
CHAPTER 13

Understanding Users
and Groups
Linux is a multi-user OS, meaning that it provides features to help mul-
tiple individuals use the computer. Collectively, these features constitute
accounts. Previous chapters of this book have referred to accounts in passing
but haven’t covered them in detail. This chapter changes that; it describes
important account principles and a few commands you can use to begin inves-
tigating accounts. Related to accounts are groups, which are collections of
accounts that can be given special permissions on the computer, so this chap-
ter also describes groups. One account, known as root, has special privileges
on the computer. You use this account to perform most system administration
tasks, so you should understand this account before you tackle the administra-
tive tasks described in the last few chapters of this book.

�� Understanding accounts

�� Using account tools

�� Working as root

Understanding Accounts
Accounts enable multiple users to share a single computer without causing
each other too much trouble. They also enable system administrators to track
who is using system resources and, sometimes, who is doing things they
shouldn’t be doing. Thus, account features help users use a computer and
administrators administer it. Understanding these features is the basis for
enabling you to manage accounts.

Some account features help you identify accounts and the files and
resources associated with them. Knowing how to use these features will help
you track down account-related problems and manage users of a computer.

P

Even a single-user
workstation uses
multiple accounts.
Such a computer
may have just one
user account, but
several system
accounts help
keep the computer
running.

Smith, Roderick W.. Linux Essentials, Wiley, 2012. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/shsbt-ebooks/detail.action?docID=817722.
Created from shsbt-ebooks on 2018-01-10 06:31:02.

C
op

yr
ig

ht
 ©

 2
01

2.
 W

ile
y.

 A
ll

rig
ht

s
re

se
rv

ed
.

2 1 8 	 C h a p t e r 1 3 • U n d e r s t a n d i n g U s e r s a n d G r o u p s

Understanding Account Features
Most account features are defined in the /etc/passwd file, which consists of
colon-delimited lines, with each line defining a single account. An entry might
resemble the following:

luke:x:1003:100:Luke Jones:/home/luke:/bin/bash

The information contained in the fields of this line includes the following:

Username   An account’s username is its most salient feature to humans. Most
Linux account usernames consist of lowercase letters, and occasionally num-
bers, as in luke or thx1138. Underscores (_) and dashes (-) are also valid charac-
ters in Linux usernames, as are dollar signs ($) at the end.

Password   User accounts are normally protected by a password, which is
required to log into the computer. Direct login to most system accounts is dis-
abled, so they lack passwords. (The root account is an important exception; it
has a password in most distributions.) The password field in the /etc/passwd
file usually contains an x, which is a code meaning that the password is stored
in /etc/shadow, as described shortly.

UID   In reality, the username is just a label that the computer displays to us
numerically challenged humans. The computer uses a user identification (UID)
number to track accounts. UID numbers begin with 0 (which refers to the root
account) and can range as high as 4,294,967,295 on modern Linux systems. In
most distributions, user accounts are numbered 1,000 and above, with lower
numbers reserved for system accounts.

GID   Accounts are tied to one or more groups, which are similar to accounts
in many ways; however, a group is a collection of accounts. One of the primary
purposes of groups is to enable users to give certain users access to their files,
while preventing others from accessing them. Each account is tied directly to
a primary group via a group ID (GID) number (100 in the preceding example).
Accounts can be tied to other groups by inclusion in the group’s definition, as
described in Chapter 14, “Creating Users and Groups.”

Comment field   The comment field normally holds the user’s full name (Luke
Jones in this example), although this field can hold other information instead of
or in addition to the user’s name.

Home directory   User accounts, and some system accounts, have home direc-
tories. A home directory is an account’s “home base.” Normally, ownership of an
account’s home directory belongs to the account. Certain tools and procedures
make it easy for users to access their home directories; for instance, the tilde (~)
refers to a user’s home directory when used at the start of a filename.

Certification
Objective

P

Some distributions
number user
accounts starting
at 500 rather than
1,000.

P

File ownership
and permissions
are described in
Chapter 15, “Setting
Ownership and
Permissions.”

Smith, Roderick W.. Linux Essentials, Wiley, 2012. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/shsbt-ebooks/detail.action?docID=817722.
Created from shsbt-ebooks on 2018-01-10 06:31:02.

C
op

yr
ig

ht
 ©

 2
01

2.
 W

ile
y.

 A
ll

rig
ht

s
re

se
rv

ed
.

	 U n d e r s t a n d i n g A c c o u n t s 	 2 1 9

Default shell   A default text-mode shell is associated with every account.
In Linux, this shell is normally Bash (/bin/bash), but individual users can
change this if they like. Most non-root system accounts set the default shell to
/sbin/nologin as an added security measure—this program displays a message
stating that the account is not available. Using /bin/false works in a similar
way, although without the explanatory message.

