayDemol class.

. Save the program, and then compile and run it. The output appears in
Figure 6-2.

Figure 6-2 Output of the ArrayDemol program



Searching an Array Using a Loop_

Searching an Array Using a Loop

When you want to determine whether a variable holds one of many possible valid values, one
option is to use if statements to compare the variable to valid values. For example, suppose
that a company manufactures 10 items. When a customer places an order for an item, you need
to determine whether the item number is valid. If valid item numbers are sequential, say 101 233
through 110, then the following simple i f statement that uses an AND operator can verify the

order number and set a Boolean field to true:

if(itemOrdered >= 101 && itemOrdered <= 110)
isValidItem = true;

If the valid item numbers are nonsequential, however—for example, 101, 108, 201, 213, 266,
304, and so on—you must code the following deeply nested 1 f statement or a lengthy OR
comparison to determine the validity of an item number:
if(itemOrdered == 101)
isValidItem = true;
else if(itemOrdered == 108)
isValidItem = true;
else if(itemOrdered == 201)
isValidItem = true;
// and so on

Instead of creating a long series of if statements, a more elegant solution to determining
whether a value is valid is to compare it to a list of values in an array. For example, you can
initialize an array with the valid values by using the following statement:

int[] validvalues = {101, 108, 201, 213, 266, 304, 311,
409, 411, 412};

numbers should not change during program execution. In C# you must use the keywords static and
readonly prior to the constant declaration. To keep these examples simple, all arrays in this chapter are
declared as variable arrays.

ﬂ You might prefer to declare the validvalues array as a constant because, presumably, the valid item

After the validValues array is declared, you can use either a for loop or a while loop to
search whether the i temOrdered variable value matches any of the array entries.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copled, scanned, or duplicated, In whole or In part. WCN 02-200-202



CHAPTER 6 Using Arrays

Using a for Loop to Search an Array

One way to determine whether an itemOrdered value equals a value in the validVvalues array
is to use a for statement to loop through the array and set a Boolean variable to true when a

match is found:
234

for(int x = 0; x < validvalues.Length; ++x)
if(itemOrdered == validValues[x])
isvValidItem = true;

This type of search is called a sequential search because each array element is examined

in sequence. This simple for loop replaces the long series of i f statements. What's more, if

a company carries 1000 items instead of 10, then the list of valid items in the array must be
altered, but the for statement does not change at all. As an added bonus, if you set up another
array as a parallel array with the same number of elements and corresponding data, you can
use the same subscript to access additional information. For example, if the 10 items your
company carries have 10 different prices, then you can set up an array to hold those prices as
follows:

double[] prices = {0.89, 1.23, 3.50, 0.69...}; // and so on

The prices must appear in the same order as their corresponding item numbers in the
validvalues array. Now the same for loop that finds the valid item number also finds the
price, as shown in the program in Figure 6-3. In other words, if the item number is found in the
second position in the validValues array, then you can find the correct price in the second
position in the prices array. In the program in Figure 6-3, the variable used as a subscript, x,
is set to 0 and the Boolean variable isValidItem is false. In the shaded portion of the
figure, while the subscript remains smaller than the length of the array of valid item numbers,
the subscript is continuously increased so that subsequent array values can be tested. When
a match is found between the user’s item and an item in the array, isValidItem is set to
true and the price of the item is stored in itemPr1 ce. Figure 6-4 shows two typical program
executions.

If you initialize parallel arrays, it is convenient to use spacing (as shown in Figure 6-3) so that
the corresponding values visually align on the screen or printed page.

make a change to one array, you must remember to make the corresponding change in its parallel array. As
you continue to study C#, you will learn superior ways to correlate data items. For example, in the chapter
“Using Classes and Objects,” you will learn that you can encapsulate corresponding data itemns in objects
and create arrays of objects.

