CHAPTER 7

Managing Files

Much of what you do with a computer involves manipulating files. Most
obviously, files hold the correspondence, spreadsheets, digital photos, and
other documents you create. Files also hold the configuration settings for
Linux—information on how to treat the network interfaces, how to access
hard disks, and what to do as the computer starts up. Indeed, even access to
most hardware devices and kernel settings is ultimately done through files.
Thus, knowing how to manage these files is critically important for adminis-
tering a Linux computer. This chapter begins with a description of the basic
text-mode commands for manipulating files. Directories are files, too, so this
chapter covers directories, including the commands you can use to create

and manipulate them.
Manipulating files

Manipulating directories

Manipulating Files

If you've used Windows or Mac OS X, chances are you've used a GUI file
manager to manipulate files. Such tools are available in Linux, as noted in
Chapter 4, “Using Common Linux Programs,” and you can certainly use a file
manager for many common tasks. Linux’s text-mode shells, such as Bash, pro-
vide simple but powerful tools for manipulating files, too. These tools can sim-
plify some tasks, such as working with all the files with names that include the
string invoice. Thus, you should be familiar with these text-mode commands.
To begin this task, I describe some ways you can create files. With files cre-
ated, you can copy them from one location to another. You may sometimes
want to move or rename files, so I explain how to do so. Linux enables you to
create [inks, which are ways to refer to the same file by multiple names. If you
never want to use a file again, you can delete it. Wildcards provide the means
to refer to many files using a compact notation, so I describe them. Finally, I
cover the case-sensitive nature of Linux’s file manipulation commands.

Smith, Roderick W.. Linux Essentials. Hoboken, NJ, USA: Sybex, 2012. ProQuest ebrary. Web. 8 December 2015.
Copyright © 2012. Sybex. All rights reserved.

Smith, Roderick W
Copyright © 2012.

118

Chapter 11, “Editing
Files,” describes how
to create text files
with the text-mode
pico, and nano,
and Vi editors.

Certification
Objective

A programmer’s
tool known as make
compiles source
code if it's new, so
programmers some-
times use touch

to force make to
recompile a source
code file.

Certificatlion
Objective

Chapter 7 » Managing Files

Creating Files

Normally, you create files using the programs that manipulate them. For
instance, you might use a graphics program to create a new graphics file. This
process varies from one program to another, but GUI programs typically use a
menu option called Save or Save As to save a file. Text-mode programs provide
similar functionality, but the details of how it’s done vary greatly from one pro-
gram to another.

One program deserves special mention as a way to create files: touch. You can
type this program’s name followed by the name of a file vou want to create, such
as touch newfile.txt to create an empty file called newfile. txt. Ordinarily,
vou don't need to do this to create a file of a particular type, since you'll use a
specialized program to do the job. Sometimes, though, it’s helpful to create an
empty file just to have the file itself—for instance, to create a few “scratch” files
to test some other command.

[f vou pass touch the name of a file that already exists, touch updates that file's
access and modification time stamps to the current date and time. This can be
handy if you're using a command that works on files based on their access times
and you want the program to treat an old file as if it were new. You might also
want to do this if you plan to distribute a collection of files and you want them all
to have identical time stamps.

You can use a number of options with touch to modify its behavior. The most
important of these are as follows:

Don’t create a flle The -c or --no-create option tells touch to not create a
new file if one doesn’t already exist. Use this option if you want to update time
stamps but not accidentally create an empty file, should you mistype a filename.

Set the time to a specific value You can use -d string or --date=stringto
set the date of a file to that represented by the specified string, which can take
any number of forms. For instance, touch -d "July 4 2012" afile.txt causes
the date stamps on afile. txt to be set to July 4, 2012. You can achieve the same
effect with -t [[CC1YYIMMDDhhmm{[.ss], where [[CC1YYIMMDDhhmm
[.s5] is a date and time in a specific numeric format, such as 201207041223 for
12:23 PM on July 4, 2012.

Consult the man page for touch to learn about its more obscure options.