Although you might guess by its name that /etc/passwd holds password infor-
mation, this isn’t normally the case today, although it was many years ago. For
historical reasons, /etc/passwd must be readable by all users, so storing pass-
words there, even in encrypted form, is risky. Thus, passwords today are stored in
another file, /etc/shadow, that ordinary users can’t read. This file associates an
encrypted password, as well as other information, with an account. This informa-
tion can disable an account after a period of time or if the user doesn’t change
the password within a given period of time. A typical /etc/shadow entry looks
like this:

luke:1E/moFkeT5UnTQ:15369:0:-1:7:-1:-1:

The meaning of each colon-delimited field on this line is as follows:

Username   Each line begins with the username. Note that the UID is not used
in /etc/shadow; the username links entries in this file to those in /etc/passwd.

Password   The password is stored in encrypted form, so it bears no obvious
resemblance to the actual password. An asterisk (*) or exclamation mark (!)
denotes an account with no password (that is, the account doesn’t accept log-
ins—it’s locked). This is common for accounts used by the system itself.

Last password change   The next field (15369 in this example) is the date of
the last password change. This date is stored as the number of days since
January 1, 1970.

Days until a change is allowed   The next field (0 in this example) is the num-
ber of days before a password change is allowed.

Days before a change is required   This field is the number of days after the
last password change before another password change is required.

Days of warning before password expiration   If your system is configured
to expire passwords, you may set it to warn the user when an expiration date is
approaching. A value of 7, as in the preceding example, is typical.

Days between expiration and deactivation   Linux allows for a gap between
the expiration of an account and its complete deactivation. An expired account
either can’t be used or requires that the user change the password immediately

O

Passwords are
stored using a hash,
which is a one-way
type of encryption.
When a user types
a password, it’s
hashed, and if the
hashes match,
access is granted.

O

If you’ve forgotten
the root password,
you can boot with an
emergency disc and
copy the contents of
a password field for
an account whose
password you do
remember.

Smith, Roderick W.. Linux Essentials, Wiley, 2012. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/shsbt-ebooks/detail.action?docID=817722.
Created from shsbt-ebooks on 2018-01-10 06:31:02.

C
op

yr
ig

ht
 ©

 2
01

2.
 W

ile
y.

 A
ll

rig
ht

s
re

se
rv

ed
.

2 2 0 	 C h a p t e r 1 3 • U n d e r s t a n d i n g U s e r s a n d G r o u p s

after logging in. In either case, its password remains intact. A deactivated
account’s password is erased, and the account can’t be used until it’s reactivated
by the system administrator.

Expiration date   This field shows the date on which the account will expire. As
with the last password change date, the date is expressed as the number of days
since January 1, 1970.

Special flag   This field is reserved for future use and normally isn’t used or
contains a meaningless value. This field is empty in the preceding example.

For fields relating to day counts, a value of -1 or 99999 typically indicates
that the relevant feature has been disabled. The /etc/shadow values are gener-
ally best left to modification through commands such as usermod (described in
Chapter 14, “Creating Users and Groups”) and chage. Understanding the format
of the file enables you to review its contents or to replace the root password by
cutting-and-pasting using an emergency disc, should you forget it.

The /etc/shadow file is normally stored with very restrictive permissions,
such as rw------- (600), with ownership by root. (Precise permissions vary
from one distribution to another, though.) This fact is critical to the shadow
password system’s utility because it keeps non-root users from reading the
file and obtaining the password list, even in an encrypted form. By contrast,
/etc/passwd must be readable by ordinary users and usually has rw-r--r--
(644) permissions. If you manually modify /etc/shadow, be sure it has the cor-
rect permissions when you’re done.

It’s important to realize that an account isn’t a single entity like a program
binary file. Account information is scattered across several configuration files,
such as /etc/passwd, /etc/shadow, /etc/group, and possibly in other configu-
ration files that refer to accounts. User files reside in the user’s home directory
and perhaps elsewhere. Thus, managing accounts can require doing more than
just editing a file or two—although in the case of system accounts, that may
be enough. For this reason, various utilities exist to help create, manage, and
delete accounts, as described in the rest of this chapter and in Chapter 14.

Identifying Accounts
One way to identify user accounts is to use a GUI tool for account management.
Such tools vary from one distribution to another, though. One example is the
User Accounts tool in the System Settings control panel on a Fedora system.
Accessing this option produces a window similar to the one shown in Figure 13.1.

P

Examples of user
files stored outside
of the user’s home
directory include
e‑mail in /var/
spool/mail and
temporary files in
/tmp.

Smith, Roderick W.. Linux Essentials, Wiley, 2012. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/shsbt-ebooks/detail.action?docID=817722.
Created from shsbt-ebooks on 2018-01-10 06:31:02.

