
CHAPTER 10

Searching, Extracting,
and Archiving Data
Although the word “computer” suggests a device for performing math-
ematical computations, much of a computer’s job has more to do with data
storage and retrieval than with computation. This chapter covers some of
the tools you can use to search, extract, and archive data.

The chapter begins with a look at regular expressions, which are a way
to describe patterns you might want to look for in data files. You can use
regular expressions with many commands, two of which (find and grep) I
describe in more detail. This chapter also covers tools that you can use to
redirect programs’ input and output, which is a useful trick in many situa-
tions. Finally, I describe some tools for creating archive files, which can be
useful in transferring many files over a network or in creating backups.

�� Using regular expressions

�� Searching for and extracting data

�� Redirecting input and output

�� Archiving data

Using Regular Expressions
Many Linux programs employ regular expressions, which are tools for
expressing patterns in text. Regular expressions are similar in principle to
the wildcards that can be used to specify multiple filenames, as described
in Chapter 7, “Managing Files.” At their simplest, regular expressions can
be plain text without adornment. Certain characters are used to denote pat-
terns, though.

Certification
Objective

P

Documentation
sometimes uses the
abbreviation regexp
to refer to a regular
expression.

Smith, Roderick W.. Linux Essentials, Wiley, 2012. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/shsbt-ebooks/detail.action?docID=817722.
Created from shsbt-ebooks on 2017-12-14 09:29:32.

C
op

yr
ig

ht
 ©

 2
01

2.
 W

ile
y.

 A
ll

rig
ht

s
re

se
rv

ed
.

1 6 6 	 C h a p t e r 10 • S e a r c h i n g , E x t r a c t i n g , a n d A r c h i v i n g D a t a

Two forms of regular expression are common: basic and extended. Which form
you must use depends on the program; some accept just one form, but others
can use either type, depending on the options passed to the program. (Some
programs use their own minor or major variants on either of these classes of
regular expression.) The differences between basic and extended regular expres-
sions are complex and subtle, but the fundamental principles of both are similar.

The simplest type of regular expression is an alphabetic or alphanumeric
string, such as HWaddr or Linux3. These regular expressions match any string
of the same size or longer that contains the regular expression. For instance,
the HWaddr regular expression matches HWaddr, This is the HWaddr, and The
HWaddr is unknown. The real strength of regular expressions comes in the use
of non-alphanumeric characters, which activate advanced matching rules. The
most powerful basic regular expression features include the following:

Bracket expressions   Characters enclosed in square brackets ([]) constitute
bracket expressions, which match any one character within the brackets. For
instance, the regular expression b[aeiou]g matches the words bag, beg, big,
bog, and bug. Including a carat (̂) after the opening square bracket matches
against any character except the ones specified. For instance, b[^aeiou]g
matches bbg or bAg but not bag or beg.

Range expressions   A range expression is a variant on a bracket expression.
Instead of listing every character that matches, range expressions list the start
and end points separated by a dash (-), as in a[2-4]z. This regular expression
matches a2z, a3z, and a4z.

Any single character   The dot (.) represents any single character except a
newline. For instance, a.z matches a2z, abz, aQz, or any other three-character
string that begins with a and ends with z.

Start and end of line   The carat (̂) represents the start of a line, and the dol-
lar sign ($) denotes the end of a line.

Repetition   A full or partial regular expression may be followed by a special
symbol to denote repetition of the matched item. Specifically, an asterisk (*)
denotes zero or more matches. The asterisk is often combined with the dot (as
in .*) to specify a match with any substring. For instance, A.*Lincoln matches
any string that contains A and Lincoln, in that order—Abe Lincoln and
Abraham Lincoln are just two possible matches.

Escaping   If you want to match one of the special characters, such as a dot,
you must escape it—that is, precede it with a backslash (\). For instance, to

Smith, Roderick W.. Linux Essentials, Wiley, 2012. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/shsbt-ebooks/detail.action?docID=817722.
Created from shsbt-ebooks on 2017-12-14 09:29:32.

C
op

yr
ig

ht
 ©

 2
01

2.
 W

ile
y.

 A
ll

rig
ht

s
re

se
rv

ed
.

	 S e a r c h i n g f o r a n d E x t r a c t i n g D a t a 	 1 6 7

match a computer hostname (say, twain.example.com), you must escape the
dots, as in twain\.example\.com.

Extended regular expressions add more features you can use to match in addi-
tional ways:

Additional repetition operators   These operators work like an asterisk, but
they match only certain numbers of matches. Specifically, a plus sign (+)
matches one or more occurrences and a question mark (?) specifies zero or one
match.

Multiple possible strings   The vertical bar (|) separates two possible matches;
for instance, car|truck matches either car or truck.

Parentheses   Ordinary parentheses (()) surround subexpressions. Parentheses
are often used to specify how operators are to be applied; for example, you can
put parentheses around a group of words that are concatenated with the verti-
cal bar to ensure that the words are treated as a group, any one of which may
match, without involving surrounding parts of the regular expression.

Whether you use basic or extended regular expressions depends on which
form the program supports. For programs such as grep that support both, you
can use either; which you choose is mostly a matter of personal preference. Note
that a regular expression that includes characters associated with extended reg-
ular expressions will be interpreted differently depending on which type you’re
using. Thus, it’s important to know which type of regular expression a program
supports, or how to select which type to use if the program supports both types.