ﬁ Although parallel arrays can be very useful, they also can increase the likelihood of mistakes. Any time you

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copled, scanned, or duplicated, In whole or In part. WCN 02-200-202



Searching an Array Using a Loop_

using System;
using static System.Console;
class FindPriceWithForlLoop
{
static void Main()
{ 235
int[] validvalues = {101, 108, 201, 213, 266,
304, 311, 409, 411, 412%};
double[] prices = {0-89; 1:23, 3.50; 0:69.:5.79;
3.19, 0.99, 0.89, 1.26, 8.00};
int itemOrdered;
double itemPrice = 0;
bool isValidItem = false;
Write("Please enter an item ");
itemOrdered = Convert.ToInt32(ReadlLine());
for(int x = 0; x < validvalues.Length; ++x)
{
'{f('i temOrdered == validvValues[x])
isvalidItem = true;
itemPrice = prices[x];
}
}
if(isvalidItem)
WriteLine("Price is {0}", itemPrice);
else
WriteLine("Sorry - item not found");
}
}

Figure 6-3 The FindPriceWithForLoop program

Figure 6-4 Two typical executions of the FindPriceWithForLoop program



CHAPTER 6 Using Arrays

In the fourth statement of the Main() method in Figure 6-3, i temPrice is set to 0. Setting this
variable is required because its value is later altered only if an item number match is found in
the validvalues array. When C# determines that a variable’s value is only set depending on an
if statement, C# will not allow you to display the variable because the compiler assumes that
the if statement’s Boolean expression could have been false and the variable might not have

280 been set to a valid value.

Improving a Loop’s Efficiency

The code shown in Figure 6-3 can be made more efficient. Currently, the program compares
every itemOrdered with each of the 10 validvalues. Even when an itemOrdered is
equivalent to the first value in the validvalues array (101), you always make nine additional
cycles through the array comparing all the values. On each of these nine additional iterations,
the comparison between itemOrdered and validValues[x] is always false. As soon as

a match for an itemOrdered is found, the most efficient action is to break out of the for

loop early. An easy way to accomplish this task is to set x to a high value within the block of
statements executed when a match is found. Then, after a match, the for loop will not execute
again because the limiting comparison (x < validValues.Length) will have been surpassed.
Figure 6-5 shows this approach.

for(int x = 0; x < validvalues.Length; ++x)

if(itemOrdered == validvValues[x])
{
isvValidItem = true;
itemPrice = prices([x];
x = validvalues.Length;
// Change x to force break out of Toop
) // when you find a match

}

Figure 6-5 Loop with forced early exit

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copled, scanned, or duplicated, in whole or in part. WCN 02-200-202



Searching an Array Using a Loop_

In the code segment in Figure 6-5, instead of the statement that sets x to validvalues.Length
when a match is found, you could remove that statement and change the comparison in the
middle section of the for statement to a compound statement, as follows:

for(int x = 0; x < validvalues.lLength && !isvValidItem; ++x)...

As another alternative, you could remove the statement that sets x to validvalues.Length 237
and place a break statement within the loop in its place. A break statement exits the current
code block immediately.

If you decide to leave a loop as soon as a match is found, the most efficient strategy is to place
the most common items first so they are matched sooner. For example, if item 311 is ordered
most often, place 311 first in the validValues array and its price ($0.99) first in the prices
array. However, it might be more convenient for people to view the item numbers in ascending
numerical order. In many business applications, your first consideration is how easily users
can read, understand, and modify your programs. However, in other applications, such as
programming for mobile devices, speed and memory considerations are more important. You
should follow the recommendations of your instructors or supervisors.

Some programmers disapprove of exiting a for loop early, whether by setting a variable’s value
or by using a break statement. They argue that programs are easier to debug and maintain

if each program segment has only one entry and one exit point. If you (or your instructor)
agree with this philosophy, then you can select an approach that uses a while statement, as
described next.

Using a while Loop to Search an Array

As an alternative to using a for loop to search an array, you can use a while loop to search

for a match. Using this approach, you set a subscript to 0 and, while the itemOrdered is not
equal to a value in the array, increase the subscript and keep looking. You search only while the
subscript remains lower than the number of elements in the array. If the subscript increases
until it matches validvalues.Length, then you never found a match in the array. If the loop
ends before the subscript reaches validvalues.Length, then you found a match, and the
correct price can be assigned to the itemPrice variable. Figure 6-6 shows a program that uses
this approach.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copled, scanned, or duplicated, In whole or In part. WCN 02-200-202



CHAPTER 6 Using Arrays

using System;
using static System.Console;
class FindPriceWithwhilelLoop

{
static void Main()
238 {

int x;

string inputString;

int itemOrdered;

double itemPrice = 0;

bool isValidItem = false;

int[] validvalues = {101, 108, 201, 213,
304, 311, 409, 411, 412};

double[] prices = {0.89, 1.23, 3.50, 0.69,
3.19, 0.99, 0.89, 1.26, 8.00};