C
op

yr
ig

ht
 ©

 2
01

2.
 W

ile
y.

 A
ll

rig
ht

s
re

se
rv

ed
.

	 U n d e r s t a n d i n g A c c o u n t s 	 2 2 1

This tool shows only user accounts, not system accounts. It enables changing a
few features, such as a user’s password, by clicking on them, but its usefulness
as an account management tool is limited. Ordinary users, however, can reach
it fairly easily and can use it to change their passwords. As an administrator, you
can use this tool to quickly verify what accounts are active.

F I G U R E 1 3 . 1   The User Accounts tool in System Settings provides
minimal account information.

You can identify all of a computer’s accounts by viewing the contents of the
/etc/passwd file with cat or less or by loading the file in a text editor. Doing so
will reveal all the accounts, including both system and user accounts.

Alternatively, if you’re searching for information on a specific account, you
can use grep to find it in /etc/passwd, as in grep Jones /etc/passwd to
find information on any account that’s tied to a user with the name Jones.
(This specific example assumes that the string Jones appears in the passwd
file, of course.)

An alternative that’s similar to perusing /etc/passwd is to type getent
passwd. This command retrieves entries from certain administrative databases,
including the account database. In most cases, typing getent passwd produces
results that are identical to typing cat /etc/passwd; however, sometimes the
two aren’t identical. The /etc/passwd file defines only local user accounts. It’s
possible to configure Linux to use a network account database to define some
or all of its accounts. If you use such a configuration, typing getent passwd
returns both local accounts and accounts defined on the network server.

O

Passwords are nor-
mally displayed as
dots or asterisks as
a security feature.

Smith, Roderick W.. Linux Essentials, Wiley, 2012. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/shsbt-ebooks/detail.action?docID=817722.
Created from shsbt-ebooks on 2018-01-10 06:31:02.

C
op

yr
ig

ht
 ©

 2
01

2.
 W

ile
y.

 A
ll

rig
ht

s
re

se
rv

ed
.

2 2 2 	 C h a p t e r 1 3 • U n d e r s t a n d i n g U s e r s a n d G r o u p s

Net work Account Databases

Many networks employ network account databases. Such systems include the
Network Information System (NIS), an update to this system called NIS+, the
Lightweight Directory Access Protocol (LDAP), Kerberos realms, Windows NT 4.0
domains, and Active Directory (AD) domains. All of these systems move account
database management onto a single centralized computer (often with one or more
backup systems). The advantage of this approach to account maintenance is that
users and administrators need not deal with maintaining accounts independently
on multiple computers. A single account database can handle accounts on dozens
(or even hundreds or thousands) of different computers, greatly simplifying day-
to-day administrative tasks and simplifying users’ lives. Using such a system,
though, means that most user accounts won’t appear in /etc/passwd and
/etc/shadow, and groups may not appear in /etc/group (described shortly,
in “Understanding Groups”). These files will still hold information on local system
accounts and groups, though.

Linux can participate in these systems. In fact, some distributions provide options
to enable such support at OS installation time. Typically, you must know the
name or IP address of the server that hosts the network account database, and
you must know what protocol that system uses. You may also need a password
or some other protocol-specific information, and the server may need to be
configured to accept accesses from the Linux system you’re configuring.

Activating use of such network account databases after installing Linux is a
complex topic that is not covered in this book. Such systems often alter the
behavior of tools such as passwd and usermod (described in Chapter 14)
in subtle or not-so-subtle ways. If you need to use such a system, you’ll have
to consult documentation specific to the service you intend to use. My book
Linux in a Windows World (O’Reilly, 2005) covers this topic for Windows NT
4.0 domains, LDAP, and Kerberos; and Mark Minasi and Dan York’s Linux
for Windows Administrators (Sybex, 2002) covers this topic for Windows NT
4.0 domains and NIS.

Understanding Groups
As noted earlier, groups are collections of accounts that are defined in the /etc/
group file. Like /etc/passwd, /etc/group consists of a series of colon-delimited
lines, each of which defines a single group. An example looks like this:

users:x:100:games,sally

Certification
Objective

Smith, Roderick W.. Linux Essentials, Wiley, 2012. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/shsbt-ebooks/detail.action?docID=817722.
Created from shsbt-ebooks on 2018-01-10 06:31:02.

C
op

yr
ig

ht
 ©

 2
01

2.
 W

ile
y.

 A
ll

rig
ht

s
re

se
rv

ed
.

	 U s i n g A c c o u n t To o l s 	 2 2 3

The fields in /etc/group are:

Group name   The first field, users in the preceding example, is the name of the
group. You use it with most commands that access or manipulate group data.

Password   Groups, like users, can have passwords. A value of x means that the
password is defined elsewhere, and an empty password field means the group
has no password.