Regular expression rules can be confusing, particularly when you’re first
introduced to them. Some examples of their use, in the context of the programs
that use them, will help. The next section provides such examples, with refer-
ence to the find and grep programs.

Searching for and Extracting Data
Two commands, grep and find, both use regular expressions and are helpful in
locating data. The grep utility locates files by scanning their contents. The grep
program also returns some of the data included in files, which can be useful if
you want to extract just a little data from a file or from a program’s output. As
its name suggests, find locates files. It uses surface features, such as the file-
name and the file’s date stamps. Another command, wc, provides basic statistics
on text files.

Technically, of these
three programs,
only grep uses
regular expressions,
although find sup-
ports pattern match-
ing using a similar
mechanism.



Smith, Roderick W.. Linux Essentials, Wiley, 2012. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/shsbt-ebooks/detail.action?docID=817722.
Created from shsbt-ebooks on 2017-12-14 09:29:32.

C
op

yr
ig

ht
 ©

 2
01

2.
 W

ile
y.

 A
ll

rig
ht

s
re

se
rv

ed
.

1 6 8 	 C h a p t e r 10 • S e a r c h i n g , E x t r a c t i n g , a n d A r c h i v i n g D a t a

Using grep
The grep command searches for files that contain a specified string and returns
the name of the file and (if it’s a text file) a line of context for that string. To
use grep, you type the command’s name, an optional set of options, a regular
expression, and an optional filename specification. The grep command supports
a large number of options, the most common of which appear in Table 10.1.

T A B L E 1 0 . 1   Common grep options

Option (long form) Option (short form) Description

--count -c Instead of displaying the lines
that contain matches to the
regular expression, display the
number of lines that match.

--file=file -f file This option takes pattern input
from the specified file rather
than from the command line. The
fgrep command is a shortcut
for this option.

--ignore-case -i You can perform a case-insensitive
search, rather than the default
case-sensitive search, by using the
-i or --ignore-case option.

--recursive -R or -r This option searches in the speci-
fied directory and all subdirectories
rather than simply the specified
directory. You can use rgrep
rather than specify this option.

--extended-regexp -E The grep command uses basic
regular expressions by default.
To use an extended regular
expression, you can pass this
option. Alternatively, you can call
egrep rather than grep; this
variant command uses extended
regular expressions by default.

Certification
Objective

P

If you don’t specify
a filename, grep
uses standard input.
This can be useful
with pipelines, as
described shortly, in
“Redirecting Input
and Output.”

Smith, Roderick W.. Linux Essentials, Wiley, 2012. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/shsbt-ebooks/detail.action?docID=817722.
Created from shsbt-ebooks on 2017-12-14 09:29:32.

C
op

yr
ig

ht
 ©

 2
01

2.
 W

ile
y.

 A
ll

rig
ht

s
re

se
rv

ed
.

	 S e a r c h i n g f o r a n d E x t r a c t i n g D a t a 	 1 6 9

A simple example of grep uses a regular expression with no special
components:

$ grep -r eth0 /etc/*

This example finds all the files in /etc that contain the string eth0 (the iden-
tifier for the first Ethernet device on most distributions). Because the example
includes the -r option, it searches recursively, so grep searches files in subdirec-
tories of /etc as well as those in /etc itself. For each matching text file, the line
that contains the string is printed.

Ramping up a bit, suppose you want to locate all the files in /etc that contain
the string eth0 or eth1. You can enter the following command, which uses a
bracket expression to specify both variant devices:

$ grep eth[01] /etc/*

A still more complex example searches all files in /etc that contain the number
127 and, later on the same line, the hostname twain.example.com or localhost.
This task requires using several of the regular expression features. Expressed
using extended regular expression notation, the command looks like this:

$ grep -E "127.*(twain\.example\.com|localhost)" /etc/*

This command illustrates another feature you may need to use: shell quoting.
Because the shell uses certain characters, such as the vertical bar and the aster-
isk, for its own purposes, you must enclose certain regular expressions in quotes
lest the shell attempt to parse the regular expression as shell commands.

You can use grep in conjunction with commands that produce a lot of output
in order to sift through that output for the material that’s important to you.
(Several examples throughout this book use this technique.) For example, sup-
pose you want to find the process ID (PID) of a running xterm. You can use a
pipe to send the result of a ps command through grep:

ps ax | grep xterm

The result is a list of all running processes called xterm, along with their
PIDs. You can even do this in series, using grep to further restrict the output
on some other criterion, which can be useful if the initial pass still produces
too much output. For instance, suppose you want to find kernel messages relat-
ing to low-speed Universal Serial Bus (USB) devices. As noted in Chapter 9,
“Using Programs and Processes,” you can use dmesg to review kernel messages,
but it produces copious output. You can pass this output through grep to find
messages related to USB devices or to messages that include the word low,
but either search alone still produces a lot of irrelevant hits. Using grep twice

O

Ordinary users can’t
read some files in
/etc. Thus, if you
type this command
as a non-root user,
you’ll see error mes-
sages relating to
grep’s inability to
open files.

O

Type this command
on your computer.
It should match at
least one file,
 /etc/hosts. Type
it again without
the -E option to
see its operation
using basic regular
expressions.

O

The upcoming sec-
tion, “Redirecting
Input and Output,”
describes pipes in
more detail.

Smith, Roderick W.. Linux Essentials, Wiley, 2012. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/shsbt-ebooks/detail.action?docID=817722.
Created from shsbt-ebooks on 2017-12-14 09:29:32.

C
op

yr
ig

ht
 ©

 2
01

2.
 W

ile
y.