Copying Files

If vou're working in a text-mode shell, the cp command copies a file. (Its name
is short for copy.) Its basic use is to pass it a source filename and a destination
filename, a destination directory name, or both. Thus, there are three ways vou

entials. Hoboken, NJ, USA: Sybex, 2012. ProQuest ebrary. Web. 8 December 2015.

.. Linux Ess
Sybex. All rights reserved.

Smith, Roderick W
Copyright © 2012.

Manipulating Files

can use it, as outlined in Table 7.1. Although the example filenames in Table 7.1
suggest that the original file be in your current working directory, this need not
be the case; orig.txt could include a directory specification, such as /etc/fstab
or o fartilectxt.

TABLE 7.1 Examples of the use of cp

Example command Effect

cp orig.txt new.txt Copiesorig.txt tonew.txt in the current directory.

cp orig.txt Copies orig.txt to the /otherdir directory.

/otherdir The copy will be called ori1g.txt.

Copies orig. txt to the /otherdir directory.
The copy will be called new. txt.

cp orig.txt
Jotherdir/new. txt

The critical point to understand is how the destination filename is specified.
This can be less than obvious in some cases, since file and directory specifications
can look alike. For instance, consider the following command:

$ cp outline.pdf ~/publication
This command can produce any of three results:

» If “/publication is a directory, the result is a file called ~/publication
JoutTine.pdf.

» If “/publication is a file, the result is that this file will be replaced
by the contents of outT1ine.pdf.

» If “/publication doesn't yet exist, the result is a new file, called
~/publication, which is identical to the original outTine.pdf.

Keeping these results straight can be confusing if you're new to command-line
file copying. Thus, I encourage you to experiment by creating a test directory using
mkdir (described later, in “Creating Directories”), creating subdirectories in this
directory, and copying files into this test directory tree using all of these methods
of referring to files. (This is the type of situation where touch can be handy for cre-
ating test files.)

The cp command provides many options that modify its behavior. Some of the
more useful options enable you to modify the command’s operation in helpful ways:

Force overwrite The -f or --force option forces the system to overwrite any
existing files without prompting.

entials. Hoboken, NJ, USA: Sybex, 2012. ProQuest ebrary. Web. 8 December 2015.
ights reserved.

119

Chapter 6, “Getting
to Know the
Command Line,”
covers various types
of absolute and
relative directory
references.

If you follow a
directory name with
aslash (/), as in
“/publication/,
cp returns an

error message if
“/publication
doesn't exist or is

a regular file.

Smith, Roderick W
Copyright © 2012.

120

Chapter 13,
“Understanding
Users and Groups,”
describes Linux
accounts. Chapter 15,
“Setting Ownership
and Permissions,”
describes file
permissions.

Certificatlion
Objective

Linux uses mv for
renaming files
because the two
operations are
identical when the
source and destina-
tion directories are
the same.

Chapter 7 » Managing Files

Use Interactlve mode The -1 or --interactive option causes cp to ask vou
before overwriting any existing files.

Preserve ownershlp and permisslons Normally, a copied file is owned by the
user who issues the cp command and uses that account’s default permissions.
The -p or --preserve option preserves ownership and permissions, if possible.

Perform a recurslve copy If you use the -R or --recursive option and specify
a directory as the source, the entire directory, including its subdirectories, is
copied. Although -r also performs a recursive copy, its behavior with files other
than ordinary files and directories is unspecified. Most cp implementations use
-r as a synonym for -R, but this behavior isn't guaranteed.

Perform an archlve copy The -a or --archive option is similar to -R, but it
also preserves ownership and copies links as is. The -R option copies the files to
which symbolic links point rather than the symbolic links themselves. (Links
are described in more detail later in this chapter, in “Using Links.”)

Perform an update copy The -u or --update option tells cp to copy the file
only if the original is newer than the target or if the target doesn’t exist.

This list of cp options is incomplete but covers the most useful options. Consult
cp’s man page for information about additional cp options.