GID   Linux uses GID values, like UID values, internally. Translation to and
from group names is done for the benefit of users and administrators.

User list   You can specify users who belong to the group in a comma-delimited
list at the end of the /etc/group line.

It’s important to recognize that users can be identified as members of a group
in either of two ways:

�� By specifying the group’s GID in users’ individual /etc/passwd entries.
Because /etc/passwd only has room for one GID value, only one group
can be defined in this way. This is the user’s primary (or default) group.

�� By specifying usernames in the user list in the /etc/group file. A single
user can appear multiple times in /etc/group, and a single group can
have multiple users associated with it in this way. If a user is associated
with a group in this way but not via the user’s /etc/passwd entry, this
group association is secondary.

When you create new files, those files will be associated with your current
group. When you log in, your current group is set to your primary group. If you
want to create files that are associated with another group to which you belong,
you can use the newgrp command, as in:

$ newgrp project1

This command makes project1 your current group, so that files you create
will be associated with that group. Group ownership of files is important in file
security, which is described in more detail in Chapter 15, “Setting Ownership
and Permissions.”

Using Account Tools
A few commands can help you learn about the users and groups on your com-
puter. Most notably, the whoami and id utilities can tell you about your own iden-
tity, and the who and w utilities can give you information about who is currently
using the computer.

O

The use of group
passwords is an
advanced topic that’s
beyond the scope of
this book.

Smith, Roderick W.. Linux Essentials, Wiley, 2012. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/shsbt-ebooks/detail.action?docID=817722.
Created from shsbt-ebooks on 2018-01-10 06:31:02.

C
op

yr
ig

ht
 ©

 2
01

2.
 W

ile
y.

 A
ll

rig
ht

s
re

se
rv

ed
.

2 2 4 	 C h a p t e r 1 3 • U n d e r s t a n d i n g U s e r s a n d G r o u p s

Discovering Your Own Identity
If you’ve been using su to change your effective user ID, or if you maintain mul-
tiple accounts for yourself and you don’t recall which one you used to log in, you
might become confused about your current status. In such a case, the whoami
command can come in handy: It displays your effective user ID:

$ whoami
luke

This example reveals that the current account is luke. If you need more infor-
mation, you can use the id utility:

$ id
uid=1003(luke) gid=100(users) groups=100(users),16(cron),18(audio)

This example shows information on both users and groups:

�� Your user ID and username—uid=1003(luke) in this example

�� Your current group—gid=100(users) in this example

�� All your group memberships—the entries following groups= in this
example

The id command displays both the numeric UID or GID values and the asso-
ciated names. The current group is the one that’s active, either by default or
because you used the newgrp command.

You can limit id’s output by specifying a number of options, as summarized
in Table 13.1. In addition, you can specify a username, as in id sally, to obtain
information on that user rather than on yourself.

T A B L E 1 3 . 1   Options for id

Long option Short option Effect

--group -g Displays only the effective group ID

--groups -G Displays all the groups to which you belong

--user -u Displays only the user data

--name -n Used in conjunction with -g, -G, or -u, displays
only the name not the UID or GID

--real -r Used in conjunction with -g, -G, or -u, displays
only the UID or GID, not the name

Certification
Objective

Smith, Roderick W.. Linux Essentials, Wiley, 2012. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/shsbt-ebooks/detail.action?docID=817722.
Created from shsbt-ebooks on 2018-01-10 06:31:02.

C
op

yr
ig

ht
 ©

 2
01

2.
 W

ile
y.

 A
ll

rig
ht

s
re

se
rv

ed
.

	 U s i n g A c c o u n t To o l s 	 2 2 5

Learning Who’s Online
Linux permits multiple users to access the computer simultaneously. Most often,
this is done by means of remote access servers such as the Secure Shell (SSH);
however, you can use Linux’s virtual terminal (VT) feature to log in multiple times
using a single keyboard and monitor. Sometimes you might want to know who
is using the computer. You might do this before shutting down the computer, for
instance, to ensure you don’t inconvenience another user.

To learn who is online, you can use a command known as who:

$ who
luke :0 2012-03-06 13:27
luke pts/0 2012-03-06 15:16 (:0.0)
sally pts/7 2012-03-07 13:00 (callisto)
rod pts/9 2012-03-07 13:22 (remote.example.org)

This example shows four logins—two by luke, one by sally, and one by rod.
Information provided in the default output includes:

Username   The first column of who’s output shows the username.

Terminal identifier   The second column of who’s output shows a code asso-
ciated with the terminal. In this example, luke’s first login shows :0 as this
identifier, which means it’s a local GUI (X) login. The remaining logins all have
terminal identifiers of the form pts/#, indicating text sessions. A text session
can be a terminal launched in X, a text-mode console login, or a remote login
via SSH or some other protocol.

