An Overview of Computers and Programming

Understanding Computer Systems

A computer system is a combination of all the components required to process and store
data using a computer. Every computer system is composed of multiple pieces of hardware
and software.

Hardware is the equipment, or the physical devices, associated with a computer. For
example, keyboards, mice, speakers, and printers are all hardware. The devices are
manufactured differently for computers of varying sizes—for example, large mainframes,
laptops, and very small devices embedded into products such as telephones, cars, and
thermostats. However, the types of operations performed by different-sized computers
are very similar. When you think of a computer, you often think of its physical
components first, but for a computer to be useful, it needs more than devices; a computer
needs to be given instructions. Just as your stereo equipment does not do much until you
provide music, computer hardware needs instructions that control how and when data
items are input, how they are processed, and the form in which they are output or stored.

Software is computer instructions that tell the hardware what to do. Software is
programs, which are instruction sets written by programmers. You can buy prewritten
programs that are stored on a disk or that you download from the Web. For example,
businesses use word-processing and accounting programs, and casual computer users
enjoy programs that play music and games. Alternatively, you can write your own
programs. When you write software instructions, you are programming. This book
focuses on the programming process.

Software can be classified into two broad types:

Application software comprises all the programs you apply to a task, such as word-
processing programs, spreadsheets, payroll and inventory programs, and games. When
you hear people say they have “downloaded an app onto a mobile device,” they are simply
using an abbreviation of application.

System software comprises the programs that you use to manage your computer,
including operating systems such as Windows, Linux, or UNIX for larger computers and
Google Android and Apple iOS for smartphones.

This book focuses on the logic used to write application software programs, although many of
the concepts apply to both types of software.

Together, computer hardware and software accomplish three major operations in most programs:

Input—Data items enter the computer system and are placed in memory, where they can
be processed. Hardware devices that perform input operations include keyboards and
mice. Data items include all the text, numbers, and other raw material that are entered
into and processed by a computer. In business, many of the data items used are facts and
figures about such entities as products, customers, and personnel. However, data can also
include items such as images, sounds, and a user’s mouse or finger-swiping movements.

Processing—Processing data items may involve organizing or sorting them, checking
them for accuracy, or performing calculations with them. The hardware component that
performs these types of tasks is the central processing unit, or CPU. Some devices, such as

Understanding Computer Systems

tablets and smartphones, usually contain multiple processors. Writing programs that
efficiently use several CPUs requires special techniques.

e Output—After data items have been processed, the resulting information usually is sent to
a printer, monitor, or some other output device so people can view, interpret, and use the
results. Programming professionals often use the term data for input items, but use
the term information for data that has been processed and output. Sometimes you place
output on storage devices, such as your hard drive, flash media, or a cloud-based device.
(The cloud refers to devices at remote locations accessed through the Internet.) People
cannot read data directly from these storage devices, but the devices hold information for
later retrieval. When you send output to a storage device, sometimes it is used later as
input for another program.

You write computer instructions in a computer programming language such as Visual Basic,
C#, C++, or Java. Just as some people speak English and others speak Japanese, programmers
write programs in different languages. Some programmers work exclusively in one language,
whereas others know several and use the one that is best suited to the task at hand.

The instructions you write using a programming language are called program code; when
you write instructions, you are coding the program.

Every programming language has rules governing its word usage and punctuation. These
rules are called the language’s syntax. Mistakes in a language’s usage are syntax errors. If you
ask, “How the geet too store do I?” in English, most people can figure out what you probably
mean, even though you have not used proper English syntax—you have mixed up the word
order, misspelled a word, and used an incorrect word. However, computers are not nearly as
smart as most people; in this case, you might as well have asked the computer, “Xpu mxv ort
dod nmcad bf B?” Unless the syntax is perfect, the computer cannot interpret the
programming language instruction at all.

When you write a program, you usually type its instructions using a keyboard. When you type
program instructions, they are stored in computer memory, which is a computer’s
temporary, internal storage. Random access memory, or RAM, is a form of internal, volatile
memory. Programs that are currently running and data items that are currently being used
are stored in RAM for quick access. Internal storage is volatile—its contents are lost when the
computer is turned off or loses power. Usually, you want to be able to retrieve and perhaps
modify the stored instructions later, so you also store them on a permanent storage device,
such as a disk. Permanent storage devices are nonvolatile—that is, their contents are
persistent and are retained even when power is lost. If you have had a power loss while
working on a computer, but were able to recover your work when power was restored, it’s not
because the work was still in RAM. Your system has been configured to automatically save
your work at regular intervals on a nonvolatile storage device—often your hard drive.