Moving and Renaming Files

In a text-mode shell, the same command, mv, is used to both move and rename
files and directories. Its use is very similar to that of cp; for instance, if you wanted
to move outline.pdf to ~/publication, you would type:

$ mv outline.pdf ~/publication

If you specify a filename with the destination, the file will be renamed as it’s
moved. If vou specify a filename and the destination directory is the same as the
source directory, the file will be renamed but not moved. In other words, mv’s
effects are much like cp’s, except that the new file replaces, rather than supple-
ments, the original.

Behind the scenes, mv does the following:

» When the source and target are on the same filesystem, mv rewrites
directory entries without actually moving the file's data.

» When vou move a file from one filesystem to another, mv copies the
file and then deletes the original file.

The mv command takes many of the same options as cp does. From the earlier
list, --preserve, --recursive, and --archive don’t apply to mv, but the others do.

entials. Hoboken, NJ, USA: Sybex, 2012. ProQuest ebrary. Web. 8 December 2015.

.. Linux Ess
Sybex. All rights reserved.

Manipulating Files 121

Using Links

Sometimes it's handy to refer to a single file by multiple names. Rather than Certification
create several copies of the file, you can create multiple links to one file. Linux i
supports two types of links, both of which are created with the Tn command:

Hard link A hard link is a duplicate directory entry. Both entries point to the
same file. Because they work by tying together low-level filesvstem data struc-
tures, hard links can exist only on a single filesystem. In a hard link scenario,
neither filename holds any sort of priority over the other; both tie directly to the
file’s data structures and data. Type 1n origname 1inkname, where origname is
the original name and Tinkname is the new link’s name, to create a hard link.

Symbolic link A symbolic link (aka a soft link) is a file that refers to another NG

file by name. That is, the symbolic link is a file that holds another file's name,
Symbolic links are

anq when you tell a program .tc! read to or write from a s_}’n'{bﬂlic link file, Linux il b i pood
redirects the access to the original file. Because symbolic links work by filename on the Windows
references, they can cross filesystem boundaries. Type 1n -s origname Tink- desktop.

name to create a symbolic link.
You can identify links in long directory listings (using the -1 option to 1s) in
a couple of ways. An example will illustrate this:

$ Tn report.odt hardlink.odt

$ Tn -s report.odt softlink.odt

$ 1s -1

total 192

-rw-r--r-- 2 rod users 94720 Jan 10 11:53 hardlink.odt

-rw-r--r-- 2 rod users 94720 Jan 10 11:53 report.odt

Trwxrwxrwx 1 rod users 10 Jan 10 11:54 softlink.odt -> report.odt

This example began with a single file, report.odt. The first two commands cre-
ated two links, a hard link (hard1ink. odt) and a symbolic link (soft1ink.odt).
Typing 1s -1 shows all three files. The original file and the hard link can be identi-
fied as links by the presence of the value 2 in the second column of the 1s -1 out-
put; this column identifies the number of filename entries that point to the file, so
avalue higher than 1 indicates that a hard link exists. The symbolic link is denoted
by an 1 (a lowercase L, not a digit 7) in the first character of the soft1ink. odt
file’s permissions string (1rwxrwxrwx). Furthermore, the symbolic link’s filename
specification includes an explicit pointer to the linked-to file.

Both types of links are useful for referring to files by multiple names or in
multiple directories. For instance, if you write a letter that you send to multiple
recipients, you might want to store copies in directories devoted to each recipi-
ent. In such a situation, either type of link will probably work fine, but each type

Smith, Roderick W.. Linux Essentials. Hoboken, NJ, USA: Sybex, 2012. ProQuest ebrary. Web. 8 December 2015.
Copyright © 2012. Sybex. All rights reserved.

122 Chapter 7 » Managing Files

has implications. Most importantly, if you use symbolic links, deleting the origi-
nal file makes the file completely inaccessible; the symbolic links remain but
point to a non-existent file. If you use hard links, by contrast, you must delete
all the copies of the file to delete the file itself. This is because hard links are
duplicate directory entries that point to the same file, whereas symbolic links
are separate files that refer to the original file by name.