 A
ll

rig
ht

s
re

se
rv

ed
.

1 7 0 	 C h a p t e r 10 • S e a r c h i n g , E x t r a c t i n g , a n d A r c h i v i n g D a t a

in succession successfully limits the output to lines that include both search
strings:

$ dmesg | grep -i usb | grep low
usb 4-1.1: new low speed USB device number 3 using uhci_hcd
usb 4-1.2.2: new low speed USB device number 5 using uhci_hcd
usb 4-1.2.2: new low speed USB device number 8 using uhci_hcd

This differs from using a single grep command with both search terms (using
a regular expression such as usb.*low) in that the order in which the search
terms appear is important for the single search but not when using grep twice.
You can also use different options when you call grep twice, as in the use of -i
when searching on usb but not when searching on low in this example.

Using find
The find utility implements a brute-force approach to finding files. This pro-
gram finds files by searching through the specified directory tree, checking file-
names, file creation dates, and so on to locate the files that match the specified
criteria. Because of this method of operation, find tends to be slow, but it’s very
flexible and is very likely to succeed, assuming the file for which you’re search-
ing exists. To use find, type its name, optionally followed by a pathname and
a series of options, some of which use specifications that are similar to regular
expressions.

You can specify one or more paths in which find should operate; the program
will restrict its operations to these paths. The man page for find includes infor-
mation about its search criteria, but Table 10.2 summarizes common criteria.

T A B L E 1 0 . 2   Common find search criteria

Option Description

-name pattern You can search for files using their names with this option.
Doing so finds files that match the specified pattern. This
pattern is not technically a regular expression, but it does
support many regular expression features.

-perm mode If you need to find files that have certain permissions, you can
do so by using the -perm mode expression. The mode may be
expressed either symbolically or in octal form. If you precede
mode with a +, find locates files in which any of the specified
permission bits are set. If you precede mode with a -, find
locates files in which all the specified permission bits are set.

Certification
Objective

P

In practice, you must
use a pathname or a
search criterion with
find, and often
both.

P

Chapter 15, “Setting
Ownership and
Permissions,” covers
file permissions.

Smith, Roderick W.. Linux Essentials, Wiley, 2012. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/shsbt-ebooks/detail.action?docID=817722.
Created from shsbt-ebooks on 2017-12-14 09:29:32.

C
op

yr
ig

ht
 ©

 2
01

2.
 W

ile
y.

 A
ll

rig
ht

s
re

se
rv

ed
.

	 S e a r c h i n g f o r a n d E x t r a c t i n g D a t a 	 1 7 1

Option Description

-size n You can search for files based on size with this expression.
Normally, n is specified in 512-byte blocks, but you can
modify this by trailing the value with a letter code, such as c
for characters (bytes) or k for kilobytes.

-group name This option searches for files that belong to the specified group.

-gid GID This expression searches for files whose group ID (GID) is set
to GID.

-user name This option searches for files that are owned by the specified user.

-uid UID You can search for files by user ID (UID) number using this
option.

-maxdepth levels If you want to search a directory and, perhaps, some limited
number of subdirectories, you can use this expression to limit
the search.

There are many variant and additional options; find is a very powerful com-
mand. As an example of its use, consider the task of finding all C source code
files, which normally have names that end in .c, in all users’ home directo-
ries. If these home directories reside in /home, you might issue the following
command:

find /home -name "*.c"

The result will be a listing of all the files that match the search criteria.

Using wc
A file’s size in bytes, as revealed by ls or searched for using find, can be a useful
metric. This size value isn’t always the most useful one for text files, though. For
instance, you might need to know how many words or lines are in a text file—
say because you’re writing a 1,000-word essay or you want to know how many
pages a text document will consume when printed at 52 lines per page. The wc
utility provides this information. By default, it displays a count of lines (newline
characters, to be precise), words, and bytes for each file you pass it. For instance,

If you lack permis-
sion to list a direc-
tory’s contents,
find will return
that directory name
and the error mes-
sage Permission
denied.

O

Certification
Objective

T able 1 0 . 2   (Continued)

Smith, Roderick W.. Linux Essentials, Wiley, 2012. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/shsbt-ebooks/detail.action?docID=817722.
Created from shsbt-ebooks on 2017-12-14 09:29:32.

C
op

yr
ig

ht
 ©

 2
01

2.
 W

ile
y.

 A
ll

rig
ht

s
re

se
rv

ed
.

1 7 2 	 C h a p t e r 10 • S e a r c h i n g , E x t r a c t i n g , a n d A r c h i v i n g D a t a

you can discover this information for all the files with .txt extensions in your
home directory:

$ wc ~/*.txt
 1471 1839 71039 /home/rodsmith/500.txt
 31 180 1236 /home/rodsmith/Commands Outputs.txt
 1012 8909 69689 /home/rodsmith/parts.txt
 19 33 383 /home/rodsmith/Problem.txt
 4 4 31 /home/rodsmith/stuff.txt

This output reveals that the file 500.txt contains 1,471 lines, 1,839 words,
and 71,039 bytes, and provides similar statistics for the remaining files.

You can pass options to limit or expand wc’s output, as summarized in Table
10.3. Of the options in Table 10.3, -c, -l, and -w are the defaults, so typing wc
file.txt is equivalent to typing wc -clw file.txt. The program’s man page
describes a few more options, but the ones in Table 10.3 are the ones you’re
most likely to use.