Login date and time   who displays the date and time of each login. Thus, you
can see that luke’s X session began almost one full day before rod logged in.

Remote host   The final column of who’s output, if present, shows the login
source. Console logins (including both text-mode and X-based logins) don’t
include a source. A source of the form :# or :#.#, as in luke’s second session,
indicate a terminal opened in X. A hostname or IP address, as in sally’s and
rod’s sessions, indicates remote access from the specified computer.

You can obtain additional information, most of which is obscure or special-
ized, by passing options to who. One that’s more likely than others to be useful is
--count (or -q), which produces a more compact summary of the data:

$ who -q
luke luke sally rod
users=4

This output includes just the usernames and a line specifying the total num-
ber of sessions. (That number counts one user with multiple logins multiple
times.) For information on additional who options, consult its man page.

Certification
Objective

O

Text-mode sessions
can also be indicated
by codes of the form
tty#.

Smith, Roderick W.. Linux Essentials, Wiley, 2012. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/shsbt-ebooks/detail.action?docID=817722.
Created from shsbt-ebooks on 2018-01-10 06:31:02.

C
op

yr
ig

ht
 ©

 2
01

2.
 W

ile
y.

 A
ll

rig
ht

s
re

se
rv

ed
.

2 2 6 	 C h a p t e r 1 3 • U n d e r s t a n d i n g U s e r s a n d G r o u p s

An alternative to who is w, which is similar to who but produces somewhat
more verbose output:

$ w
 12:36:40 up 37 days, 45 min, 3 users, load average: 0.00, 0.02, 0.05
USER TTY LOGIN@ IDLE JCPU PCPU WHAT
luke :0 06Mar12 40:23 0.01s 0.01s -bash
luke pts/0 06Mar12 40.00s 0.01s 0.01s nano
sally pts/7 13:00 20:37m 0.00s 0.00s -bash
rod pts/9 13:22 2:50 12:44m 0.00s /bin/sh /etc/xdg/xfce4/xinitrc

As you can see, w displays much of the same information as who, including the
terminal identifier (TTY) and login time (in a different format). In addition, w
displays some further information:

�� The session’s idle time tells you how long it’s been since the user has
interacted with this session. This information can help you identify
sessions that the user may have abandoned.

�� The JCPU column identifies the total amount of CPU time associated
with the session. This can be useful debugging information if the
computer has become sluggish because of out-of-control processes.

�� The PCPU column identifies the total amount of CPU time associated
with the current process running in the session. Again, this informa-
tion can help you track down out-of-control processes.

�� The WHAT column tells you what program the session is running.

Some configurations also display a FROM column, which shows a remote host-
name. Using the -f option toggles this option on or off. A few other options can
eliminate or modify w’s output. Consult the program’s man page for details.

Working as root
Linux is modeled after Unix, which was designed as a multi-user OS. In principle,
you can have thousands of accounts on a single Unix (or Linux) computer. One
user, though, needs extraordinary power in order to manage the features of the
computer as a whole. This is the root user, also known as the superuser or the
administrator. Knowing why root exists, how to do things as root, and how to
use root privileges safely is important for managing a Linux system.

Certification
Objective

Smith, Roderick W.. Linux Essentials, Wiley, 2012. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/shsbt-ebooks/detail.action?docID=817722.
Created from shsbt-ebooks on 2018-01-10 06:31:02.

C
op

yr
ig

ht
 ©

 2
01

2.
 W

ile
y.

 A
ll

rig
ht

s
re

se
rv

ed
.

	 Wo r k i n g a s r o o t 	 2 2 7

Why Work as root?
Most people use computers to do ordinary day-to-day computer tasks—browse
the Web, write letters, manage a music collection, and so on. These activities
are known collectively as user tasks, and they don’t require special privileges.
As just noted, a Linux computer can have many user accounts, and the users
can use the computer from these user accounts (also known as unprivileged
accounts or unprivileged users) to perform such user tasks.

The root account, on the other hand, exists to enable you to perform admin-
istrative tasks. These tasks include installing new software, preparing a new
disk for use in the computer, and managing ordinary user accounts. Such tasks
require access to system files that ordinary users need not modify, or sometimes
even read.

To facilitate performing these tasks, root can read and write every file on the
computer. Since Linux relies on files to store system settings, this effectively
gives root the power to change any detail of the OS’s operation, which is the
point of having a superuser account. If the computer is a workstation that’s used
by just one individual, you might wonder why the distinction between root and
the user account is necessary. The explanation is that the power of the root
account can lead to accidental damage. For instance, take the rm command. If
you mistype an rm command as an ordinary user, you can accidentally delete
your own files but not system files. Make the same mistake as root, however,
and you can delete system files, perhaps making the computer unbootable.
Thus, you should be cautious when using the root account—a topic I’ll come
back to shortly, in “Using root Privileges Safely.”

