
1 1 0 	 C h a p t e r 	 6 	 • 	 G e t t i n g 	 t o 	 K n o w 	 t h e 	 C o m m a n d 	 L i n e

 4. Type pwd to view your current directory. It will probably be /home
/yourusername, where yourusername is—you guessed it!—your
username.

 5. Type cat ../../etc/fstab to view this configuration file using a
relative file reference. The first .. in this command refers to /home,
and the second refers to the root (/) directory. (If your home direc-
tory is in an unusual location, you may need to adjust the number
of ../ elements in this command, which is why I had you use pwd to
find your current directory in the previous step.)

 6. Type cat ~/../../etc/fstab to view this configuration file using a
home directory reference.

Of course, steps 5 and 6 use rather awkward file references; in real life, you’d
probably use an absolute file reference to access /etc/fstab from your home
directory. If you were in a subdirectory of /etc, though, typing ../fstab would
be slightly easier than typing /etc/fstab; and typing ~/afile.txt would be
easier than typing the complete path to your home directory.

Using Common File Manipulation Commands
Chapter 7, “Managing Files,” describes the most common commands used to
manipulate files in detail, and Chapter 15 describes commands related to file
ownership and permissions. Some of these commands are used in the remain-
der of this chapter, so Table 6.2 summarizes them.

T A B L E 6 . 2 Common file manipulation commands

Command Effect

cat Displays files on standard output. Two or more files can be specified
and output redirected to merge them together.

chgrp Changes group ownership of a file. Described in more detail in
Chapter 15.

chmod Changes permissions of a file. Described in more detail in Chapter 15.

chown Changes ownership of a file. Described in more detail in Chapter 15.

cp Copies a file. Described in more detail in Chapter 7.

I

Remember man!
You can use it to
learn about most
Linux commands
and utilities, includ-
ing the common
file manipulation
commands.

(Continues)

Smith, Roderick W.. Linux Essentials, Wiley, 2012. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/shsbt-ebooks/detail.action?docID=817722.
Created from shsbt-ebooks on 2017-12-14 09:24:23.

C
op

yr
ig

ht
 ©

 2
01

2.
 W

ile
y.

 A
ll

rig
ht

s
re

se
rv

ed
.

 U s i n g S h e l l F e a t u r e s 1 1 1

Command Effect

echo Echoes the text you enter on the screen. Although this isn’t techni-
cally a file command, it can be used with redirection to create or add
text to a file.

head Displays the first few lines of a text file.

less Displays a file a page at a time.

ln Creates links to files. Described in more detail in Chapter 7.

ls Displays files in a directory, as described earlier.

mkdir Creates a new directory. Described in more detail in Chapter 7.

mv Moves or renames a file. Described in more detail in Chapter 7.

pwd Prints the name of the current working directory.

rm Removes a file. Described in more detail in Chapter 7.

rmdir Removes a directory. Described in more detail in Chapter 7.

tail Displays the last few lines of a text file.

wc Counts characters, words, and lines in a text file. Described in more
detail in Chapter 10.

Using Shell Features
Bash includes several features that make using it much easier. I’ve already described
some of these. Many others are beyond the scope of this book. Two, however, deserve
attention even in a brief introduction to shells: command completion and command
history.

Using Command Completion
Command completion is the hero of everybody who hates typing: It’s a way to
enter a long command or filename with a minimal number of keystrokes. To

T A B L E 6 . 2 (Continued)

Smith, Roderick W.. Linux Essentials, Wiley, 2012. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/shsbt-ebooks/detail.action?docID=817722.
Created from shsbt-ebooks on 2017-12-14 09:24:23.

C
op

yr
ig

ht
 ©

 2
01

2.
 W

ile
y.

 A
ll

rig
ht

s
re

se
rv

ed
.

1 1 2 	 C h a p t e r 	 6 	 • 	 G e t t i n g 	 t o 	 K n o w 	 t h e 	 C o m m a n d 	 L i n e

use command completion, you type part of a command or filename and then
press the Tab key. If only one command on the path completes the command,
Bash fills in the rest—and likewise when using command completion to refer to
files. To illustrate the use of command completion, you can try it out with a few
commands:

 1. Launch a shell.

 2. Type if followed by pressing the Tab key. The computer will probably
beep or sound a tone. This indicates that your incomplete command
could be completed by multiple commands, so you must type more
characters. (In some configurations, the computer skips straight to
the next step, as if you’d pressed Tab twice.)

 3. Press the Tab key again. The shell displays a list of possible comple-
tions, such as if, ifconfig, and ifdown.

 4. Type co, making your command so far ifco, and press the Tab key
again. The computer will probably complete the command: ifcon-
fig. (If it doesn’t, another program that completes the command
may exist on your computer, so you may need to type another charac-
ter or two.)

 5. Press the Enter key. The computer runs ifconfig, which displays
information on your network connections.

Sometimes, command completion will be able to partially complete a com-
mand. For instance, typing gru and then pressing Tab is likely to add a single
unique character, b; however, several commands begin with grub, so you must
then add more characters yourself. (These commands deal with the Grand
Unified Bootloader, GRUB, which helps Linux to boot.)