T A B L E 1 0 . 3   Common wc options

Option (long form)
Option
(short form) Description

--bytes -c Displays the file’s byte count

--chars -m Displays the file’s character count

--lines -l Displays the file’s newline count

--words -w Displays the file’s word count

--max-line-length -L Displays the length of the longest line in
the file

Be aware that wc works correctly on plain text files, but it may produce incor-
rect or even nonsensical results on formatted text files, such as Hypertext
Markup Language (HTML) files or word processor files. You’re better off using
a word processor or other specialized editor to find the number of words and
other statistics for such files.

Redirecting Input and Output
If the output of a program becomes annoying, or if you want to save it for
future reference, you can redirect it to a file. You can also redirect the input
to a program from a file. Although input redirection may sound strange, some

P

Some text files use
multi-byte encod-
ings, meaning that
one character can
consume more than
one byte. Thus, -c
and -m may not
produce identical
results, although
they often do.

Smith, Roderick W.. Linux Essentials, Wiley, 2012. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/shsbt-ebooks/detail.action?docID=817722.
Created from shsbt-ebooks on 2017-12-14 09:29:32.

C
op

yr
ig

ht
 ©

 2
01

2.
 W

ile
y.

 A
ll

rig
ht

s
re

se
rv

ed
.

	 R e d i r e c t i n g I n p u t a n d O u t p u t 	 1 7 3

programs rely on this feature to enable them to process data, such as raw text
files fed through a program that searches the text for patterns. In addition to
redirecting output to files or input from files, you can pass one program’s output
to another one as its input. A related technique involves the xargs command,
which enables you to generate command-line options from files or other pro-
grams’ output.

Using Basic Redirection Operators
Redirection is achieved with the help of redirection operators, which are short
strings that appear after the command and its arguments. Table 10.4 shows the
most common redirection operators. Be aware that output comes in two types:

Standard output   This is normal program messages.

Standard error    This contains error messages.

T A B L E 1 0 . 4   Common redirection operators

Redirection operator Effect

> Creates a new file containing standard output. If the speci-
fied file exists, it’s overwritten.

>> Appends standard output to the existing file. If the specified
file doesn’t exist, it’s created.

2> Creates a new file containing standard error. If the specified
file exists, it’s overwritten.

2>> Appends standard error to the existing file. If the specified
file doesn’t exist, it’s created.

&> Creates a new file containing both standard output and stan-
dard error. If the specified file exists, it’s overwritten.

< Sends the contents of the specified file to be used as stan-
dard input.

<< Accepts text on the following lines as standard input.

<> Causes the specified file to be used for both standard input
and standard output.

Certification
Objective

O

Having two types of
output enables them
to be separated so
that error messages
don’t confuse pro-
grams that might be
expecting certain
types of input from
another program.

Smith, Roderick W.. Linux Essentials, Wiley, 2012. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/shsbt-ebooks/detail.action?docID=817722.
Created from shsbt-ebooks on 2017-12-14 09:29:32.

C
op

yr
ig

ht
 ©

 2
01

2.
 W

ile
y.

 A
ll

rig
ht

s
re

se
rv

ed
.

1 7 4 	 C h a p t e r 10 • S e a r c h i n g , E x t r a c t i n g , a n d A r c h i v i n g D a t a

As an example of redirecting output, consider a grep command to search for
information on a particular user in all the configuration files in /etc. Without
redirection, such a command might look like this:

$ grep david /etc/*

This command will return a series of output lines like the following:

Binary file /etc/aliases.db matches
/etc/group:wheel:x:10:root,david
/etc/group:audio:x:18:mythtv,david,pulse
/etc/group:cdrom:x:19:haldaemon,david

Such output can be quite lengthy, and you might want to peruse it later. To do
so, you could redirect the output like this:

$ grep david /etc/* > david-in-etc.txt

If you then wanted to see the output, you could use cat:

$ cat david-in-etc.txt

In this example you haven’t gained anything compared to simply typing grep
david /etc/*, but you might in other cases. For instance, suppose a command
is producing copious error messages. You might then redirect standard error
to a file and load the file into a text editor so that you can browse through it,
search for strings that might be relevant, and so on, even as you attempt to run
the command, or a modified version of it, once more.

This example illustrates how standard error and standard output are separate.
If you type grep david /etc/* as a normal user (perhaps substituting your own
username for david), you’re likely to see output such as that shown earlier, speci-
fying the files in which your username appears; however, you’re also likely to see
error messages, since you lack permission to read some of the files in /etc:

grep: /etc/securetty: Permission denied
grep: /etc/shadow: Permission denied

The information on the files in which david appears is shown via standard
output, but the errors are shown via standard error. If you’re not interested in
the errors, you can redirect them to /dev/null—a device file that serves as a
“dumping ground” for data you want to discard:

$ grep david /etc/* 2> /dev/null

Likewise, if you redirect standard output to a file but do not redirect standard
error, you’ll see the error messages on your screen, but the file you create (such
as david-in-etc.txt from the earlier command) will not contain the error

P

Many programs have
options, set on the
command line or in
configuration files,
that affect how ver-
bose their output is.
Check a program’s
man page to learn
about such options.

Smith, Roderick W.. Linux Essentials, Wiley, 2012. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/shsbt-ebooks/detail.action?docID=817722.
Created from shsbt-ebooks on 2017-12-14 09:29:32.

C
op

yr
ig

ht
 ©

 2
01

2.
 W

ile
y.

 A
ll

rig
ht

s
re

se
rv

ed
.