Acquiring root Privileges
When you need to perform a command-line task that requires root privileges,
you can do so in any of three ways:

Log in as root   You can log in directly as root at a text-mode shell or by using
a remote login tool such as SSH. You can even log into GUI mode as root on
some Linux distributions, although some distributions disallow this by default
because it’s very dangerous.

Use su   The su command enables you to change your identity within a shell.
Type su username to change your identity to that of the specified username.
If you omit username, root is assumed, so typing su enables you to effectively
become root. You must, however, know the password for the target account for

Certification
Objective

Certification
Objective

Certification
Objective

Smith, Roderick W.. Linux Essentials, Wiley, 2012. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/shsbt-ebooks/detail.action?docID=817722.
Created from shsbt-ebooks on 2018-01-10 06:31:02.

C
op

yr
ig

ht
 ©

 2
01

2.
 W

ile
y.

 A
ll

rig
ht

s
re

se
rv

ed
.

2 2 8 	 C h a p t e r 1 3 • U n d e r s t a n d i n g U s e r s a n d G r o u p s

this command to work. After you acquire root privileges in this way, you can
type as many commands as root as you like. When you’re done, type exit to
relinquish your superuser status. You can also use su to run a single command
as root by using the -c option, as in su -c command to run command as root. If
you use a dash (-) within the command, as in su - or su - luke, the program
opens a login session, which runs the target user’s login scripts. This can be
important because these scripts often set environment variables that can be
important for that user, such as $PATH.

Use sudo   The sudo command is similar to su, but it works for just one com-
mand at a time, which you type after sudo, similar to using su -c. For instance,
typing sudo cat /etc/shadow enables you to see the contents of the /etc/
shadow file, which is not readable by ordinary users. You must type either your
own password or the root password, depending on the sudo configuration,
when you use this program. (When using su -c, you must always type the root
password.) The next command you type will be executed using your ordinary
account privileges. By default, most distributions permit only users who are
members of the wheel group to use sudo. Some distributions, such as Ubuntu,
rely heavily on sudo and don’t permit direct root logins by default.

If you acquire root privileges by logging in directly as root or by using su,
your shell prompt will change:

[luke@wembleth ~]$ su
Password:
[root@wembleth luke]#

In this example, the username has changed from luke to root; the directory
has changed from ~ to luke (since for root, ~ refers to /root, not /home/luke);
and the last character of the prompt has changed from a dollar sign ($) to a hash
mark (#). Because I use just the last character of the prompt for most examples
printed on their own lines in this book, such examples implicitly specify whether
a command requires root privileges by the prompt used. For instance, consider
accessing the /etc/shadow file mentioned earlier:

cat /etc/shadow

The use of the hash mark prompt indicates that you must type this command
as root.

Some of this book’s chapters describe both GUI and text-mode methods of
system administration. How, then, can you administer Linux in GUI mode if you
must use the text-mode su (or sudo) command to acquire root privileges? One
way is to launch a GUI administrative tool from a shell in which you’ve already
used su. This approach works but is a bit inelegant if you’re more comfortable

P

su stands for
switch user or
substitute user.

Certification
Objective

To use root com-
mands in Ubuntu,
you must either
precede them
with sudo (as in
sudo cat /etc/
shadow) or type
sudo su to acquire
a longer-lasting
root shell.

P

Smith, Roderick W.. Linux Essentials, Wiley, 2012. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/shsbt-ebooks/detail.action?docID=817722.
Created from shsbt-ebooks on 2018-01-10 06:31:02.

C
op

yr
ig

ht
 ©

 2
01

2.
 W

ile
y.

 A
ll

rig
ht

s
re

se
rv

ed
.

	 Wo r k i n g a s r o o t 	 2 2 9

with a GUI than with a command line. Most distributions, therefore, provide an
alternative: You can launch administrative tools from the computer’s desktop
menus and the GUI tools will then prompt you for the root password, as shown
in Figure 13.2. If you type the password correctly, the program will launch. The
result is similar to that of launching the program from a shell using sudo—it
runs as root, but without making anything else run as root.

F I G U R E 1 3 . 2   When you launch an administrative
tool from a GUI, Linux asks you for a password.

Sett ing the root Password

If you’re using your own computer, you may already know or have the root
password, since most distributions prompt you to enter the root password
when you install the system. Some distributions, such as openSUSE, set the
root password to be identical to the first user account’s password by default.
Ubuntu doesn’t set a root password at all; instead, Ubuntu’s security model
favors the use of sudo or GUI equivalents.