If you modify a file by accessing its soft link, or by any hard-linked name, you
should be sure that the program you use will modify the original file. Some pro-
grams create a backup of the original file that you can use to recover the origi-
nal in case you find that your changes were in error. Most editors do this in such
a way that the backup is a new file, and write changes to the original file, thus
affecting the original file as well as the link. Some programs, though, rename
the original file and then write a new file with the changes. If a program does
this and you've accessed the file via a link, the linked-to file will be unaffected by
your changes. If in doubt, test your program to be sure it does what vou expect.

[f you want to create a link to a directory, be aware that you can normally do
this only via symbolic links. Hard links between directories are potentially dan-
gerous in terms of low-level filesystem data structures, so the Tn utility permits
only the superuser to create such links. Even then, most filesystems disallow hard
links between directories, so in practice even root usually can’t create them. Any
user can create symbolic links to a directory, though.

Linux installations make use of links (mostly symbolic links) in various places.
For instance, system startup scripts are often referred to via symbolic links located
in directories dedicated to specific startup conditions, known as runlevels. Runlevel

management is beyond the scope of this book.
The rm command’s

name Is (very!) short]]
for remove. DEIEtlng Files

B 3 The rm command deletes files in a text-mode shell. As you might expect, you pass

the names of one or more files to this command:

$ rm outline.pdf outline.txt

Dishribulions some- This example deletes two files, out1ine.pdf and outline. txt. If you want to

times set the -1 delete an entire directory tree, you can pass rm the -r, -R, or --recursive option

option by defaultfor ;]ong with a directory name:
root, but not for

ordinary users. $ rm -r oldstuff/

I The -1 option causes rm to prompt before deleting each file. This is a useful
safety measure. You can use the -f (--force) option to override this setting, if
-1 is configured as the default. Several other options to rm exist; consult its man
page to learn about them.

Smith, Roderick W.. Linux Essentials. Hoboken, NJ, USA: Sybex, 2012. ProQuest ebrary. Web. 8 December 2015.
Copyright © 2012. Sybex. All rights reserved.

Manipulating Files 123

[t's important to realize that rm does not implement any functionality like a
file manager’s “trash can.” Once vou delete a file with rm, it's gone, and you can’t
recover it except by using low-level filesystem tools—a topic that's well beyond
the scope of this book. Thus, vou should be careful when using rm—and even
more careful when using it with its -r option or as root!

Using Wildcards

You can use wildcards to refer to files. (Using wildcards is also sometimes called cenmication
globbing.) A wildcard is a symbol or set of symbols that stands in for other char- B caid
acters. Three classes of wildcards are common in Linux:

? A question mark (?) stands in for a single character. For instance, b?7k matches
book, balk, buck, or any other four-character filename that begins with b and ends
with k.

o
an

An asterisk (*) matches any character or set of characters, including no char-
acter. For instance, b*k matches book, balk, and buck just as does b?7k. b*k also
matches bk, bbk, and backtrack.

Bracketed values Characters enclosed in square brackets ([1) normally match
any character in the set. For instance, b[ao] [To]k matches balk and book but
not buck. It's also possible to specify a range of values; for instance, b[a-z]ck
matches back, buck, and other four-letter filenames of this form whose second
character is a lowercase letter. This differs from b?ck—because Linux treats
filenames in a case-sensitive way and because ? matches any character (not just
any letter), b[a-z]ck doesn’t match bAck or b3ck, although b?ck matches both
of these filenames.

Wildcards are implemented in the shell and passed to the command you call.
For instance, if you type 1s b??k, and that wildcard matches the three files balk,
book, and buck, the result is precisely as if you'd typed 1s balk book buck.

The way Bash expands wildcards can lead to unexpected, and sometimes unde-
sirable, consequences. For instance, suppose you want to copy two files, specified
via a wildcard, to another directory, but you forget to give the destination direc-
tory. The cp command will interpret the command as a request to copy the first
of the files over the second.

Understanding Case Sensitivity

Linux’s native filesystems are case-sensitive, which means that filenames that cermication
differ only in case are distinct files. For instance, a single directory can hold files """
called afile.txt, Afile, txt, and AFILE.TXT, and each is a distinct file. This

Smith, Roderick W.. Linux Essentials. Hoboken, NJ, USA: Sybex, 2012. ProQuest ebrary. Web. 8 December 2015.
Copyright © 2012. Sybex. All rights reserved.