Write("Enter item number ");

inputString = ReadLine();

itemOrdered = Convert.ToInt32(inputString);

x = 0;

if(x != validvalues.Length)

isValidItem = true;
itemPrice = prices[x];

}
if(isvalidItem)
WriteLine("Item {0} sells for {1}",
itemOrdered, itemPrice.ToString("C"));
else

}
}

266,

5.79;

WriteLine("No such item as {0}", itemOrdered);

Figure 6-6 The FindPriceWithWhileLoop program that searches with a while loop

In the application in Figure 6-6, the variable used as a subscript, x, is set to 0 and the Boolean

variable isValidItemis false. In the shaded portion of the figure, while the subscript
remains smaller than the length of the array of valid item numbers, and while the user's
requested item does not match a valid item, the subscript is increased so that subsequent

array values can be tested. The while loop ends when a match is found or the array tests have
been exhausted, whichever comes first. When the loop ends, if x is not equal to the size of the
array, then a valid item has been found, and its price can be retrieved from the prices array.
Figure 6-7 shows two executions of the program. In the first execution, a match is found; in the

second, an invalid item number is entered, so no match is found.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copled, scanned, or duplicated, in whole or In part. WCN 02-200-202




Searching an Array Using a Loop_

Figure 6-7 Two executions of the FindPriceWithWhileLoop application
239

@ Watch the video Searching an Array.

Searching an Array for a Range Match

Searching an array for an exact match is not always practical. For example, suppose your mail-
order company gives customer discounts based on the quantity of items ordered. Perhaps no
discount is given for any order of up to a dozen items, but increasing discounts are available for
orders of increasing quantities, as shown in Figure 6-8.

Total Quantity Ordered Discount (%)
1to12 None

1310 49 10

50 to 99 14

100 to 199 18

200 or more 20

Figure 6-8 Discount table for a mail-order company

One awkward, impractical option is to create a single array to store the discount rates. You
could use a variable named numOfItems as a subscript to the array, but the array would need
hundreds of entries, such as the following:
double[] discounts = {0, 0, 0, O, O, O, O, O, O, O,

o, 0, 0, 0.10, 0.10, 0.10 ...}; // and so on
When numOfItems is 3, for example, then discounts[numOfItems] or discounts[3] is 0.
When numOfItems is 14, then discounts [numOfItems] or discounts[14] is 0.10. Because a
customer might order thousands of items, the array would need to be ridiculously large.

A better option is to create parallel arrays. One array will hold the five discount rates, and
the other array will hold five discount range limits. Then you can perform a range match

ypyright 2018 Cengage Learning. All Rights Reserved. May not be copled, scanned, or duplicated, in whole or in part. WCN 02-200-202



CHAPTER 6 Using Arrays

240

by determining the pair of limiting values between which a customer’s order falls. The Total
Quantity Ordered column in Figure 6-8 shows five ranges. If you use only the first value in each

range, then you can create an array that holds five low limits:

int[] discountRangeLowLimits = {1, 13, 50, 100, 200};
A parallel array will hold the five discount rates:

double[] discounts = {0, 0.10, 0.14, 0.18, 0.20};

Then, starting at the last di scountRangeLowLimi ts array element, for any numOfItems
greater than or equal to di scountRangeLowLimits[4], the appropriate discount is
discounts[4]. In other words, for any numOfItems less than discountRangeLowLimits[4],
you should decrement the subscript and look in a lower range. Figure 6-9 shows the code.

// Assume numOfItems is a declared integer for which a user

// has input a value

int[] discountRangelLowLimits = {1, 13, 50, 100, 200};

double[] discounts = {0, 0.10, 0.14, 0.18, 0.20};

double customerDiscount;

int sub = discountRangeLowLimits.Length - 1;

while(sub >= 0 && numOfItems < discountRangelLowLimits[sub])
--sub;

customerDiscount = discounts[sub];

Figure 6-9 Searching an array of range limits

As an alternate approach to the range-checking logic in Figure 6-9, you can choose to create an

array that contains the upper limit of each range, such as the following:
int[] discountRangeUpperLimits = {12, 49, 99, 199, 9999999};

Then the logic can be written to compare numOfItems to each range limit until the correct

range is located, as follows:

int sub = 0;

while(sub < discountRangeUpperLimits.Length &&
numOfItems > discountRangeUpperLimits[sub])
++sub;

customerDiscount = discounts[sub];