	 R e d i r e c t i n g I n p u t a n d O u t p u t 	 1 7 5

messages. You may want to try all the different types of output redirection using
grep david /etc/* to get a feel for how they work.

Using Pipes
Another type of redirected output is a pipe or pipeline. In a pipe, the standard
output from one program is redirected as the standard input to a second pro-
gram. You create a pipe by using a vertical bar (|), which is usually a shifted
character above the Enter key, between the two commands. Pipelines can be
useful when applied in various ways. For instance, you might pipe the lengthy
output of a program through the less pager, which enables you to page up and
down through the output, or use grep to search for keywords in the output:

$ dmesg | grep sda

The dmesg command displays messages from the Linux kernel about hardware
and other low-level activities. Thus, the result of these two commands is that
you’ll see any kernel messages that include the string sda—an identifier associ-
ated with the first hard disk.

Generating Command Lines
Sometimes you’ll find yourself constructing a series of commands that are
similar to each other but not similar enough to enable you to use their normal
options to substitute a single command. For instance, suppose you want to
remove every file in a directory tree with a name that ends in a tilde (~). (This
filename convention denotes backup files created by certain text editors.) With a
large directory tree, this task can be daunting; the usual file-deletion command
(rm, described in more detail in Chapter 7) doesn’t provide an option to search
for and delete every file in a directory tree that matches such a specific criterion.
One command that can do the search part of the job, though, is find, which
is described in more detail earlier. If you could combine the output of find to
create a series of command lines using rm, the task would be solved. This is
precisely the purpose of the xargs command, which builds a command from its
standard input. The basic syntax for this command is as follows:

xargs [options] [command [initial-arguments]]

The command is the command you want to execute, and initial-arguments
is a list of arguments you want to pass to the command. The options are xargs
options; they aren’t passed to command. When you run xargs, it runs command
once for every word passed to it on standard input, adding that word to the

Certification
Objective

O

Chapter 8, “Getting
Help,” describes the
less pager.

Certification
Objective

Smith, Roderick W.. Linux Essentials, Wiley, 2012. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/shsbt-ebooks/detail.action?docID=817722.
Created from shsbt-ebooks on 2017-12-14 09:29:32.

C
op

yr
ig

ht
 ©

 2
01

2.
 W

ile
y.

 A
ll

rig
ht

s
re

se
rv

ed
.

1 7 6 	 C h a p t e r 10 • S e a r c h i n g , E x t r a c t i n g , a n d A r c h i v i n g D a t a

argument list for command. If you want to pass multiple options to the command,
you can protect them by enclosing the group in quotation marks.

For instance, consider the task of deleting all those backup files, denoted by
tilde characters. You can do this by piping the output of find to xargs, which
then calls rm:

$ find ./ -name "*~" | xargs rm

The first part of this command (find ./ -name "*~") finds all the files in the
current directory (./) or its subdirectories with a name that ends in a tilde (*~).
This list is then piped to xargs, which adds each one to its own rm command.

A tool that’s similar to xargs in many ways is the backtick (̀), which is a char-
acter to the left of the 1 key on most keyboards. The backtick is not the same as
the single quote character ('), which is located to the right of the semicolon (;)
on most keyboards.

Text within backticks is treated as a separate command whose results are
substituted on the command line. For instance, to delete those backup files, you
can type the following command:

$ rm `find ./ -name "*~"`

Archiving Data
A file archiving tool collects a group of files into a single “package” file that you
can easily move around on a single system; back up to a recordable DVD, USB
flash drive, tape, or other removable media; or transfer across a network. Linux
supports several archiving commands, the most prominent being tar and zip.
In addition to understanding these commands, you should be familiar with the
consequences of using compression with them.

Using tar
The tar program’s name stands for “tape archiver.” Despite this fact, you can
use tar to archive data to your hard disk or other media, not just to tapes. In
fact, tarballs (archive files created by tar and typically compressed with gzip or
bzip2) are often used for transferring multiple files between computers in one
step, such as when distributing source code.

The tar program is a complex package with many options, but most of what
you’ll do with the utility can be covered with a few common commands. Table 10.5
lists the primary tar commands, and Table 10.6 lists the qualifiers that modify
what the commands do. Whenever you run tar, you use exactly one command,
and you usually use at least one qualifier.

P

Another archive
program, cpio, is
sometimes used in
Linux. It’s similar in
principle to tar, but
different in opera-
tional details.

Smith, Roderick W.. Linux Essentials, Wiley, 2012. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/shsbt-ebooks/detail.action?docID=817722.
Created from shsbt-ebooks on 2017-12-14 09:29:32.

C
op

yr
ig

ht
 ©

 2
01

2.
 W

ile
y.

 A
ll

rig
ht

s
re

se
rv

ed
.

	 A r c h i v i n g D a t a 	 1 7 7

T A B L E 1 0 . 5   tar commands

Command Abbreviation Description

--create c Creates an archive

--concatenate A Appends tar files to an archive

--append r Appends non-tar files to an archive

--update u Appends files that are newer than those in
an archive

--diff or
--compare

d Compares an archive to files on disk

--list t Lists an archive’s contents

--extract or
--get

x Extracts files from an archive

T A B L E 1 0 . 6   tar qualifiers

Qualifier Abbreviation Description

--directory dir C Changes to directory dir before per-
forming operations

--file [host:]file f Uses the file called file on the com-
puter called host as the archive file

--listed-incremental
file

g Performs an incremental backup or
restore, using file as a list of previ-
ously archived files

--one-file-system (none) Backs up or restores only one filesys-
tem (partition)

--multi-volume M Creates or extracts a multi-tape archive

--tape-length N L Changes tapes after N kilobytes

O

Unlike most single-
letter program
options in Linux, you
can use single-letter
tar commands and
qualifiers without a
leading dash (-).