If you’ve forgotten the root password, you can recover or reset it in several
ways, such as:

�� You can type sudo passwd root to reset the root password.
As described in Chapter 14, passwd is the tool to set an account’s
password, and so this command will reset the root password. Used in
this way, sudo will prompt you for a password (you should type your
user password) followed by two prompts for a new root password.
This method will work, however, only if you’re an authorized user of
sudo on your system.



If you’re a member
of the wheel group,
most distributions
prompt you for your
own password rather
than the root pass-
word when using
such tools.

(Continues)

Smith, Roderick W.. Linux Essentials, Wiley, 2012. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/shsbt-ebooks/detail.action?docID=817722.
Created from shsbt-ebooks on 2018-01-10 06:31:02.

C
op

yr
ig

ht
 ©

 2
01

2.
 W

ile
y.

 A
ll

rig
ht

s
re

se
rv

ed
.

2 3 0 	 C h a p t e r 1 3 • U n d e r s t a n d i n g U s e r s a n d G r o u p s

Sett ing the root Password  (Continued)

�� Reboot into an emergency system, such as Parted Magic (http://
partedmagic.com), and mount your regular installation’s root
filesystem. You can then locate its /etc/shadow file (it will be
located at another mount point, such as /mnt/local/etc/shadow)
and load it into a text editor. Locate the entry for an account whose
password you know and copy the second colon-delimited entry from
that line into the equivalent space for the root account. Passwords
are stored in an encrypted form, so you won’t recognize the password
you copy and paste in this way. After you save your changes, reboot
and log into the root account. Once you’ve logged in, change the
root password to something unique.

If you’re using a school’s or employer’s computer, you should either refrain
from attempting to perform tasks as root or obtain the root password
through authorized channels. If you’ve been hired as a system administra-
tor, your employer should provide this information, or specify another way
to perform maintenance (such as using sudo). If you aren’t the computer’s
official administrator, attempting to perform root tasks on it may be grounds
for dismissal. In fact, you might even be sued or imprisoned for breaking
into a computer without authorization!

Using root Privileges Safely
As already described, root power is dangerous. For instance, preparing a disk
requires creating a filesystem on the disk. This topic is not covered in detail
in this book, but you should know that you can create a filesystem with mkfs,
which takes a partition identifier as an option. Suppose that you want to create
a new filesystem on /dev/sda3, so you quickly type a command:

mkfs /dev/sda2

Did you catch the error? The command specifies /dev/sda2 rather than /dev/
sda3. If /dev/sda2 held important data (such as your Linux installation or your
/home directory), this mistake could be absolutely disastrous.

This is just one example of the trouble that improper use of root can cause.
Others include intruders gaining root access to your computer; unintended
changes to configuration files; damage to some (even if not all) of the com-
puter’s system files; and changes to ownership or permissions on ordinary user

Note that emergency
systems, such as
Parted Magic,
typically run all your
commands as root,
so be careful when
using them!

P

Smith, Roderick W.. Linux Essentials, Wiley, 2012. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/shsbt-ebooks/detail.action?docID=817722.
Created from shsbt-ebooks on 2018-01-10 06:31:02.

C
op

yr
ig

ht
 ©

 2
01

2.
 W

ile
y.

 A
ll

rig
ht

s
re

se
rv

ed
.

http://partedmagic.com
http://partedmagic.com

	 Wo r k i n g a s r o o t 	 2 3 1

files, rendering them inaccessible to their true owners. Thus, I recommend you
take the following precautions whenever you need root access:

�� Ask yourself if you really need root access. Sometimes there’s a way
to achieve a goal without superuser privileges or by using those
privileges in a more limited way than you’d originally planned. For
instance, you might find that only root can write to a removable disk.
Such a problem can usually be overcome by adjusting permissions on
the disk in one way or another, thus limiting the use of root.

�� Before pressing the Enter key after typing any command as root (or
clicking any confirmation button in a GUI program running as root),
take your hands off the keyboard and mouse, look over the command,
and verify that it’s correct in every respect. A simple typo can cause a
world of pain. This step has saved me from disaster more than once!

�� Never run a suspicious program as root. On multi-user systems,
unscrupulous users can try to trick administrators into running pro-
grams that will do nasty things or give the attacker root privileges.
Programs downloaded from random Internet sites could in principle
be designed to compromise your security, and such programs are
much more dangerous when run as root.

�� Use root privileges for as brief a period as possible. If you need to type
just one or two commands as root, do so and then type exit in the
root shell to log out or return to your normal privileges. Alternatively,
use sudo to run the commands. It’s easy to overlook the fact that you’re
using a root shell and therefore type commands as root that don’t
need that privilege. Every command typed as root is a risk.

�� Never leave a root shell accessible to others. If you’re performing
root maintenance tasks and are called away, type exit in your root
shell before leaving the computer.