Command completion also works with files. For instance, you can type cat
/etc/ser followed by the Tab key to have Bash complete the filename, and
therefore the command, as cat /etc/services. (This command shows you the
contents of a Linux configuration file.)

Using Command History
Bash remembers the recent commands you’ve typed, and you can use this fact
to save yourself some effort if you need to type a command that’s similar to one
you’ve typed recently. In its most basic form, you can use the up arrow key to
enter the previous command; pressing the up arrow repeatedly moves backward

�

Some of the details
of how command
completion works
vary from one distri-
bution to another.

�

Chapter 17,
“Managing Network
Connections,”
describes ifconfig
in more detail.

Smith, Roderick W.. Linux Essentials, Wiley, 2012. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/shsbt-ebooks/detail.action?docID=817722.
Created from shsbt-ebooks on 2017-12-14 09:24:23.

C
op

yr
ig

ht
 ©

 2
01

2.
 W

ile
y.

 A
ll

rig
ht

s
re

se
rv

ed
.

 U s i n g S h e l l F e a t u r e s 1 1 3

through earlier and earlier commands. Table 6.3 summarizes some other com-
monly used keystrokes you can use in the command history—or even when
editing new commands.

T A B L E 6 . 3 Bash editing and command history features

Keystroke Effect

Up arrow Retrieves the previous entry from the command history.

Left arrow Moves the cursor left one character.

Right arrow Moves the cursor right one character.

Ctrl+A Moves the cursor to the start of the line.

Ctrl+E Moves the cursor to the end of the line.

Delete key Deletes the character under the cursor.

Backspace
key

Deletes the character to the left of the cursor.

Ctrl+T Swaps the character under the cursor with the one to the left of the cursor.

Ctrl+X then
Ctrl+E

Launches a full-fledged editor on the current command line.

Ctrl+R Searches for a command. Type a few characters and the shell will locate
the latest command to include those characters. You can search for the
next-most-recent command to include those characters by pressing
Ctrl+R again.

As an example of command history in use, try this:

 1. Type cd /tmp to change to the /tmp directory, in which many programs
store temporary files.

 2. Type ls to see a list of the files in your current directory (/tmp).

 3. Press the up arrow key. Your ls command should re-appear.

 4. Press the spacebar and type in ~ to make the new command ls ~,
and then press Enter. You should now see the contents of your home
directory.

J

Many of the Bash
command editing
features are similar
to those used by the
emacs text editor.

Smith, Roderick W.. Linux Essentials, Wiley, 2012. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/shsbt-ebooks/detail.action?docID=817722.
Created from shsbt-ebooks on 2017-12-14 09:24:23.

C
op

yr
ig

ht
 ©

 2
01

2.
 W

ile
y.

 A
ll

rig
ht

s
re

se
rv

ed
.

1 1 4 	 C h a p t e r 	 6 	 • 	 G e t t i n g 	 t o 	 K n o w 	 t h e 	 C o m m a n d 	 L i n e

 5. Type cat /etc/fstab to see the contents of /etc/fstab, which is a
file that defines how disk space is used.

 6. Press Ctrl+R. The Bash prompt will change to read
(reverse-i-search)`':.

 7. Type l (without pressing Enter). Your earlier ls ~ command will appear.

 8. Press Ctrl+R again. The command should change to a simple ls—
the one you entered in step 2.

 9. Press Enter. The ls command should execute again.

Another history feature is the history command. Type history to view all the
commands in your history, or add a number (as in history 10) to view the most
recent specified number of commands.

I encourage you to experiment with these features. Tab completion and com-
mand history are both powerful tools that can help you avoid a great deal of
repetitive typing. Command history can also be a useful memory aid—if you’ve
forgotten the exact name of a file or command you used recently, you might be
able to retrieve it by searching on part of the name you do remember.

The eSSenT ialS and beyond

Command lines are powerful tools in Linux; they’re the basis on which many of the
friendlier GUI tools are built, they can be accessed without the help of a GUI, and they
can be scripted. To use the text-mode tools described in other chapters of this book, you
should be familiar with the basics of a Linux shell. These include knowing how to start a
shell, how to run programs in a shell, how to manipulate files, and how to use a shell’s
time-saving features.

SuggeSTed exerC iSeS

�I Read the man pages for the following commands: man, less, cat, cd, ls, grep,
and su.

�I Launch a GUI program, such as gedit, with and without a trailing ampersand (&).
When you launch it without an ampersand, use Ctrl+Z to put it into the background
and see how the program reacts to mouse clicks. Use fg to return it to the foreground,
then repeat the process but use bg to run the program in the background. See what
happens in your terminal when you exit from the GUI program.

�

The Ctrl+R search
feature searches
on anything you
enter on a command
line—a command
name, a filename,
or other command
parameters.