In this example, sub is initialized to 0. While it remains within array bounds, and while
numOfItems is more than each upper-range limit, sub is increased. In other words, if
numOfItems is 3, the while expression is false on the first loop iteration, the loop ends, sub
remains 0, and the customer discount is the first discount. However, if numOfItems is 30, then
the while expression is true on the first loop iteration, sub becomes 1, the while expression
is false on the second iteration, and the second discount is used. In this example, the last
discountRangeUpperLimits array value is 9999999. This very high value was used with the
assumption that no numOfItems would ever exceed it, but, because this assumption could

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copled, scanned, or duplicated, In whole or In part. WCN 02-200-202



Using the BinarySearch(), Sort(), and Reverse() Methods_

possibly be wrong, many programmers prefer to use a range-checking method that uses lower
range limits. As with many issues in programming, multiple correct approaches frequently
exist for the same problem.

241

Searching an Array Using a Loop

. A parallel array has the same number of elements as another array and corresponding
data.

. When you search an array for an exact match in a parallel array, you must perform a
loop as many times as there are elements in the arrays.

. One practical solution to creating an array with which to perform a range check is to
design the array to hold the lowest value in each range.

"yoeoidde JuBIOLS JSOLI AU S| PUNO} SI YOJBLW B SB UOOS S $8[9K doo)
ay) Suneuiwus] K1essadauun e suonesay dooj [eUORIPPE AU} ‘punoy St Yojew e 3ouo
Inq ‘sAeLie 3y ul SJuBLIRJS e aJay} Se saww Auew se dooj e wiopad ued nok ‘Aese

fBllezed Ul yjew J0exa ue 4oy Ae.ie Ue 401 as NoA UaYM Z# S! JUBWAe)s asfe) ay|

Using the BinarySearch(), Sort(), and Reverse()
Methods

You have already learned that every array in C# can use the Length property it gets from

the System.Array class. Additionally, the System.Array class contains a variety of useful,
built-in methods that you can use with arrays. This section shows you how to use the methods
Array.BinarySearch() method to find an element in an array, the Array.Sort() method to
sort an array’s elements, and the Array .Reverse() method to reverse the order of elements.
If you include the statement using static System.Array();, you can use each of these
methods without using the Array class name and the dot.

Using the BinarySearch() Method

A binary search is one in which a sorted list of objects is split in half repeatedly as the search
gets closer and closer to a match. Perhaps you have played a guessing game, trying to guess a
number from 1 to 100. If you asked, “Is it less than 507" and continued to narrow your guesses
upon hearing each subsequent answer, then you have performed a binary search. In C#, the
BinarySearch () method finds a requested value in a sorted array.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copled, scanned, or duplicated, in whole or in part. WCN 02-200-202



CHAPTER 6 QEI-LYEE

Figure 6-10 shows a program that declares an array of integer idNumbers arranged in
ascending order. The program prompts a user for a value, converts it to an integer, and passes
the array and the entered value to the BinarySearch() method in the shaded statement. The
method returns -1 if the value is not found in the array; otherwise, it returns the array position

-ZZ‘ of the sought value. Figure 6-11 shows two executions of this program.

Chapter 1 you learned that arguments represent information that a method needs to perform its task. When
methods require multiple arguments, they are separated by commas. For example, when you have used
the WriteLine() method, you have passed a format string and values to be displayed, all separated by
commas.

ﬂ The BinarySearch() method takes two arguments—the array name and the value for which to search. In

using System;
using static System.Console;
class BinarySearchDemo

static void Main()
{
int[] idNumbers = {122, 167, 204, 219, 345};
int x;
string entryString;
int entryId;
Write("Enter an Employee ID ");
entryString = ReadLine();
entryId = Convert.ToInt32(entryString);
X = Array.BinarySearch(idNumbers, entryId);

if(x < 0)
WriteLine("ID {0} not found", entryld);
else
WriteLine("ID {0} found at position {1} ",
entryId, x);

}

}

Figure 6-10 The BinarySearchDemo program

Figure 6-11 Two executions of the BinarySearchDemo program

You have sent arguments to methods, as in the following statement:
wWrite("Enter an Employee ID ");

You also have accepted methods’ returned values, as in the following statement:
entryString = ReadLine();

je Learning. All Rights Reser ved. May not be copled, scanned, or duplicatec



Using the BinarySearch(), Sort(), and Reverse() Methods_

When you use the BinarySearch () method, you both send arguments and receive returned
values:

X = Array.BinarySearch(idNumbers, entryId);