�� Be careful with the root password. Don’t share the password with
others, and be cautious about typing it in a public area or when oth-
ers might be looking over your shoulder. If you’re using Linux profes-
sionally, your employer may have guidelines concerning who may
have root access to a computer. Learn and obey those rules. Be sure
to select a strong root password, too.

Following these rules of thumb can help keep you from damaging your com-
puter or giving somebody else root access to the computer.

O

If a program asks
for your or the root
password and it’s
not an administra-
tive program you
trust, be suspicious!
Research the pro-
gram before giving it
your password!

O

Chapter 14 describes
how to select a
strong password.

Smith, Roderick W.. Linux Essentials, Wiley, 2012. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/shsbt-ebooks/detail.action?docID=817722.
Created from shsbt-ebooks on 2018-01-10 06:31:02.

C
op

yr
ig

ht
 ©

 2
01

2.
 W

ile
y.

 A
ll

rig
ht

s
re

se
rv

ed
.

2 3 2 	 C h a p t e r 1 3 • U n d e r s t a n d i n g U s e r s a n d G r o u p s

The Essent ials and Beyond

Accounts are critical to Linux’s normal functioning. Ordinarily, most of the tasks you
perform on a Linux computer require the privileges of a normal user, so you’ll use your
own user account to handle these tasks. You can use tools like whoami, id, who, and w
to identify your normal account and to determine who else might be using the computer.
Occasionally, you’ll need to perform administrative tasks that require additional privileges.
To acquire such privileges, you must use the root account, which can read and write any
ordinary file, access hardware in a low-level way, reconfigure the network, and perform
other tasks that ordinary users aren’t allowed to do. Because root is so powerful, you
should use that power sparingly and be extremely careful when you do use it, lest a typo
or other accident cause serious problems.

Suggested Exerc ises

�� Type whoami followed by id to review your ordinary user account status. Chances are
the id command will reveal that you’re a member of a number of groups. Perform a
Web search to learn what each one does.

�� Read the /etc/passwd file or type getent passwd to review what accounts are
defined on the computer. Are there ordinary user accounts (those with UIDs above
500 or 1,000, depending on your distribution) other than your own? Try performing
a Web search to learn the purpose of a few of the system accounts (those with UIDs
below 500 or 1,000, depending on your distribution).

Review Quest ions

	 1.	 What is the purpose of the system account with a UID of 0?

	 A.	 It’s the system administration account.

	 B.	 It’s the account for the first ordinary user.

	 C.	 Nothing; UID 0 is left intentionally undefined.

	 D.	 It varies from one distribution to another.

	 E.	 It’s a low-privilege account that’s used as a default by some servers.

	 2.	 What type of information will you find in /etc/passwd for ordinary user
accounts? (Select all that apply.)

	 A.	 A user ID (UID) number

	 B.	 A complete listing of every group to which the user belongs

	 C.	 The path to the account’s home directory

	 D.	 The path to the account’s default GUI desktop environment

	 E.	 The path to the account’s default text-mode shell

(Continues)
Smith, Roderick W.. Linux Essentials, Wiley, 2012. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/shsbt-ebooks/detail.action?docID=817722.
Created from shsbt-ebooks on 2018-01-10 06:31:02.

C
op

yr
ig

ht
 ©

 2
01

2.
 W

ile
y.

 A
ll

rig
ht

s
re

se
rv

ed
.

	 T h e E s s e n t i a l s a n d B e y o n d 	 2 3 3

The Essent ials and Beyond  (Continued)

	 3.	 You want to run the command iptables -L as root, but you’re logged in as
an ordinary user. Which of the following commands will do the job, assuming the
system is configured to give you root access via the appropriate command?

	 A.	 sudo iptables -L

	 B.	 root iptables -L

	 C.	 passwd iptables -L

	 D.	 su iptables -L

	 E.	 admin iptables -L

	 4.	 True or false: whoami provides more information than id.

	 5.	 True or false: Linux stores information on its groups in the /etc/groups file.

	 6.	 True or false: As a general rule, you should employ extra care when running
programs as root.

	 7.	 The file that associates usernames with UID numbers in Linux is _______________.
(Provide the complete path to the file.)

	 8.	 To learn who is currently logged into the computer and what programs they’re
currently running, you can type _____.

	 9.	 UIDs below 500 or 1,000 (depending on the distribution) are reserved for use
by __________ accounts.

Smith, Roderick W.. Linux Essentials, Wiley, 2012. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/shsbt-ebooks/detail.action?docID=817722.
Created from shsbt-ebooks on 2018-01-10 06:31:02.

C
op

yr
ig

ht
 ©

 2
01

2.
 W

ile
y.

 A
ll

rig
ht

s
re

se
rv

ed
.