124 Chapter 7 » Managing Files

case sensitivity also means that, if vou type a filename, you must enter it with the
correct case—if a file is called afile.txt but you type its name as Afile. txt,
the program vou're using will tell you that the file doesn’t exist.

e This is different from what happens in Windows or (usually) in Mac OS X, in
which filenames that differ only in case are treated identically. This means that,

Dipl o in these OSs, you can’t have two files that differ only in case in the same direc-

File System Plus

(HFS+) supports tory, and you can specify a filename using any case variant you like. Windows
both case-sensitive also creates a short filename (8 characters with an optional 3-character exten-
and case-insensitive sion) for every file with a longer name, to help out older software that works only
variants. Apple uses - - y

with such filenames. Linux doesn’t create such alternate filenames.
the case-insensitive T : ; ; :
snde by defanit Case sensitivity is primarily a function of the filesystem, not of the operating

system. Thus, if you access a non-Linux filesystem (on a removable disk, a non-
Linux partition on a dual-boot computer, or using a network filesystem), you
may find that case-insensitive rules will apply. This is particularly likely when
accessing File Allocation Table (FAT) and New Technology File System (NTFS)
volumes, which are common on Windows computers, external hard disks, and
USB flash drives. A further twist on this rule is that many Linux programs, such
as Bash, assume case sensitivity even on case-insensitive filesystems. Features
such as command completion, described in Chapter 6, “Getting to Know the
Command Line,” may work only if you use the case in which filenames are
recorded, even on case-insensitive filesystems.

Ordinarily, case sensitivity creates few real problems, particularly if you use GUI
programs that enable you to point-and-click to select files. You should be aware
of these issues, however, when copying files or directories to FAT, NTFS, HFS+,
or other case-insensitive filesystems. If a directory you want to copy contains files
with names that differ only in case, vou'll end up with a disk that contains just one

of the offending files.

Manipulating Directories

No doubt you're familiar with the concept of directories, although you may think
of them as “folders,” since most GUI file managers represent directories using file
folder icons. Naturally, Linux provides text-mode commands to manipulate direc-
tories. These include directory-specific commands to create and delete directo-
ries, as well as use of some of the file-manipulation commands described earlier
to manage directories.

Smith, Roderick W.. Linux Essentials. Hoboken, NJ, USA: Sybex, 2012. ProQuest ebrary. Web. 8 December 2015.
Copyright © 2012. Sybex. All rights reserved.

Manipulating Directories 125

Creating Directories

You can use the mkdir command to create a directory. Ordinarily, you'll use this centitication
command by typing the name of one or more directories following the command: """

% mkdir newdir
% mkdir dirone newdir/dirtwo

The first example creates just one new directory, newdir, which will then reside |G

in the current directory. The second example creates two new directories: dirone
Chapter 6 includes

and newdir/dirtwo. In this example, mkdir creates dirtwo inside the newdir e
directory, which was created with the preceding command. to specify locations
In most cases, you'll use mkdir without options, other than the name of a direc- other than the
tory, but you can modify its behavior in a few ways: current directory,
as well as how to
Set mode The -m mode or --mode=mode option causes the new directory to change your current
have the specified permission mode, expressed as an octal number. (Chapter 15, directory with the
“Setting Ownership and Permissions,” describes these topics in more detail.) iy
Create parent directorles Normally, if you specify the creation of a direc-
tory within a directory that doesn’t exist, mkdir responds with a No such file
or directory error and doesn’t create the directory. If you include the -p or
--parents option, though, mkdir creates the necessary parent directory. For
instance, typing mkdir first/second returns an error message if first doesn't
exist, but typing mkdir -p first/second succeeds, creating both first and its
subdirectory, second.
Deleting Directories
The rmdir command is the opposite of mkdir; it destroys a directory. To use it, ey 4
Objective

you normally type the command followed by the names of one or more directo-
ries you want to delete:

% rmdir dirone
$ rmdir newdir/dirtwo newdir

These examples delete the three directories created by the mkdir commands
shown earlier.