The statement calls the method that performs the search, returning -1 or the position where
entryId was found; that value is then stored in x. This single line of code is easier to write, less 243
prone to error, and easier to understand than writing a loop to cycle through the idNumbers

array looking for a match. Still, it is worthwhile to understand how to perform the search

without the BinarySearch() method, as you learned while studying parallel arrays earlier

in this chapter. You will need to use that technique under the following conditions, when the
BinarySearch() method proves inadequate:

e If your array items are not arranged in ascending order, the BinarySearch() method does
not work correctly.

o If your array holds duplicate values and you want to find all of them, the BinarySearch()
method doesn't work—it can return only one value, so it returns the position of the first
matching value it finds (which is not necessarily the first instance of the value in the array).

e If you want to find a range match rather than an exact match, you can't use the
BinarySearch() method.

Using the Sort () Method

The Sort() method arranges array items in ascending order. The method works numerically
for number types and alphabetically for characters and strings. To use the method, you pass
the array name to Array.Sort(), and the element positions within the array are rearranged
appropriately. Figure 6-12 shows a program that sorts an array of strings; Figure 6-13 shows its
execution.

using System;
using static System.Console;
class SortArray
{
static void Main()
{
string[] names = {"0live", "Patty",
"Richard", "Ned", "Mindy"};
int x;
Array.Sort(names) ;
for(x = 0; x < names.Length; ++x)
WriteLine(names[x]);
}
}

Figure 6-13 Execution of the
Figure 6-12 The SortArray program SortArray program

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copled, scanned, or duplicated, In whole or in part. WCN 02-200-202



CHAPTER 6 QSIILYENS

Because the BinarySearch() method requires that array elements be sorted in order,
the Sort () method is often used in conjunction with it.

] The Array.Sort() method provides a good example of encapsulation—you can use the method without
244 ‘ understanding how it works internally. The method actually uses an algorithm named Quicksort. You will learn

how to implement this algorithm yourself as you continue to study programming.

Using the Reverse () Method

The Reverse () method reverses the order of items in an array. In other words, for any array,
the element that starts in position 0 is relocated to position Length - 1, the element that
starts in position 1 is relocated to position Length - 2, and so on until the element that starts
in position Length - 1is relocated to position 0. When you Reverse() an array that contains
an odd number of elements, the middle element will remain in its original location. The
Reverse () method does not sort array elements; it only rearranges their values to the opposite
order.

You call the Reverse() method the same way you call the Sort() method—you simply pass
the array name to the method. Figure 6-14 shows a program that uses Reverse() with an array
of strings, and Figure 6-15 shows its execution.

using System;
using static System.Console;
class ReverseArray
{
static void Main()
{
string[] names = {"Zach", "Rose",
"Wendy", "Marcia"};
int x;
Array.Reverse(names);
for(x = 0; x < names.lLength; ++x)
WriteLine(names[x]);
: }
Figure 6-15 Execution of the

Figure 6-14 The ReverseArray program ReverseArray program

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copled, scanned, or duplicated, In whole or in part. WCN 02-200-202



Using the BinarySearch(), Sort(), and Reverse() Methods_

Using the BinarySearch(), Sort(), and Reverse() Methods

. When you use the BinarySearch() method, the searched array items must first be 245
organized in ascending order.

. The Array.Sort() and Array.Reverse() methods are similar in that both require a
single argument.

. The Array.Sort() and Array.Reverse() methods are different in that one places
items in ascending order and the other places them in descending order.

‘Jou 4o paposaid sem ) Jayjaym Aese
Aue Jo Jap10 Bunsixa Ay} $asianal Aidwis poyiaL () 3sJaAsYy * Aeuuy au) Ing '4apio
Suipuaose ui swiay sade(d poyiaw ()340S " Aeuay Y| “C# S| JuaLLLIL)S as|e) Ay |

"«\ You Do It

Using the Sort() and Reverse() Methods

In the next steps, you create an array of integers and use the Sort()
and Reverse () methods to manipulate it.