After a computer program is typed using programming language statements and stored in
memory, it must be translated to machine language that represents the millions of on/off
circuits within the computer. Your programming language statements are called source
code, and the translated machine language statements are object code.

Each programming language uses a piece of software, called a compiler or an interpreter, to
translate your source code into machine language. Machine language is also called binary

An Overview of Computers and Programming

language, and is represented as a series of Os and 1s. The compiler or interpreter that
translates your code tells you if any programming language component has been used
incorrectly. Syntax errors are relatively easy to locate and correct because your compiler or
interpreter highlights them. If you write a computer program using a language such as C++
but spell one of its words incorrectly or reverse the proper order of two words, the software
lets you know that it found a mistake by displaying an error message as soon as you try to
translate the program.

4

Although there are differences in how compilers and interpreters work, their basic function is the same—to
translate your programming statements into code the computer can use. When you use a compiler, an entire
program is translated before it can execute; when you use an interpreter, each instruction is translated just
prior to execution. Usually, you do not choose which type of translation to use—it depends on the
programming language. However, there are some languages for which both compilers and interpreters are
available.

After a program’s source code is successfully translated to machine language, the computer
can carry out the program instructions. When instructions are carried out, a program runs,
or executes. In a typical program, some input will be accepted, some processing will occur,
and results will be output.

4

Besides the popular, comprehensive programming languages such as Java and C++, many programmers
use scripting languages (also called scripting programming languages or script languages) such as
Python, Lua, Perl, and PHP. Scripts written in these languages usually can be typed directly from a keyboard
and are stored as text rather than as binary executable files. Scripting language programs are interpreted
line by line each time the program executes, instead of being stored in a compiled (binary) form. Still, with all
programming languages, each instruction must be translated to machine language before it can execute.

TWO TRUTHS ALIE

Understanding Computer Systems

In each Two Truths and a Lie section, two of the numbered statements are true, and one
is false. Identify the false statement and explain why it is false.

1.

Hardware is the equipment, or the devices, associated with a computer.
Software is computer instructions.

The grammar rules of a computer programming language are its syntax.

You write programs using machine language, and translation software converts
the statements to a programming language.

"ST pue SO SI yaiym ‘agengue| sulyoew 0} SJUBWSLL]S dy} SISAU0D

(4919.4d191ul J0 J3)IdWOD B pajjed) Wei3o4d uole|Suel] e pue ‘eAer J0 diseg [ensip Se
yons agen3ue| Fuiwwes3o.d e Fuisn swei3o4d 8}UM NOA "S# SI JUBLLAIRIS 8S|e) dY |

Understanding Simple Program Logic

Understanding Simple Program Logic

A program with syntax errors cannot be fully translated and cannot execute. A program with
no syntax errors is translatable and can execute, but it still might contain logical errors and
produce incorrect output as a result. For a program to work properly, you must develop
correct logic; that is, you must write program instructions in a specific sequence, you must
not leave any instructions out, and you must not add extraneous instructions.

Suppose you instruct someone to
make a cake as follows:

Don't Do It

Get a bowl Don't bake a cake like
Stir this!
Add two eggs
Add a gallon of gasoline
Bake at 350 degrees for 45 minutes
Add three cups of flour

The dangerous cake-baking instructions are shown with a Don’t Do It icon. You will see this icon when the
book contains an unrecommended programming practice that is used as an example of what not to do.

Even though the cake-baking instructions use English language syntax correctly, the
instructions are out of sequence, some are missing, and some instructions belong to
procedures other than baking a cake. If you follow these instructions, you will not make an
edible cake, and you may end up with a disaster. Many logical errors are more difficult to
locate than syntax errors—it is easier for you to determine whether eggs is spelled incorrectly
in a recipe than it is for you to tell if there are too many eggs or if they are added too soon.

Just as baking directions can be provided in Mandarin, Urdu, or Spanish, program logic can
be expressed correctly in any number of programming languages. Because this book is not
concerned with a specific language, the programming examples could have been written in
Visual Basic, C++, or Java. For convenience, this book uses instructions written in English!