(Continues)

Smith, Roderick W.. Linux Essentials, Wiley, 2012. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/shsbt-ebooks/detail.action?docID=817722.
Created from shsbt-ebooks on 2017-12-14 09:29:32.

C
op

yr
ig

ht
 ©

 2
01

2.
 W

ile
y.

 A
ll

rig
ht

s
re

se
rv

ed
.

1 7 8 	 C h a p t e r 10 • S e a r c h i n g , E x t r a c t i n g , a n d A r c h i v i n g D a t a

Qualifier Abbreviation Description

--same-permissions p Preserves all protection information

--absolute-paths P Retains the leading / on filenames

--verbose v Lists all files read or extracted; when
used with --list, displays file sizes,
ownership, and time stamps

--verify W Verifies the archive after writing it

--exclude file (none) Excludes file from the archive

--exclude-from file X Excludes files listed in file from the
archive

--gzip or --ungzip z Processes an archive through gzip

--bzip2 j (some
older versions
used I or y)

Processes an archive through bzip2

--xz J Processes an archive through xz

Of the commands listed in Table 10.5, the most commonly used are --create,
--extract, and --list. The most useful qualifiers from Table 10.6 are --file,
--listed-incremental, --one-file-system, --same-permissions, --gzip,
--bzip2, --xz, and --verbose. If you fail to specify a filename with the --file
qualifier, tar will attempt to use a default device, which is often (but not always)
a tape device file.

As an example, consider archiving and compressing the my-work subdirectory
of your home directory to a USB flash drive mounted at /media/flash. The fol-
lowing command will do the trick:

$ tar cvfz /media/flash/my-work.tgz ~/my-work

If you then transfer this drive to another system, mount it at /media/usb, and
want to extract the archive, you can do so with another command:

$ tar xvfz /media/usb/my-work.tgz

P

The tar utility
preserves Linux’s
ownership and
permission informa-
tion, even when the
archive is stored
on a filesystem that
doesn’t support such
metadata.

T able 1 0 . 6   (Continued)

Smith, Roderick W.. Linux Essentials, Wiley, 2012. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/shsbt-ebooks/detail.action?docID=817722.
Created from shsbt-ebooks on 2017-12-14 09:29:32.

C
op

yr
ig

ht
 ©

 2
01

2.
 W

ile
y.

 A
ll

rig
ht

s
re

se
rv

ed
.

	 A r c h i v i n g D a t a 	 1 7 9

This command creates a subdirectory called my-work in the current working
directory and populates it with the files from the archive. If you don’t know what’s
in an archive, it’s a good practice to examine it with the --list command before
extracting its contents. Although common practice creates tarballs that store files
within a single subdirectory, sometimes tarballs drop many files in the current
working directory, which can make them difficult to track down if you run the
command in a directory that already has many files.

Using Compression
In Linux, the gzip, bzip2, and xz programs all compress individual files. For
instance, you might compress a large graphics file like this:

$ bzip2 biggraphics.tiff

The result is a file with a name like the original but with the addition of a new
filename extension to identify it as a compressed format. In this specific case,
the result would be biggraphics.tiff.bz2. Most graphics programs won’t read
files compressed in this way, though. To use a file that’s been compressed, you
must uncompress it with a matching program. Table 10.7 summarizes the com-
pression programs, their matching uncompression programs, and the filename
extensions they create. As a general rule, gzip provides the least compression
and xz the most.

T A B L E 1 0 . 7   Compression and uncompression programs and filename extensions

Compression program Uncompression program Filename extension

gzip gunzip .gz

bzip2 bunzip2 .bz2

xz unxz .xz

The tar program provides explicit support for all three of these compression
standards, and compressed tarballs often have their own unique filename exten-
sions (.tgz, .tbz or .tb2, and .txz for tarballs compressed with gzip, bzip2,
and xz, respectively). Using two extensions on tarballs, as in archive.tar.
bz2, is also common. When you compress a tarball, even by using the -z, -j,
or -J option to tar, the compression program works on the tarball with all its
files rather than to the individual files within the tarball. This can improve the

O

Once you’ve com-
pressed a text file,
you won’t be able
to search it with
grep without first
uncompressing it.
The zgrep variant
can search files com-
pressed with gzip,
though.

Smith, Roderick W.. Linux Essentials, Wiley, 2012. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/shsbt-ebooks/detail.action?docID=817722.
Created from shsbt-ebooks on 2017-12-14 09:29:32.

C
op

yr
ig

ht
 ©

 2
01

2.
 W

ile
y.

 A
ll

rig
ht

s
re

se
rv

ed
.

1 8 0 	 C h a p t e r 10 • S e a r c h i n g , E x t r a c t i n g , a n d A r c h i v i n g D a t a

compression ratio compared to compressing individual files and then bundling
them together, but it makes it harder to extract data from a file if it becomes
damaged.

