
Understanding Computer
Systems

Definitions!

Computer System – combination of all the components required
to process and store data using a computer

Hardware – the equipment or physical devices associated with a
computer

u Keyboards, mice, speakers, printers, monitors, CPU

Software – computer instructions that tell the hardware what to do
u Applications, operating system, device drivers, scripts

Programs – Instruction sets written by programmers for a specific
task

Definitions!

Application Software – all the programs used on a
computer to perform a user task

u Word processing, spreadsheets, payroll, inventory, games

System Software – programs used to manage the
computer

u Operating systems (Windows, Linux, Google Android, Apple
iOS)

u Device drivers (for printers and other hardware devices)

Three Major Operations

Input – data items are entered into the computer system
and are placed in memory

u Keyboards, mice, touch screens – devices that perform input
operations

u Data Items – all text, numbers and other data entered into and
processed by a computer

u Names, products, images, sounds, mouse movements

u Data vs. Information - Data is used to describe items that are input
and information is used to describe data that has been processed
and output

Three Major Operations

Processing – involves organizing, sorting, checking and
performing calculations on data items.

u Central Processing Unit (CPU) – hardware component that
performs processing

Output - Presentation of the information that has
resulted from processing the data item inputs.

u Data is sent to an output device (printer, monitor, etc.)

Programming Languages

Programming Language – used to write computer
instructions

u Visual Basic, C#, C++, Java
u Scripting languages – Python, Perl, PHP

Syntax – language’s rules, computers cannot interpret
incorrect syntax at all.

u Incorrect English syntax – we can still understand what is
being said

Programming Languages

u We write code in a Programming Language – Source
Code

u Before the computer can execute the instructions, it
must be translated to Machine Language – the ones
and zeros that the computer can understand (also
called Binary Language and Object Code)

Programming Languages

Two types of translators
u Compiler – translates the entire program first and then you

Run or Execute the program (C++)
u Interpreter – translates each instruction and then executes it

(JavaScript, Ruby)

Translators will find syntax errors, but not necessarily logic
errors.

Computer Memory

Volatile – temporary internal memory, where a program’s
instructions are stored when it is running and where the data items
are manipulated.

u If the computer is turned off, this data is lost
u Known as Random Access Memory (RAM)

Non-volatile – permanent storage, such as a disk, where contents
are retained even if power is lost. The translated program and the
source code are stored to disk so that they can be executed
again. Data items can also be store to disk.

Programming
Development
Cycle

Programming
Development
Cycle

Understand
Problem

Plan Logic

Write Code

Translate
Code

Test
Program

Put into
Production

Maintain
Program

Programming
Development
Cycle

Understand
Problem

Plan Logic

Write
Code

Translate
Code

Test
Program

Put into
Production

Maintain
Program

Understanding the Problem

Programs are written to satisfy the needs of the Users

Sometimes difficult to determine
u Vague requirements
u Incomplete requirements
u Needs that the Users are not yet aware of
u Wide variety / level of user skills
u Needs change

Programming
Development
Cycle

Understand
Problem

Plan Logic

Write Code

Translate
Code

Test
Program

Put into
Production

Maintain
Program

Plan the Logic

u Programmer develops the steps of program

u What steps to include, what order

u Many different ways to do the same thing

u Algorithm – Sequence of Steps or Rules you follow to solve a problem

u Independent of programming language

Plan the Logic

Use of planning tools

u Flowcharts – graphical representation of the steps
u Pseudo code – English code-like steps
u IPO chart – inputs, processing and outputs
u TOE charts – object-oriented, tasks, objects and events
u UML – Unified Modeling Language
u Storyboards – used to identify “use cases” for the program

Programming
Development
Cycle

Understand
Problem

Plan Logic

Write Code

Translate CodeTest
Program

Put into
Production

Maintain
Program

Write the Code
Translate the Code

Choose a high-level programming language
u Write the code using the syntax for that language

Use a compiler or interpreter to
u translate the program from the high-level programming language to the

low-level machine language that the computer understands
u The compiler/interpreter will identify syntax errors

Once syntax errors are corrected, the executable program is
ready to test.

Programming
Development
Cycle

Understand
Problem

Plan Logic

Write Code

Translate
CodeTest Program

Put into
Production

Maintain
Program

Test the Program

Identifies Logic Errors
u Errors that result when you use a syntactically correct statement but in the wrong

context

Test Data inputs should include representative data and cover all possible
expected error conditions

u Examples: if a data value can be from 1-100, you should test 1, 100 (boundary
conditions), a negative number or zero and a number greater than 100 (error
conditions), and several numbers in the middle of the range

This testing process is called Debugging.

Programming
Development
Cycle

Understand
Problem

Plan Logic

Write Code

Translate
Code

Test
Program

Put into
Production

Maintain
Program

Put Program Into Production
Maintain the Program

Program is made available to Users
u May involve training of users
u Conversion – the entire set of actions an organization must take to

switch over to using a new program

Maintenance – making necessary changes
u Due to new requirements, changes requested or required by the

users, new data formats, etc.
u Repeat the development cycle

Problem Example

You have a kitchen robot (Rosie) that you are to program to make a
peanut butter and jelly sandwich.

Understanding the problem:
u Describe the peanut butter and jelly sandwich

u Type of bread – white, wheat, other
u Type of peanut butter – creamy, chunky, all natural
u Type of jelly – grape, strawberry, etc.

u What does it look like when it is done?
u What processes does the robot need to perform?
u Anything else?

Problem Example

Planning the Logic – Determine the following:
u Inputs
u Outputs
u Processing

Program Logic

Programs with syntax errors cannot be translated
Programs with no syntax errors can still contain logic
errors
Programs are basically instructions to the computer

u Instructions must be in the correct order
u Instructions must be complete – you cannot leave any out
u You must not add extra instructions

Program Logic

Peanut Butter and Jelly Sandwich
spread peanut butter on bread
get knife
spread jelly on bread
get bread
add anchovies
get peanut butter and jelly

Program Logic

Syntax is correct English – however…
u Instructions are out of sequence
u There is an extra instruction (add anchovies)
u There are missing instructions

Program Logic

Simple computer programs include steps that perform input, processing and
output.

Write a program to compute the square of a number – Three instructions – one
input, one processing and one output

input myNumber
set myNumberSquared = myNumber * myNumber
output myNumberSquared

myNumber and myNumberSquared are examples of variables – a named memory
location whose value can vary