After you learn French, you automatically know, or can easily figure out, many Spanish words. Similarly, after
you learn one programming language, it is much easier to understand several other languages.

Most simple computer programs include steps that perform input, processing, and output.
Suppose you want to write a computer program to double any number you provide. You can
write the program in a programming language such as Visual Basic or Java, but if you were to
write it using English-like statements, it would look like this:

input myNumber
set myAnswer = myNumber * 2
output myAnswer

An Overview of Computers and Programming

The number-doubling process includes three instructions:

The instruction to input myNumber is an example of an input operation. When the
computer interprets this instruction, it knows to look to an input device to obtain a
number. When you work in a specific programming language, you write instructions that
tell the computer which device to access for input. For example, when a user enters a
number as data for a program, the user might click on the number with a mouse, type it
from a keyboard, or speak it into a microphone. Logically, however, it doesn’t matter
which hardware device is used, as long as the computer knows to accept a number. When
the number is retrieved from an input device, it is placed in the computer’s memory in a
variable named myNumber. A variable is a named memory location whose value can vary—
for example, the value of myNumber might be 3 when the program is used for the first time
and 45 when it is used the next time. In this book, variable names will not contain
embedded spaces; for example, the book will use myNumber instead of my Number.

same is true in your dalily life. If you follow the instruction “Get eggs for the cake,” it does not really matter if

ﬂ From a logical perspective, when you input, process, or output a value, the hardware device is irrelevant. The

you purchase them from a store or harvest them from your own chickens—you get the eggs either way.
There might be different practical considerations to getting the eggs, just as there are for getting data from
a large database as opposed to getting data from an inexperienced user working at home on a laptop
computer. For now, this book is only concerned with the logic of operations, not the minor details.

different contents at different times. For example, your Logic class might meet there on Monday night, and a

ﬂ A college classroom is similar to a named variable in that its name (perhaps 204 Adams Building) can hold

math class might meet there on Tuesday morning.

The instruction set myAnswer = myNumber * 2 is an example of a processing operation.
In most programming languages, an asterisk is used to indicate multiplication, so this
instruction means “Change the value of the memory location myAnswer to equal the value
at the memory location myNumber times two.” Mathematical operations are not the only
kind of processing operations, but they are very typical. As with input operations, the type
of hardware used for processing is irrelevant—after you write a program, it can be used on
computers of different brand names, sizes, and speeds.

In the number-doubling program, the output myAnswer instruction is an example of an
output operation. Within a particular program, this statement could cause the output to
appear on the monitor (which might be a flat-panel plasma screen or a smartphone display),
or the output could go to a printer (which could be laser or ink-jet), or the output could be
written to a disk or DVD. The logic of the output process is the same no matter what hardware
device you use. When this instruction executes, the value stored in memory at the location
named myAnswer is sent to an output device. (The output value also remains in computer
memory until something else is stored at the same memory location or power is lost.)

o0 . .
E" Watch the video A Simple Program.

Understanding the Program Development Cycle

Computer memory consists of millions of numbered locations where data can be stored. The memory
location of myNumber has a specific numeric address, but when you write programs, you seldom need to
be concerned with the value of the memory address; instead, you use the easy-to-remember name you
created. Computer programmers often refer to memory addresses using hexadecimal notation, or base 16.
Using this system, they might use a value like 42FFO1A to refer to a memory address. Despite the use of
letters, such an address is still a hexadecimal number. Appendix A contains information on this numbering
system.

TWO TRUTHS ALIE

Understanding Simple Program Logic

A program with syntax errors can execute but might produce incorrect results.

2. Although the syntax of programming languages differs, the same program logic

can be expressed in different languages.

3. Most simple computer programs include steps that perform input, processing,

and output.

'S)NsaJ 1994400Ul 99npoJd JYSIW NG ‘8INISX3 URD SI04ID XBIUAS OU YlIM

weJgo.d e {9)N29X3 JOUURD 10443 XBJUAS Yyum weaSoad \/ “T# S| Juswsalels asje} ay|

Understanding the Program Development Cycle

A programmer’s job involves writing instructions (such as those in the doubling program in
the preceding section), but a professional programmer usually does not just sit down at a
computer keyboard and start typing. Figure 1-1 illustrates the program development cycle,
which can be broken down into at least seven steps:

1.