Compression works better with some file types than with others. Typically,
plain text files compress extremely well, binary program files compress moder-
ately well, and pre-compressed data (such as most video file formats) compress
poorly or may even expand in size when compressed again. You should be
aware of this fact to know whether to apply compression to your archives. For
instance, if you back up a Linux installation, which consists of program and
configuration files, without user data, the result is likely to consume about half
the space it does on your hard disk. On the other hand, if you want to back up a
directory containing MP3 audio files or JPEG graphics, both of which are pre-
compressed, you’re better off not applying compression.

The gzip, bzip2, and xz compression programs all apply lossless compression,
meaning that the data recovered by uncompressing the file is identical to what
went into it. Some graphics, audio, and audio-visual file formats apply lossy
compression, in which some data are discarded. When done properly and at
low to moderate levels of compression, you’ll be hard-pressed to notice the loss,
since the algorithms discard data that humans have a difficult time perceiving.
When a user applies lossy algorithms aggressively, though, we do notice the
effect. Lossy compression tools should never be used on program files, system
configuration files, or most user data files; any loss in such files could be disas-
trous. That’s why tar supports only lossless compression tools.

Using zip
Outside of the Unix and Linux world, the zip file format is a common one that
fills a role similar to a compressed tarball. Linux provides the zip command to
create zip files and the unzip utility to extract files from a zip archive. Zip files
typically have filename extensions of .zip.

In most cases, you can create a zip archive by passing the utility the name of a
target zip file followed by a filename list:

$ zip newzip.zip afile.txt figure.tif

This command creates the newzip.zip file, which holds the afile.txt and
figure.tif files. (The original files remain on your disk.) In some cases you’ll
need to use options to zip to achieve the desired results. Table 10.8 summarizes
the most important zip options; however, the program supports many more.
Consult its man page for details.

Smith, Roderick W.. Linux Essentials, Wiley, 2012. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/shsbt-ebooks/detail.action?docID=817722.
Created from shsbt-ebooks on 2017-12-14 09:29:32.

C
op

yr
ig

ht
 ©

 2
01

2.
 W

ile
y.

 A
ll

rig
ht

s
re

se
rv

ed
.

	 A r c h i v i n g D a t a 	 1 8 1

T A B L E 1 0 . 8   Common zip options

Option
(long form) Option (short form) Description

N/A -0 through -9 Sets the amount of compression; -0
applies no compression, -1 applies
minimal (but fast) compression, and so on
through -9, which applies maximal (but
slow) compression.

--delete -d Deletes the specified files from the archive
file.

--encrypt -e Encrypts the archive with a password. (zip
prompts you for this password.)

--freshen -f Updates files in an archive if they’ve changed
since the original archive’s creation.

--fix or
--fixfix

-F or -FF Performs repairs on a damaged archive
file. The --fix/-F option performs mini-
mal repairs, whereas --fixfix/-FF is
more thorough.

--filesync -FS Updates files in an archive if they’ve
changed since the original archive’s cre-
ation and deletes files from the archive if
they’ve been deleted on the filesystem.

--grow -g Appends files to an existing archive file.

--help -h or -? Displays basic help information.

--move -m Moves files into the zip archive; that is, the
original files are deleted.

--recurse​
-paths

-r Includes files and subdirectories inside
directories you specify.

--split​
-size size

-s size Creates a potentially multi-file archive, with
each file no larger than size bytes. (A k, m,
g, or t can be appended to the size to specify
larger units.)

(Continues)

Smith, Roderick W.. Linux Essentials, Wiley, 2012. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/shsbt-ebooks/detail.action?docID=817722.
Created from shsbt-ebooks on 2017-12-14 09:29:32.

C
op

yr
ig

ht
 ©

 2
01

2.
 W

ile
y.

 A
ll

rig
ht

s
re

se
rv

ed
.

1 8 2 	 C h a p t e r 10 • S e a r c h i n g , E x t r a c t i n g , a n d A r c h i v i n g D a t a

Option
(long form) Option (short form) Description

--exclude
files

-x files Excludes the specified files.

--symlinks -y Includes symbolic links as such.
(Ordinarily, zip includes the linked-to
files.)

Of the options in Table 10.8, the -r option is probably the most important,
at least if you want to compress an entire directory tree. If you fail to use this
option, your archive will contain no subdirectories. Given the speed of modern
CPUs, using -9 on a regular basis also makes sense.

To uncompress and extract files in a zip archive file, you can use the unzip
program:

$ unzip anarchive.zip

This example uncompresses the files in the anarchive.zip file into the cur-
rent directory. Like zip, unzip supports a large number of options, the most
important of which appear in Table 10.9.

T A B L E 1 0 . 9   Common unzip options

Option Description

-f Freshens files from the archive; that is, extracts only those files that
exist on the main filesystem and that are newer in the archive than on
the main filesystem

-l Lists files in the archive but does not extract them

-p Extracts files to a pipeline

-t Tests the integrity of files in the archive

-u Updates files; similar to -f, but also extracts files that don’t exist on the
filesystem

P

Zip files typically
contain “loose” files
in the main direc-
tory, so you should
generally extract
zip archives in an
empty subdirectory
you create for this
purpose.

T A B L E 1 0 . 8   (Continued)

(Continues)

Smith, Roderick W.. Linux Essentials, Wiley, 2012. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/shsbt-ebooks/detail.action?docID=817722.
Created from shsbt-ebooks on 2017-12-14 09:29:32.

C
op

yr
ig

ht
 ©

 2
01

2.
 W

ile
y.

 A
ll

rig
ht

s
re

se
rv

ed
.

