
Variables and Data Types

u Declaration in C# syntax
<type> <name>;

u All variables must be declared before you can use them.
u Include an initial values as follows:

<type> <name> = <value>;

u Declaring a variable reserves a space in memory for the
variable and allows you to reference it using the name.

Variables – Simple Types

u Numbers
u Boolean (true or false)
u Differ from complex types in that they cannot

have attributes.
u Numeric types – there are many because of the

mechanism of storing numbers in the computer
as a series of 0s and 1s.

Variables – Simple Types

u Smallest unit of computer memory is a bit.
u can be either one or zero – like a switch, it is either on or off.
u for integer values you take a number of bits to represent

your number in binary format.

u A variable storing N bits allows you to represent any
number between 0 and (2N – 1).

u Any number larger is too big to store in this variable.

Variables – Simple Types

u Computer memory is organized, not by bits but by groups of 8
bits, called a byte.

u Signed numbers are handled by reserving one bit for the sign
(note – there are different ways of representing negative
numbers in memory – just note that there is one bit unavailable
as part of the value)

u C# has predefined standard types in the .NET framework to
represent integers.

Variables – Simple Types

Type Alias For Allowed Values
sbyte System.Sbyte Integer between -128 and 127

byte System.Byte Integer between 0 and 255

short System.Int16 Integer between -32768 and 32767

ushort System.UInt16 Integer between 0 and 65535

int System.Int32 Integer between -2147483648 and 2147483647

uint System.UInt32 Integer between 0 and 4294967295

long System.Int64 Integer between -92233729036854775808 and
9223372036854775807

ulong System.UInt64 Integer between 0 and 18446744073709551615

Variables – Simple Types

u Floating Point numbers. Numbers that are not whole and have a decimal
part.

u +/-m x 2e for float and double
u +/-m x 10e for decimal

Type Alias for Min M Max M Min E Max E Approx.
Min Val

Approx.
Max Val

float System.Single 0 224 -149 104 1.5 x 10-45 3.4 x 1038

double System.Double 0 253 -1075 970 5.0 x 10-324 1.7 x 10308

decimal System.Decimal 0 296 -28 0 1.0 x 10-28 7.9 x 1028

Variables – Simple Types

u Characters / Strings
u char is similar to ushort
u Strings can have any length – the amount of memory used just

increases.

Type Alias for Allowed values
char System.Char Single Unicode character, stored and an

integer between 0 and 65535
bool System.Boolean Boolean value, true or false
string System.String A sequence of characters

Review of some syntax rules

u C# code is made up of statements, each terminated with a
semi-colon.

u White space (blanks, tab characters, new-line characters) are
ignored by the compiler.

u Indenting makes your code more readable and
understandable.

u C# is a block-structured language (statements are part of a
block of code. Blocks are delimited by { } – known as curly
braces.

Review of
some syntax
rules

Example – showing blocks
and indentation:
{

<some line of code>;
{

<another line>;
<another line 2>;

}
<some other line>;

}

Review of some syntax rules

Comments:
// single line comment
/* multi-line

comment */
/// comments in XML format that can be used to
generate documentation

Review of some syntax rules

uC# is case sensitive, meaning that it interprets
uppercase and lowercase letters as different.

uWriteLine, writeline, WRITELINE, Writeline would
all refer to a different method or variable.

C# Console
Application

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text

namespace ConsoleApp1

{

class Program

{

static void Main(string[] args)

{

// output text to the screen.

Console.WriteLine(“Hello World”);

Console.ReadLine();

}

}

}

Notes on literal values

u Double quotations to enclose strings. To actually assign a double
quote in a string, you need to “escape” it by using a \ as follows:
my string = “He said, \“Hi\””;
This would print out as: He said, “Hi”

u \ is used for special characters: \’ \” \\
all stand for the escaped (second) character.

Notes on literal values

Escape Sequence Character
\0 Null
\a Alert (beep)
\b Backspace
\f Form feed
\n New Line
\r Carriage return
\t Horizontal tab
\v Vertical tab

Notes on literal
values

Numeric literals
can use a suffix
to specifically
indicate the
type.

Types Category Suffix Example
int, unint,
long, ulong

integer none 100

uint, ulong integer u or U 100U
long, ulong integer l or L 100L
ulong integer any comb of

u and l
100UL

float real f or F 1.5F
double real none, d of D 1.5
decimal real m or M 1.5M
bool Boolean none true or false

Expressions

u C# Operators allow you to manipulate variables
u Combine operators with variables and literals

(operands) to create expressions

u Types of operators include mathematical, assignment
and logical operators

Expressions

uCategories of operators as follows:

uUnary – Act on a single operand (a few)
uBinary – Act on two operands (most)
uTernary – Act on three operands (only one)

Mathematical
operators

Operator Category Example Result
+ Binary var1 = var2 + var3; var1 is assigned the value

that is the sum of var2 and
var3

- Binary var1 = var2 – var3; var1 is assigned the value
that is the result of var3
subtracted from var2

* Binary var1 = var2 * var3; var1 is assigned the value
that is the product of var2
and var3

/ Binary var1 = var2 \ var3; var1 is assigned the value
that is the result of dividing
var2 by var3

% Binary var1 = var2 % var3; var1 is assigned the
remainder resulting when
var2 is divided by var3

+ Unary var1 = +var2; var1 is assigned the value of
var2

- Unary var1 = -var2; var1 is assigned the value of
var2 multiplied by -1

Mathematical operators on strings – concatenation

Operator Category Example Result
+ Binary var1 = var2 + var3; var1 is assigned the value that is

the concatenation of the two
strings stored in var2 and var3.

Example:
var2 = “This is one string”
var3 = “ and this is another string”

var1 = var2 + var3 results in “This is one string and this is another string”

Increment and decrement operator
(add or subtract 1)

Operator Category Example Result
++ Unary var1 = ++var2; var1 is assigned the value of var2 + 1

and var2 is incremented by 1.
- - Unary var1 = - - var2; var1 is assigned the value var2 – 1 and

var2 is decremented by 1.
++ Unary var1 = var2++; var1 is assigned the value of var2

var2 is then incremented by 1.
- - Unary var1 = var2- -; var1 is assigned the value of var2

var2 is then decremented

Convert

u Allows you to explicitly convert between types:
integers to doubles, strings to integers, strings to
doubles and so forth.

u Useful for mathematical calculations and for taking
string input and storing it in numeric variables

Assignment operators = is what we have seen so far

Operator Category Example Result
= Binary var1 = var2 ; var1 is assigned the value of var2
+= Binary var1 += var2 ; var1 is assigned the sum of var1

and var2
- = Binary var1 -= var2 ; var1 is assigned the value of var2

subtracted from var1
*= Binary var1 *= var2;; var1 is assigned the product of var1

and var2
/* Binary var1 /= var2; var1 is assigned the value that is

the result of dividing var1 by var2
%= Binary var1 %= var2; var1 is assigned the remainder

when var1 is divided by var1

Operator Precedence

Order in sequence, except as controlled by parentheses.
Order highest to lowest

++, - - (used as prefixes), +, - (unary)
*, /, %
+, - (binary)
=, *=, /=, %=, +=, -=
++, - - (used as suffixes)