Like mkdir, rmdir supports few options, the most important of which handle
these tasks:

Ignore fallures on non-empty directorles Normally, if a directory contains
files or other directories, rmdir doesn’t delete it and returns an error messagde.

Smith, Roderick W.. Linux Essentials. Hoboken, NJ, USA: Sybex, 2012. ProQuest ebrary. Web. 8 December 2015.
Copyright © 2012. Sybex. All rights reserved.

126 Chapter 7 » Managing Files

With the --1gnore-fail-on-non-empty option, rmdir still doesn't delete the
directory, but it doesn’t return an error message.

Delete tree The -p or --parents option causes rmdir to delete an entire direc-
tory tree. For instance, typing rmdir -p newdir/dirtwo causes rmdir to delete
hewdir/dirtwo, then newdir. You could use this command rather than the sec-
ond one shown earlier to delete both of these directories.

You should understand that rmdir can delete only empfy directories; if a direc-
tory contains any files at all, it won't work. (You can use the -p option, however, to
delete a set of nested directories, as long as none of them holds any non-directory
file.) Of course, in real life you're likely to want to delete directory trees that hold
files. In such cases, you can use the rm command, described earlier, in “Deleting
Files,” along with its -r (or -R or --recursive) option:

S rm -r newdir

This command deletes newdir and any files or subdirectories it might contain.
This fact makes rm and its -r option potentially dangerous, so you should be
particularly cautious when using it.

LINUX SECURITY FEATURES

When you log in as an ordinary user, you can accidentally delete your own files
if you err in your use of rmor various other commands. You cannot, however,
do serious damage to the Linux installation itself. This is because Unix was
designed as a multi-user OS with multi-user security features in mind, and
because Linux is a clone of Unix, Linux has inherited these security features.
Among these features are the concepts of file ownership and file permissions.
You can only delete your own files—or more precisely, you can only delete
files if you have write access to the directories in which they reside. You have
such access to your own home directory, but not to the directories in which
Linux system files reside. Thus, you can’t damage these Linux system files.

Chapter 13, “Understanding Users and Groups,” covers these concepts in
more detail. Chapter 13 also describes how you can acquire the power to
administer the computer. With this power comes the ability to damage the
system, though, so you should be careful to do so only when necessary.

Smith, Roderick W.. Linux Essentials. Hoboken, NJ, USA: Sybex, 2012. ProQuest ebrary. Web. 8 December 2015.
Copyright © 2012. Sybex. All rights reserved.

The Essentials and Beyond 127

Managing Directories

Directories are just special files—they’re files that hold other files. Thus, you
can use most of the file-manipulation tools described elsewhere in this chapter
to manipulate directories. There are some caveats, though:

» You can use touch to update a directory’s time stamps, but you can'’t
use touch to create a directory; mkdir handles that task.

» You can use cp to copy a directory; however, you must use the -r, -R,
--recursive, -a, or --archive option to copy the directory and all
its contents.

» You can use mv to move or rename a directory.

» You can use 1n with its -s option to create a symbolic link to a directory.
No common Linux filesystem supports hard links to directories, though.

As an example, suppose you have a directory in your home directory called
Music/Satchmo, which contains Louis Armstrong music files. You want to reor-
ganize this directory so that the files appear under the performer’s last name,
but you want to retain access to the files under the name Satchmo, since your
music players refer to them this way. You could type the following commands to
achieve this goal:

$ ed ~/Music
$ mv Satchmo Armstrong
$ Tn -s Armstrong Satchmo

Alternatively, you could omit the first command and specify the complete path
to each of the directories or links in the mv and 1n commands. As written, the
first two of these commands rename the ~/Music/Satchmo directory to ~/Music
/Armstrong. The final command creates a symbolic link, ~/Music/Satchmo, that
points to ~/Music/Armstrong.