	 T h e E s s e n t i a l s a n d B e y o n d 	 1 8 3

Option Description

-v Lists files in the archive in a more verbose format than -l does

-L Converts filenames to lowercase if they originated on an uppercase-only
OS, such as DOS

-n Never overwrites existing files

-o Overwrites existing files without prompting

As a general rule, using unzip without any options except for the input file-
name works well; however, you might want to use one or more of its options on
occasion. The -l option is particularly useful for examining the archive’s con-
tents without extracting it.

The Essent ials and Beyond

Managing your files often requires locating them, and tools such as grep and find
help you with this task. The grep utility in particular makes use of regular expressions,
which provide a way to describe patterns you might want to find in files or in the output
of another program. You can redirect such output into grep (or other programs or files)
using redirection operators, and many Linux command-line tools and techniques rely
on such redirection. The tar and zip programs both enable you to create archive files
that hold many other files. In fact, the tarballs that tar creates are a common means of
distributing source code and even binary programs between Linux computers.

Suggested Exerc ises

�� Use find and grep to locate files in your own directory and on the Linux computer
at large. For instance, try locating references to your own username in configuration
files in /etc.

�� Use gzip, bzip2, and xz to compress a couple instances of files of various types,
such as text files and digital photos. What file types compress well? Which compression
tool works best for each file type?

T able 1 0 . 9   (Continued)

(Continues)

Smith, Roderick W.. Linux Essentials, Wiley, 2012. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/shsbt-ebooks/detail.action?docID=817722.
Created from shsbt-ebooks on 2017-12-14 09:29:32.

C
op

yr
ig

ht
 ©

 2
01

2.
 W

ile
y.

 A
ll

rig
ht

s
re

se
rv

ed
.

1 8 4 	 C h a p t e r 10 • S e a r c h i n g , E x t r a c t i n g , a n d A r c h i v i n g D a t a

Review Quest ions

	 1.	 Which of the following commands will print lines from the file world.txt that
contain matches to changes and changed?

	 A.	 grep change[ds] world.txt

	 B.	 tar change[d-s] world.txt

	 C.	 find "change'd|s'" world.txt

	 D.	 cat world.txt changes changed

	 E.	 find change[^ds] world.txt

	 2.	 Which of the following redirection operators appends a program’s standard output
to an existing file, without overwriting that file’s original contents?

	 A.	 |

	 B.	 2>

	 C.	 &>

	 3.	 You’ve received a tarball called data79.tar from a colleague, but you want
to check the names of the files it contains before extracting them. Which of the
following commands would you use to do this?

	 A.	 tar uvf data79.tar

	 B.	 tar cvf data79.tar

	 C.	 tar xvf data79.tar

	 4.	 True or false: The regular expression Linu[^x].*lds matches the string Linus
Torvalds.

	 5.	 True or false: The find command enables you to locate files based on their sizes.

	 6.	 True or false: To compress files archived with zip, you must use an external
compression program such as gzip or bzip2 in a pipeline with zip.

	 7.	 The character that represents the star t of a line in a regular expression is
________.

	 8.	 Complete the following command to redirect both standard output and standard
error from the bigprog program to the file out.txt.

$ bigprog ____ out.txt

	 9.	 The gzip, bzip2, and xz programs all perform __________ compression, in
which the decompressed data exactly match the original pre-compression data.

	 D.	 >

	 E.	 >>

	 D.	 tar tvf data79.tar

	 E.	 tar Avf data79.tar

The Essent ials and Beyond  (Continued)

Smith, Roderick W.. Linux Essentials, Wiley, 2012. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/shsbt-ebooks/detail.action?docID=817722.
Created from shsbt-ebooks on 2017-12-14 09:29:32.

C
op

yr
ig

ht
 ©

 2
01

2.
 W

ile
y.

 A
ll

rig
ht

s
re

se
rv

ed
.

CHAPTER 11

Editing Files
Computer documents come in many forms, but one of the most basic
and flexible is text files. Because of their importance and ubiquity, you must
be able to edit text files. This chapter covers this task, with an emphasis on
the simple text-mode pico, nano, and Vi editors. I begin by describing some
of the roles that text files play. I then describe how to select a text editor. To
edit text files, of course, you must be able to start the editor, either on an
existing document or to create a new one. The pico and nano editors are
quite similar to each other, so I describe their operation together, followed
by Vi, which is a much more unusual editor by modern standards. I conclude
this chapter with a look at conventions used in configuration files and com-
mon formatted text files—two types of text files you’ll probably have to edit
sooner or later.

�� Understanding the role of text files

�� Choosing an editor

�� Launching an editor

�� Editing files with pico or nano

�� Editing files with Vi

�� Using configuration file conventions

�� Editing formatted text files

Understanding the Role of Text Files
A text editor enables you to edit documents that are stored in a plain text for-
mat—typically using the American Standard Code for Information Interchange
(ASCII), but such files increasingly use Unicode formats to support additional
characters. These formats store text documents that, by themselves, include no
special formatting or embedded features. That is, text files can’t include graph-
ics, use multiple fonts, emphasize words by italicizing them, or use other fea-
tures that you probably associate with word processors. (As described shortly,
though, markup tools provide a partial exception to this rule.)

Smith, Roderick W.. Linux Essentials, Wiley, 2012. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/shsbt-ebooks/detail.action?docID=817722.
Created from shsbt-ebooks on 2017-12-14 09:29:32.

C
op

yr
ig

ht
 ©

 2
01

2.
 W

ile
y.

 A
ll

rig
ht

s
re

se
rv

ed
.