2
3.
4

o

Understand the problem.
Plan the logic.
Code the program.

Use software (a compiler or interpreter) to translate the program into machine
language.

Test the program.
Put the program into production.

Maintain the program.

An Overview of Computers and Programming

Understand
/ the problem \
Maintain the Plan the
program logic
Put the program Write the
into production code
Test the Translate the
program ‘\/ code

Figure 1-1 The program development cycle
© 2015 Cengage Learning

Understanding the Problem

Professional computer programmers write programs to satisty the needs of others, called
users or end users. Examples of end users include a Human Resources department that
needs a printed list of all employees, a Billing department that wants a list of clients who are
30 or more days overdue on their payments, and an Order department that needs a Web site
to provide buyers with an online shopping cart. Because programmers are providing a service
to these users, programmers must first understand what the users want. When a program
runs, you usually think of the logic as a cycle of input-processing-output operations, but when
you plan a program, you think of the output first. After you understand what the desired
result is, you can plan the input and processing steps to achieve it.

Suppose the director of Human Resources says to a programmer, “Our department needs a
list of all employees who have been here over five years, because we want to invite them to a
special thank-you dinner.” On the surface, this seems like a simple request. An experienced
programmer, however, will know that the request is incomplete. For example, you might not
know the answers to the following questions about which employees to include:

e Does the director want a list of full-time employees only, or a list of full- and part-time
employees together?

e Does she want to include people who have worked for the company on a month-to-
month contractual basis over the past five years, or only regular, permanent employees?

e Do the listed employees need to have worked for the organization for five years as of
today, as of the date of the dinner, or as of some other cutoff date?

e What about an employee who worked three years, took a two-year leave of absence, and
has been back for three years?

Understanding the Program Development Cycle

The programmer cannot make any of these decisions; the user (in this case, the Human
Resources director) must address these questions.

More decisions still might be required. For example:

e What data should be included for each listed employee? Should the list contain both first
and last names? Social Security numbers? Phone numbers? Addresses?

e Should the list be in alphabetical order? Employee ID number order? Length-of-service
order? Some other order?

e Should the employees be grouped by any criteria, such as department number or years of
service?

Several pieces of documentation are often provided to help the programmer understand the
problem. Documentation consists of all the supporting paperwork for a program; it might
include items such as original requests for the program from users, sample output, and
descriptions of the data items available for input.

Understanding the problem might be even more difficult if you are writing an app that you
hope to market for mobile devices. Business developers are usually approached by a user with
a need, but successful developers of mobile apps often try to identify needs that users aren’t
even aware of yet. For example, no one knew they wanted to play Angry Birds or leave
messages on Facebook before those applications were developed. Mobile app developers also
must consider a wider variety of user skills than programmers who develop applications that
are used internally in a corporation. Mobile app developers must make sure their programs
work with a range of screen sizes and hardware specifications because software competition is
intense and the hardware changes quickly.

Fully understanding the problem may be one of the most difficult aspects of programming.

On any job, the description of what the user needs may be vague—worse yet, users may not
really know what they want, and users who think they know frequently change their minds
after seeing sample output. A good programmer is often part counselor, part detective!

(1 J
E" Watch the video The Program Development Cycle, Part 1.

Planning the Logic

The heart of the programming process lies in planning the program’s logic. During this phase
of the process, the programmer plans the steps of the program, deciding what steps to include
and how to order them. You can plan the solution to a problem in many ways. The two most
common planning tools are flowcharts and pseudocode. Both tools involve writing the steps
of the program in English, much as you would plan a trip on paper before getting into the car
or plan a party theme before shopping for food and favors.

You may hear programmers refer to planning a program as “developing an algorithm.” An
algorithm is the sequence of steps or rules you follow to solve a problem.

B

An Overview of Computers and Programming

the possible data values a program might encounter and how you want the program to handle
each scenario. The process of walking through a program’s logic on paper before you actually
write the program is called desk-checking. You will learn more about planning the logic
throughout this book; in fact, the book focuses on this crucial step almost exclusively.

Coding the Program

After the logic is developed, only then can the programmer write the source code for a
program. Hundreds of programming languages are available. Programmers choose particular
languages because some have built-in capabilities that make them more efficient than others
at handling certain types of operations. Despite their differences, programming languages are
quite alike in their basic capabilities—each can handle input operations, arithmetic
processing, output operations, and other standard functions. The logic developed to solve a
programming problem can be executed using any number of languages. Only after choosing a
language must the programmer be concerned with proper punctuation and the correct
spelling of commands—in other words, using the correct syntax.