(Continues)

Smith, Roderick W.. Linux Essentials, Wiley, 2012. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/shsbt-ebooks/detail.action?docID=817722.
Created from shsbt-ebooks on 2017-12-14 09:24:23.

C
op

yr
ig

ht
 ©

 2
01

2.
 W

ile
y.

 A
ll

rig
ht

s
re

se
rv

ed
.

 T h e E s s e n t i a l s a n d B e y o n d 1 1 5

�I In a shell, type a single letter, such as m, and press the Tab key. What happens? What
happens if you type a less common letter, such as z, and then press Tab?

�I Experiment with the command history. Use it to search on strings that are part of both
command names and filenames you’ve used. Use the arrow keys and editing features
described in Table 6.3 to edit commands you’ve used previously.

review QueST ionS

 1. What keystroke moves the cursor to the start of the line when typing a command
in Bash?

 A. Ctrl+A

 B. Left arrow

 C. Ctrl+T

The eSSenT ialS and beyond (Continued)

 D. Up arrow

 E. Ctrl+E

 2. How can you run a program in the background when launching it from a shell?
(Select all that apply.)

 A. Launch the program by typing start command, where command is the
command you want to run.

 B. Launch the program by typing bg command, where command is the com-
mand you want to run.

 C. Append an ampersand (&) to the end of the command line.

 D. Launch the program normally, type Ctrl+Z in the shell, and then type bg
in the shell.

 E. Launch the program normally, type Ctrl+Z in the shell, and then type fg
in the shell.

 3. Which of the following commands, typed at a Bash prompt, returns you to your
home directory?

 A. home

 B. cd /home

 C. cd homedir

(Continues)

 D. homedir

 E. cd ~

 4. True or false: The Alt+F2 keystroke, typed in X, brings up a text-mode display
you can use to log into Linux.

 5. True or false: The filename ..\upone.txt refers to the file upone.txt in the
parent of the current directory.

Smith, Roderick W.. Linux Essentials, Wiley, 2012. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/shsbt-ebooks/detail.action?docID=817722.
Created from shsbt-ebooks on 2017-12-14 09:24:23.

C
op

yr
ig

ht
 ©

 2
01

2.
 W

ile
y.

 A
ll

rig
ht

s
re

se
rv

ed
.

1 1 6 	 C h a p t e r 	 6 	 • 	 G e t t i n g 	 t o 	 K n o w 	 t h e 	 C o m m a n d 	 L i n e

 6. True or false: The -r option to ls creates a recursive directory listing.

 7. The _________ command displays the path to the current working directory.

 8. To view all files, including hidden files and directories, in the current directory,
you would type ls _________.

 9. The _________ command displays text files or can concatenate multiple
files together.

The eSSenT ialS and beyond (Continued)

Smith, Roderick W.. Linux Essentials, Wiley, 2012. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/shsbt-ebooks/detail.action?docID=817722.
Created from shsbt-ebooks on 2017-12-14 09:24:23.

C
op

yr
ig

ht
 ©

 2
01

2.
 W

ile
y.

 A
ll

rig
ht

s
re

se
rv

ed
.

CHAPTER 7

Managing Files
Much of what you do with a computer involves manipulating files. Most
obviously, files hold the correspondence, spreadsheets, digital photos, and
other documents you create. Files also hold the configuration settings for
Linux—information on how to treat the network interfaces, how to access
hard disks, and what to do as the computer starts up. Indeed, even access to
most hardware devices and kernel settings is ultimately done through files.
Thus, knowing how to manage these files is critically important for adminis-
tering a Linux computer. This chapter begins with a description of the basic
text-mode commands for manipulating files. Directories are files, too, so this
chapter covers directories, including the commands you can use to create
and manipulate them.

�� Manipulating files

�� Manipulating directories

Manipulating Files
If you’ve used Windows or Mac OS X, chances are you’ve used a GUI file
manager to manipulate files. Such tools are available in Linux, as noted in
Chapter 4, “Using Common Linux Programs,” and you can certainly use a file
manager for many common tasks. Linux’s text-mode shells, such as Bash, pro-
vide simple but powerful tools for manipulating files, too. These tools can sim-
plify some tasks, such as working with all the files with names that include the
string invoice. Thus, you should be familiar with these text-mode commands.

To begin this task, I describe some ways you can create files. With files cre-
ated, you can copy them from one location to another. You may sometimes
want to move or rename files, so I explain how to do so. Linux enables you to
create links, which are ways to refer to the same file by multiple names. If you
never want to use a file again, you can delete it. Wildcards provide the means
to refer to many files using a compact notation, so I describe them. Finally, I
cover the case-sensitive nature of Linux’s file manipulation commands.

Smith, Roderick W.. Linux Essentials, Wiley, 2012. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/shsbt-ebooks/detail.action?docID=817722.
Created from shsbt-ebooks on 2017-12-14 09:24:23.

C
op

yr
ig

ht
 ©

 2
01

2.
 W

ile
y.

 A
ll

rig
ht

s
re

se
rv

ed
.