THE ESSENTIALS AND BEYOND

Much of what you do with a computer qualifies as file management. Thus, you must
understand the basic tools for managing files in Linux. These include commands to create,
delete, copy, move, and rename files, as well as to create links to files. Directories in Linux
are just files that contain other files, so most of the same commands you can use on files
also work on directories. Special commands to create and delete directories exist, too.

(Continues)

Smith, Roderick W.. Linux Essentials. Hoboken, NJ, USA: Sybex, 2012. ProQuest ebrary. Web. 8 December 2015.
Copyright © 2012. Sybex. All rights reserved.

128 Chapter 7 » Managing Files

THE ESSENTIALS AND BEYOND (Continued)

SUGGESTED EXERCISES

» Create a file with touch (or some other program) and then practice copying it with cp,
renaming it with mv, moving it to another directory with mv, and deleting it with rm.

» Create a directory with mkdir and then practice using cp, mv, and rm on it, just as
with files. Try copying files into it and then try deleting the directory with both rmdir
and rm. Do both commands work?

REVIEW QUESTIONS

1. Which of the following commands would you type to rename newfile.txt to

afile.txt?

A. mv newfile.txt afile.txt

B. cp newfile.txt afile.txt

C. 1In newfile.txt afile.txt

D. rn newfile.txt afile.txt

E. touch newfile.txt afile.txt

2. You want to copy a directory, MyFiles, to a USB flash drive that uses the FAT
filesystem. The contents of MyF11les are as follows:

$ 1s -1 MyFiles/

total 276

-rw-r--r-- 1 jen users 129840 Nov 8 15:13 contract.odt
-rw-r--r-- 1 rod users 42667 Nov 8 15:12 outline.pdf
-rW-r--r-- 1 sam wusers 105979 Nov 8 15:12 Outline.PDF

The USB flash drive is mounted at /media/usb, and so you type cp -a
MyFiles/ /media/usb. What problem will occur when you attempt to copy
these files?

A. The command will fail because it tries to create links.
The MyF11les directory will be copied, but none of its files will be copied.
One file will be missing on the USB flash drive.

One file’s name will be changed during the copy.

m S h W

Everything will be fine; the command will work correcily.

(Continues)

Smith, Roderick W.. Linux Essentials. Hoboken, NJ, USA: Sybex, 2012. ProQuest ebrary. Web. 8 December 2015.
Copyright © 2012. Sybex. All rights reserved.

The Essentials and Beyond 129

THE ESSENTIALS AND BEYOND (Continued)

3. Youtype mkdir one/two/three and receive an error message that reads,
in part, No such file or directory. What can you do to overcome this
problem? (Select all that apply.)

A. Addthe --parents parameter to the mkd1ir command.

B. |Issue three separate mkdir commands: mkdir one, then mkdir one/
two, and then mkdir one/two/three.

C. Type touch /bin/mkdirto be sure the mkd1r program file exists.

D. Type rmdir one to clear away the interfering base of the desired new
directory tree.

E. Type rm -r one to clear away the entire interfering directory tree.

4. True or false: You can create a symbolic link from one low-level filesystem to
another.

5. True orfalse: You can easily damage your Linux installation by mistyping an rm
command when you log into your reqular account.

True or false: You can set a directory’s time stamps with the touch command.

7. You want to copy afile (origfile.txt) to the backups directory, but if afile
called origfile. txt exists in the backups directory, you want to go ahead
with the copy only if the file in the source location is newer than the one in
backups. The command to do thisiscp ____ origfile.txt backups/.

8. You'vetyped rmdir junk to delete the junk directory, but this command has
failed because junk contains word processing files. What command might you
type to do the job?

9. Which wildcard character matches any one symbol in a filename?

Smith, Roderick W.. Linux Essentials. Hoboken, NJ, USA: Sybex, 2012. ProQuest ebrary. Web. 8 December 2015.
Copyright © 2012. Sybex. All rights reserved.

Smith, Roderick W.. Linux Essentials. Hoboken, NJ, USA: Sybex, 2012. ProQuest ebrary. Web. 8 December 2015.
Copyright © 2012. Sybex. All rights reserved.