Some experienced programmers can successfully combine logic planning and program
coding in one step. This may work for planning and writing a very simple program, just as you
can plan and write a postcard to a friend using one step. A good term paper or a Hollywood
screenplay, however, needs planning before writing—and so do most programs.

Which step is harder: planning the logic or coding the program? Right now, it may seem to
you that writing in a programming language is a very difficult task, considering all the spelling
and syntax rules you must learn. However, the planning step is actually more difficult. Which
is more difficult: thinking up the twists and turns to the plot of a best-selling mystery novel, or
writing a translation of an existing novel from English to Spanish? And who do you think gets
paid more, the writer who creates the plot or the translator? (Try asking friends to name any
famous translator!)

Using Software to Translate the Program into Machine Language

Even though there are many programming languages, each computer knows only one
language—its machine language, which consists of 1s and 0s. Computers understand machine
language because they are made up of thousands of tiny electrical switches, each of which can
be set in either the on or off state, which is represented by a 1 or 0, respectively.

Languages like Java or Visual Basic are available for programmers because someone has
written a translator program (a compiler or interpreter) that changes the programmer’s
English-like high-level programming language into the low-level machine language that the
computer understands. When you learn the syntax of a programming language, the
commands work on any machine on which the language software has been installed.
However, your commands then are translated to machine language, which differs in various
computer makes and models.

Understanding the Program Development Cycle

If you write a programming statement incorrectly (for example, by misspelling a word, using a
word that doesn’t exist in the language, or using “illegal” grammar), the translator program
doesn’t know how to proceed and issues an error message identifying a syntax error.
Although making errors is never desirable, syntax errors are not a major concern to
programmers, because the compiler or interpreter catches every syntax error and displays a
message that notifies you of the problem. The computer will not execute a program that
contains even one syntax error.

Typically, a programmer develops logic, writes the code, and compiles the program, receiving
a list of syntax errors. The programmer then corrects the syntax errors and compiles the
program again. Correcting the first set of errors frequently reveals new errors that originally
were not apparent to the compiler. For example, if you could use an English compiler and
submit the sentence The dg chase the cat, the compiler at first might point out only one
syntax error. The second word, dg, is illegal because it is not part of the English language.
Only after you corrected the word to dog would the compiler find another syntax error on the
third word, chase, because it is the wrong verb form for the subject dog. This doesn’t mean
chase is necessarily the wrong word. Maybe dog is wrong; perhaps the subject should be dogs,
in which case chase is right. Compilers don’t always know exactly what you mean, nor do they
know what the proper correction should be, but they do know when something is wrong with
your syntax.

o0
Eu Watch the video The Program Development Cycle, Part 2.

When writing a program, a programmer might need to recompile the code several times. An
executable program is created only when the code is free of syntax errors. After a program has
been translated into machine language, the machine language program is saved and can be
run any number of times without repeating the translation step. You only need to retranslate
your code if you make changes to your source code statements. Figure 1-2 shows a diagram of
this entire process.

o

N

An Overview of Computers and Programming

If there are no

Data that the
program uses

Y

syntax errors

Write and correct _ | Compile the syntax errors Executable
the program code program program
A
If there are

List of Program
syntax output
error

messages

Figure 1-2 Creating an executable program

Testing the Program

A program that is free of syntax errors is not necessarily free of logical errors. A logical error
results when you use a syntactically correct statement but use the wrong one for the current
context. For example, the English sentence The dog chases the cat, although syntactically
perfect, is not logically correct if the dog chases a ball or the cat is the aggressor.

Once a program is free of syntax errors, the programmer can test it—that is, execute it with
some sample data to see whether the results are logically correct. Recall the number-doubling
program:

input myNumber
set myAnswer = myNumber * 2
output myAnswer

If you execute the program, provide the value 2 as input to the program, and the answer 4 is
displayed, you have executed one successful test run of the program.