1. Open a new file and type the beginning of a program named ArrayDemo2
that includes an array of eight integer test scores, an integer you will use as a
subscript, and a string that will hold user-entered data.
using System;
using static System.Console;
class ArrayDemo2

static void MainQ)
{

int[] scores = new int[8];
dntix;
string inputString;

. Add two more items that will be used to improve the appearance of the
output: a counter to count dashes to be displayed in a line and a constant for
the number of dashes:

int count;
const int DASHES = 50;

(continues)

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copled, scanned, or duplicated, in whole or in part. WCN 02-200-202



CHAPTER 6 QSIILYENS

(continued)

3. Add a loop that prompts the user, accepts a test score, converts the score to

an integer, and stores it as the appropriate element of the scores array. When
the loop is complete, execute a writeLine() statement so that the next
output appears on a new line.

for(x = 0; x < scores.Length; ++x)
Write("Enter your score on test {0} ", x + 1);
inputString = ReadLine();
scores[x] = Convert.ToInt32(inputString);

WriteLine();

The program displays x + 1 with each score[x] because, although array elements
are numbered starting with O, people usually count items starting with 1.

4. Add a loop that creates a dashed line to visually separate the input from the

output.

for(count = 0; count < DASHES; ++count)
Write("-");

WriteLine(Q);

. Display Scores in original order:, then use a loop to display each score in a

field that is six characters wide.

WriteLine("Scores 1in original order:");
for(x = 0; x < scores.Length; ++x)

Write("{0, 6}", scores[x]);
WriteLine();

. Add another dashed line for visual separation, then pass the scores array to

the Array.Sort() method. Display Scores in sorted order:, then use a loop
to display each of the newly sorted scores.

for(count = 0; count < DASHES; ++count)
Write("-");

WriteLine();

Array.Sort(scores);

WriteLine("'Scores 1in sorted order:");

for(x = 0; x < scores.Length; ++x)
Write("{0, 6}", scores[x]);

WriteLine();

. Add one more dashed line, reverse the array elements by passing scores to

the Array.Reverse () method, display Scores in reverse order:, and show
the rearranged scores.

(continues)

2018 Cengage Learning. All Rights Reserved. May not be copled, scanned, or duplicated, in whole or in part. WCN 02-200-202



Using Multidimensional Arrays _

(continued)

for(count = 0; count < DASHES; ++count)

Write("-");
WriteLine(Q); “

Array.Reverse(scores);
WriteLine("Scores in reverse order:");
for(x = 0; x < scores.Length; ++x)
Write("{0, 6}", scores[x]);
8. Add two closing curly braces—one for the Main() method and one for the class.

9. Save the file, and then compile and execute the program. Figure 6-16 shows
a typical execution of the program. The user-entered scores are not in order,
but after the call to the Sort() method, they appear in ascending order. After
the call to the Reverse () method, they appear in descending order.

Figure 6-16 Typical execution of the ArrayDemo2 program

Using Multidimensional Arrays

When you declare an array such as double[] sales = new double[20];, you can envision
the declared integers as a list or column of numbers in memory, as shown at the beginning of
this chapter in Figure 6-1. In other words, you can picture the 20 declared numbers stacked one
on top of the next. An array that you can picture as a column of values, and whose elements
you can access using a single subscript, is a one-dimensional or single-dimensional array. You
can think of the single dimension of a single-dimensional array as the height of the array.



CHAPTER 6 Using Arrays

248

C# also supports multidimensional arrays—those that require multiple subscripts to access
the array elements. The most commonly used multidimensional arrays are two-dimensional
arrays that are rectangular. Two-dimensional arrays have two or more columns of values for
each row, as shown in Figure 6-17. You can think of the two dimensions of a two-dimensional

array as height and width.
sales[0, 0] sales(0, 1) sales[0, 2] sales[0, 3]
sales[1, 0] sales(1, 1] sales[1, 2] sales(1, 3]
sales[2, 0] sales(2, 1] sales(2, 2] sales[2, 3]

Figure 6-17 View of a rectangular, two-dimensional array in memory

The array in Figure 6-17 is a rectangular array. In a rectangular array, each row has the
same number of columns. You must use two subscripts when you access an element in a
two-dimensional array. When mathematicians use a two-dimensional array, they often call
it a matrix or a table; you might have used a two-dimensional array called a spreadsheet.
You might want to create a sales array with two dimensions, as shown in Figure 6-17, if,
for example, each row represented a category of items sold, and each column represented a
salesperson who sold them.

When you declare a one-dimensional array, you type a single, empty set of square brackets
after the array type, and you use a single subscript in a set of square brackets when reserving
memory. To declare a two-dimensional array, you type a comma in the square brackets after
the array type, and you use two subscripts, separated by a comma in brackets, when reserving
memory. For example, the array in Figure 6-17 can be declared as the following, creating an
array named sales that holds three rows and four columns:

= new double[3, 4];

When you declare a two-dimensional array, spaces surrounding the comma within the square

double[ , ] sales

brackets are optional.