However, if the answer 40 is displayed, maybe the program contains a logical error. Maybe
the second line of code was mistyped with an extra zero, so that the program reads:

Don’t Do It
The programmer typed
20 instead of 2.

input myNumber
set myAnswer = myNumber * 20
output myAnswer

Placing 20 instead of 2 in the multiplication statement caused a logical error. Notice that
nothing is syntactically wrong with this second program—it is just as reasonable to multiply a
number by 20 as by 2—but if the programmer intends only to double myNumber, then a logical
error has occurred.

Understanding the Program Development Cycle

The process of finding and correcting program errors is called debugging. You debug a
program by testing it using many sets of data. For example, if you write the program to
double a number, then enter 2 and get an output value of 4, that doesn’t necessarily mean
you have a correct program. Perhaps you have typed this program by mistake:

input myNumber Don't Do It
set myAnswer = myNumber + 2 The programmer typed
output myAnswer "+" instead of "*",

An input of 2 results in an answer of 4, but that doesn’t mean your program doubles
numbers—it actually only adds 2 to them. If you test your program with additional data and
get the wrong answer—for example, if you enter 7 and get an answer of 9—you know there is
a problem with your code.

Selecting test data is somewhat of an art in itself, and it should be done carefully. If the Human
Resources department wants a list of the names of five-year employees, it would be a mistake to
test the program with a small sample file of only long-term employees. If no newer employees
are part of the data being used for testing, you do not really know if the program would have
eliminated them from the five-year list. Many companies do not know that their software has a
problem until an unusual circumstance occurs—for example, the first time an employee has
more than nine dependents, the first time a customer orders more than 999 items at a time, or
when the Internet runs out of allocated IP addresses, a problem known as IPV4 exhaustion.

Putting the Program into Production

Once the program is thoroughly tested and debugged, it is ready for the organization to use.
Putting the program into production might mean simply running the program once, if it was
written to satisfy a user’s request for a special list. However, the process might take months if
the program will be run on a regular basis, or if it is one of a large system of programs being
developed. Perhaps data-entry people must be trained to prepare the input for the new
program, users must be trained to understand the output, or existing data in the company
must be changed to an entirely new format to accommodate this program. Conversion, the
entire set of actions an organization must take to switch over to using a new program or set of
programs, can sometimes take months or years to accomplish.

Maintaining the Program

After programs are put into production, making necessary changes is called maintenance.
Maintenance can be required for many reasons: for example, because new tax rates are
legislated, the format of an input file is altered, or the end user requires additional information
not included in the original output specifications. Frequently, your first programming job will
require maintaining previously written programs. When you maintain the programs others
have written, you will appreciate the effort the original programmer put into writing clear

B

3

An Overview of Computers and Programming

code, using reasonable variable names, and documenting his or her work. When you make
changes to existing programs, you repeat the development cycle. That is, you must

understand the changes, then plan, code, translate, and test them before putting them into
production. If a substantial number of program changes are required, the original program
might be retired, and the program development cycle might be started for a new program.

o0
M Watch the video The Program Development Cycle, Part 3.

TWO TRUTHS ALIE

Understanding the Program Development Cycle

1. Understanding the problem that must be solved can be one of the most difficult
aspects of programming.

2. The two most commonly used logic-planning tools are flowcharts and
pseudocode.

3. Flowcharting a program is a very different process if you use an older
programming language instead of a newer one.

‘sa3engue| o Jaquinu Aue 3uisn palndaxa aq ued wajqoid uiwel3oid e 9A0S 0)
padojanap 2130| 8y "SUOIIUN} pJepuRlS JBY10 pue ‘Suoijetado ndino ‘Suissadoid
Jn_WyJe ‘suonesado ndul s|puey ued yaea—saij|igeded diseq vyl Ul ayie aynb
aJe saden3ue| Sulwwes3o.ad ‘SaduaiayIp 4Byl 8HdSa(Q "E# SI JUBLIBILIS BS|e} Ay |

Using Pseudocode Statements and Flowchart Symbols

When programmers plan the logic for a solution to a programming problem, they often use
one of two tools: pseudocode (pronounced sue-doe-code) or flowcharts.

e Pseudocode is an English-like representation of the logical steps it takes to solve a
problem. Pseudo is a prefix that means false, and to code a program means to put it in a
programming language; therefore, pseudocode simply means false code, or sentences that
appear to have been written in a computer programming language but do not necessarily
follow all the syntax rules of any specific language.

e A flowchart is a pictorial representation of the same thing.

	P&Lpg2-9
	P&Lpg10-14