Just as with a one-dimensional array, every element in a two-dimensional array is the same data
type. Also, just as with a one-dimensional array if you do not provide values for the elements in
a two-dimensional array, the values are set to the default value for the data type (for example,

0 for numeric data). You can assign other values to the array elements later. For example, the
following statement assigns the value 14.00 to the element of the sales array that is in the first
column of the first row:

sales[0, 0] = 14.00;
Alternatively, you can initialize a two-dimensional array by assigning values when it is created.
For example, the following code assigns values to sales upon declaration:

15.00, 16.00, 17.00},
34.55, 67.88, 31.99},
55.55, 32.89, 1.17}};

double[ , ] sales

Copyright 2018 Cengage Learning. All Rights Reserved

= {{14.00,
{21.99,
{12.03,

May not be copled, scanned, or

duplicated, In whole or in p

art. WCN 02-200-202



Using Multidimensional Arrays_

The sales array contains three rows and four columns. You contain the entire set of values
within a pair of curly braces. The first row of the array holds the four doubles 14.00, 15.00,
16.00, and 17.00. Notice that these four values are placed within their own inner set of curly
braces to indicate that they constitute one row, or the first row, which is row 0. The row and its
curly braces are separated from the next row with a comma. The next four values in their own
set of braces make up the second row (row 1), which you reference with the subscript 1, and
the last four values constitute the third row (row 2).

249

When you refer to an element in a two-dimensional array, the first value within the brackets
following the array name always refers to the row; the second value, after the comma, refers
to the column. As examples, the value of sales[0, 0] is 14.00, the value of sales[0, 1]
is 15.00, the value of sales[1, 0] is 21.99, and the value of sales[2, 3] is 1.17. Youdo
not need to place each row of values that initializes a two-dimensional array on its own line.
However, doing so makes the positions of values easier to understand.

As an example of how useful two-dimensional arrays can be, assume that you own an
apartment building with four floors—a basement, which you refer to as floor zero, and three
other floors numbered one, two, and three. In addition, each of the floors has studio (with no
bedroom), one-, and two-bedroom apartments. The monthly rent for each type of apartment
is different, and the rent is higher for apartments with more bedrooms. Figure 6-18 shows the
rental amounts.

Floor | ZeroBedrooms One Bedroom Two Bedrooms
0 400 450 510
1 500 560 630
2 625 676 740
3 1000 1250 1600

Figure 6-18 Rents charged (in dollars)

To determine a tenant’s rent, you need to know two pieces of information about the apartment:
the floor and the number of bedrooms. Within a C# program, you can declare an array of rents
using the following code:
int[ , ] rents = { {400, 450, 510},

{500, 560, 630},

{625, 676, 740},

{1000, 1250, 1600} };
If floor and bedrooms are integers with in-range values, then any tenant's rent can be referred
to as rents[floor, bedrooms].

Figure 6-19 shows a complete program that uses a rectangular, two-dimensional array to hold
rent values. Figure 6-20 shows a typical execution.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copled, scanned, or duplicated, in whole or in part. WCN 02-200-202



CHAPTER 6 QEI-LYEE

250 |

using System;
using static System.Console;
class RentFinder

{

}

static void Main()

int[ , ] rents = { {400, 450, 510},
{500, 560, 630},
{625, 676, 740},
{1000, 1250, 1600} };
int floor;
int bedrooms;
string inputString;
Write("Enter the floor on which you want to Tlive ");
inputString = ReadLine();
floor = Convert.ToInt32(inputString);
Write("Enter the number of bedrooms you need ");
inputString = ReadlLine();
bedrooms = Convert.ToInt32(inputString);
WriteLine("The rent is {0}", rents[floor, bedrooms]);

}

Figure 6-19 The RentFinder program

Figure 6-20 Typical execution of the RentFinder program

@ Watch the video Using a Two-Dimensional Array.

C# supports arrays with more than two dimensions. For example, as in the program in

Figure 6-19, if you own a multistory apartment building with different numbers of bedrooms
available in apartments on each floor, you can use a two-dimensional array to store the rental
fees. However, if you own several apartment buildings, you might want to employ a third
dimension to store the building number. Suppose you want to store rents for four buildings that
have three floors each and that each hold two types of apartments. Figure 6-21 shows how you

might define such an array.

je Learning. All Rights Reser i. May ok pled, scanned, o Jplicated




Using Multidimensional Arrays_

int[ , , ] rents = { { {400, 500}, {450, 550}, {500, 550}},
{ {510, 610}, {710, 810}, {910, 1010}},
{ {525, 625}, {725, 825}, {925, 1025}},
{

{850, 950}, {1050, 1150}, {1250, 1350}}};

Figure 6-21 A three-dimensional array definition 251

The empty brackets that follow the data type contain two commas, showing that the array
supports three dimensions. A set of curly braces surrounds all the data; the inner curly braces
represent the following:

e Four inner sets of braces surround the data for each building—each row of values represents
a building (0 through 3).

e Within each row, the three sets of inner braces represent each floor—first a basement, then
floor one, and floor two. For example, in building 0, {400, 500} are rents for floor 0, and
{450, 550} are rents for floor 1.

e Within each floor, the two braced values represent the bedrooms—first a zero-bedroom
apartment and then a one-bedroom apartment. For example, in building 0, floor 0, 400 is the
rent for a zero-bedroom apartment, and 500 is the rent for a one-bedroom apartment.

Using the three-dimensional array in Figure 6-21, an expression such as rents[building,
floor, bedrooms] refers to a specific rent value for a building whose number is stored
in the building variable and whose floor and bedroom numbers are stored in the floor
and bedrooms variables. Specifically, rents[3, 1, 0] refers to a studio (zero-bedroom)
apartment on the first floor of building 3 (which is the fourth building). The value of
rents[3, 1, 0] is$1050 in Figure 6-21. When you are programming in C¥#, you can use
four, five, or more dimensions in an array. As long as you can keep track of the order of the
variables needed as subscripts, and as long as you don't exhaust your computer's memory,
C# lets you create arrays of any size.

Using Jagged Arrays

C# also supports jagged arrays. A jagged array is a one-dimensional array in which each
element is another array. The major difference between jagged and rectangular arrays is that in
jagged arrays, each row can be a different length.

For example, consider an application in which you want to store train ticket prices for each stop
along five different routes. Suppose some of the routes have as many as 10 stops and others
have as few as two. Each of the five routes could be represented by a row in a multidimensional
array. Then you would have two logical choices for the columns:

® You could create a rectangular, two-dimensional array, allowing 10 columns for each row.
In some of the rows, as many as eight of the columns would be empty, because some routes
have only two stops.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copled, scanned, or duplicated, In whole or In part. WCN 02-200-202



CHAPTER 6 Using Arrays

¢ You could create a jagged array, allowing a different number of elements for each row.
Figure 6-22 shows how you could implement this option.

252

double [][] tickets = {
new double[] {5.50, 6.75, 7.95, 9.00, 12.00,
13.00, 14.50, 17.00, 19.00, 20.25},
new double[] {5.00, 6.00},
new double[] {7.50, 9.00, 9.95, 12.00, 13.00, 14.00},
new double[] {3.50, 6.45, 9.95, 10.00, 12.75},
new double[] {15.00, 16.00} };

Figure 6-22 A jagged array

Two square brackets are used following the data type of the array in Figure 6-22. This notation
declares a jagged array that is composed of five separate one-dimensional arrays. Within the
jagged array, each row needs its own new operator and data type. To refer to a jagged array
element, you use two sets of brackets after the array name—for example, tickets[route]
[stop]. In Figure 6-22, the value of tickets[0][0] is 5.50, the value of tickets[0][1] is
6.75, and the value of tickets[0] [2] is 7.95. The value of tickets[1] [0] is 5.00, and the
value of tickets[1][1] is 6.00. Referring to tickets[1] [2] is invalid because there is

no column 2 in the second row (that is, there are only two stops, not three, on the second
train route).

Using Multidimensional Arrays

1. Arectangular array has the same number of columns as rows.

2. The following array contains two rows and three columns:

int[ , ] departments = {{12, 54, 16},
{22, 44, 47}};

3. Ajagged array is a one-dimensional array in which each element is ancther array.

*3LWeS 9y} 94 0} paunbaJ J0U 3Je SULINJOD PUB SMOJ JO SIAQINU 3Y} INg ‘SULN|OD
10 JqUINU 3LLES AU Sey MOJ 4oea ‘AeLle JeiNBUEIO3) B Uj *T# SI JUaLWAJe)s asfej au)

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copled, scanned, or duplicated, in whole or in part. WCN 02-200-202



